
AN APPELL SERIES OVER FINITE FIELDS

BING HE AND LONG LI

Abstract. In this paper we give a finite field analogue of one of the Appell series and
obtain some transformation and reduction formulae and the generating functions for the
Appell series over finite fields.

1. Introduction

Let Fq denote the finite field of q elements and F̂∗q the group of multiplicative characters
of F∗q where q is a power of a prime. We extend the domain of all characters χ of F∗q to Fq
by setting χ(0) = 0 for all characters and denote χ and ε as the inverse of χ and the trivial
character respectively. See [2] and [7, Chapter 8] for more details about characters.

The generalized hypergeometric function is defined by [1]

n+1Fn

(
a0, a1, . . . , an
b1, . . . , bn

∣∣∣∣x) :=
∞∑
k=0

(a0)k(a1)k · · · (an)k
k!(b1)k · · · (bn)k

xk

where (z)k is the Pochhammer symbol given by

(z)0 = 1, (z)k = z(z + 1) · · · (z + k − 1) for k ≥ 1.

It was Greene [6] who in 1987 developed the theory of hypergeometric functions over finite
fields and proved a number of transformation and summation identities for hypergeometric
series over finite fields which are analogues to those in the classical case. In that paper,
Greene introduced the notation

2F1

(
A,B
C

∣∣∣∣x)G = ε(x)
BC(−1)

q

∑
y

B(y)BC(1− y)A(1− xy)

for A,B,C ∈ F̂q and x ∈ Fq, which is the finite field analogue of the integral representation
of Gauss hypergeometric series [1]:

2F1

(
a, b
c

∣∣∣∣x) =
Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0
tb(1− t)c−b(1− tx)−a

dt

t(1− t)
,
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and defined the finite field analogue of the binomial coefficient as(
A

B

)G
=
B(−1)

q
J(A,B),

where J(χ, λ) is the Jacobi sum given by

J(χ, λ) =
∑
u

χ(u)λ(1− u).

For more information about the finite field analogue of the generalized hypergeometric
functions, please see [4, 5, 9].

In this paper, for the sake of simplicity, we use the notation(
A

B

)
= q

(
A

B

)G
= B(−1)J(A,B).

Then the finite field analogue of the binomial theorem can be written in the form:

Theorem 1.1. (Binomial theorem, see [6, (2.5)]) For any character A ∈ F̂q and x ∈ Fq,
we have

A(1 + x) = δ(x) +
1

q − 1

∑
χ

(
A

χ

)
χ(x),

where the sum ranges over all multiplicative characters of Fq and δ(x) is a function on Fq
given by

δ(x) =

{
1 if x = 0
0 if x 6= 0

.

Furthermore, we define the finite field analogue of the classic Gauss hypergeometric series
as

2F1

(
A,B
C

∣∣∣∣x) = q · 2F1

(
A,B
C

∣∣∣∣x)G = ε(x)BC(−1)
∑
y

B(y)BC(1− y)A(1− xy).

Then by [6, Theorem 3.6],

(1.1) 2F1

(
A,B
C

∣∣∣∣x) =
1

q − 1

∑
χ

(
Aχ

χ

)(
Bχ

Cχ

)
χ(x)

for any A,B,C ∈ F̂q and x ∈ Fq. Similarly, the finite field analogue of the generalized

hypergeometric series for any A0, A1, · · · , An, B1, · · · , Bn ∈ F̂q and x ∈ Fq is defined by

n+1Fn

(
A0, A1, · · · , An
B1, · · · , Bn

∣∣∣∣x) =
1

q − 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·
(
Anχ

Bnχ

)
χ(x).

One of Greene’s theorems is now stated in our notations.

Theorem 1.2. (See [6, Theorem 4.9])For any characters A,B,C ∈ F̂q, we have

(1.2) 2F1

(
A,B
C

∣∣∣∣1) = A(−1)

(
B

AC

)
.
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There are many interesting double hypergeometric functions in the field of hypergeometric
functions. Among these functions, Appell’s four functions may be the most important
functions:

F1(a; b, b′; c;x, y) =
∑
m,n≥0

(a)m+n(b)m(b′)n
m!n!(c)m+n

xmyn, |x| < 1, |y| < 1,

F2(a; b, b′; c, c′;x, y) =
∑
m,n≥0

(a)m+n(b)m(b′)n
m!n!(c)m(c′)n

xmyn, |x|+ |y| < 1,

F3(a, a′; b, b′; c;x, y) =
∑
m,n≥0

(a)m(a′)n(b)m(b′)n
m!n!(c)m+n

xmyn, |x| < 1, |y| < 1,

F4(a; b; c, c′;x, y) =
∑
m,n≥0

(a)m+n(b)m+n

m!n!(c)m(c′)n
xmyn, |x|

1
2 + |y|

1
2 < 1.

See [1, 3, 10] for more detailed material about Appell’s functions.
Inspired by Greene’s work, the second author et al in [8] gave a finite field analogue

of the Appell series F1 and obtained some transformation and reduction formulas and the
generating functions for the function over finite fields. In that paper, the finite field analogue
of the Appell series F1 was given by

F1(A;B,B′;C;x, y) = ε(xy)AC(−1)
∑
u

A(u)AC(1− u)B(1− ux)B′(1− uy)

owing to the fact that the F1 function has the integral representation in terms of a single
integral [1, Chapter IX]:

F1(a; b, b′; c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

ˆ 1

0
ua−1(1− u)c−a−1(1− ux)−b(1− uy)−b

′
du

where 0 < <(a) < <(c).
Motivated by the work of Greene [6] and the second author et al [8], we give a finite field

analogue of the Appell series F2. Since the Appell series F2 has the following simple double
integral representation [1, Chapter IX]:

F2(a; b, b′; c, c′;x, y) =
Γ(c)Γ(c′)

Γ(b)Γ(b′)Γ(c− b)Γ(c′ − b′)

·
ˆ 1

0

ˆ 1

0
ub−1vb

′−1(1− u)c−b−1(1− v)c
′−b′−1(1− ux− vy)−adudv,

we now give the finite field analogue of F2 in the following form:

F2(A;B,B′;C,C ′;x, y)

= ε(xy)BB′CC ′(−1)
∑
u,v

B(u)B′(v)BC(1− u)B′C ′(1− v)A(1− ux− vy),

where A,B,B′, C, C ′ ∈ F̂q, x, y ∈ Fq and each sum ranges over all the elements of Fq. In

the above definition, the factor Γ(c)Γ(c′)
Γ(b)Γ(b′)Γ(c−b)Γ(c′−b′) is dropped to obtain simpler results.
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We choose the factor ε(xy) · BB′CC ′(−1) to get a better expression in terms of binomial
coefficients. In the following theorem we give another expression for F2(A;B,B′;C,C ′;x, y).

Theorem 1.3. For any A,B,B′, C, C ′ ∈ F̂q and x, y ∈ Fq, we have

F2(A;B,B′;C,C ′;x, y) =
1

(q − 1)2

∑
χ,λ

(
Aχ

χ

)(
Aχλ

λ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)

+A(−x)C ′(y)B′C ′(1− y)

(
AB

BC

)
,

where each sum ranges over all multiplicative characters of Fq.

From the definition of F2(A;B,B′;C,C ′;x, y), Theorem 1.3 and (1.2), we can easily
deduce the following results.

Proposition 1.1. For any A,B,B′, C, C ′ ∈ F̂q and x, y ∈ Fq, we have

F2(A;B,B′;C,C ′;x, y) = F2(A;B′, B;C ′, C; y, x),(1.3)

F2(A;B,B′;C,C ′;x, 1) = B′C ′(−1)3F2

(
A,B,AC ′

C,AB′C ′

∣∣∣∣x) ,
F2(A;B,B′;C,C ′; 1, y) = BC(−1)3F2

(
A,B′, AC
C ′, ABC

∣∣∣∣y) .
The aim of this paper is to give several transformation and reduction formulas and the

generating functions for the Appell series F2 over finite fields. The facts that the Appell
series F2 does not have a single integral representation but has a double one and the F1 has
a single one led us to giving a finite field analogue for the Appell series F2 which is more
complicated than that for F1 in [8]. Consequently, the results on the transformation and
reduction formulas and the generating functions for the Appell series F2 over finite fields
are also more complicated than those in [8].

The proof of Theorem 1.3 will be given in the next section. We give several transformation
and reduction formulae for F2(A;B,B′;C,C ′;x, y) in Section 3. The last section is devoted
to deducing some generating functions for F2(A;B,B′;C,C ′;x, y).

2. Proof of Theorem 1.3

To carry out our study, we need some auxiliary results which will be used frequently in
this paper.

The results in the following proposition follows readily from some properties of Jacobi
sums.
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Proposition 2.1. If A,B ∈ F̂q, then(
A

B

)
=

(
A

AB

)
,(2.1) (

A

B

)
=

(
BA

B

)
B(−1),(2.2) (

A

B

)
=

(
B

A

)
AB(−1),(2.3) (

A

ε

)
=

(
A

A

)
= −1 + (q − 1)δ(A),(2.4)

where δ(χ) is a function on characters given by

δ(χ) =

{
1 if χ = ε
0 otherwise

.

The following result is also very important in the derivation of Theorem 1.3.

Proposition 2.2. For any character A ∈ F̂q and x, y ∈ Fq, we have

A(1 + x+ y) =


A(x) if y = −1

δ(x)δ(y) + 1
q−1

(
δ(x)

∑
χ

(
A
χ

)
χ(y) + δ(y)

∑
χ

(
A
χ

)
χ(x)

)
+ 1

(q−1)2
∑

χ,λ

(
A
χ

)(
Aχ
λ

)
χ(x)λ(y) if y 6= −1

,

where each sum ranges over all multiplicative characters of Fq.

Proof. It is obvious that A(1 + x+ y) = A(x) when y = −1. We only need to consider the
case y 6= −1. When y 6= −1, by the binomial theorem, we have

A(1 + x+ y) = A(1 + y)A

(
1 +

x

1 + y

)
= δ(x)A(1 + y) +

1

q − 1

∑
χ

(
A

χ

)
χ(x)Aχ(1 + y)

= δ(x)δ(y) +
1

q − 1

(
δ(x)

∑
χ

(
A

χ

)
χ(y) + δ(y)

∑
χ

(
A

χ

)
χ(x)

)

+
1

(q − 1)2

∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(x)λ(y).

This completes the proof of Proposition 2.2.

Actually, Proposition 2.2 can be considered as the finite field analogue of the trinomial
theorem:

(1 + x+ y)a =
∑
i,j≥0

(
a

i

)(
a− i
j

)
xiyj .



AN APPELL SERIES OVER FINITE FIELDS 6

We now turn to our proof of Theorem 1.3
Proof of Theorem 1.3. It is clear that F2(A;B,B′;C,C ′;x, y) = 0 for y = 0. We now
consider the case y 6= 0. When y 6= 0, if v = y−1, then

A(1− ux− vy) = A(−ux);

if v 6= y−1, then from Proposition 2.2, we have

A(1− ux− vy) = δ(ux)δ(v) +
1

q − 1

(
δ(ux)

∑
χ

(
A

χ

)
χ(−vy) + δ(v)

∑
χ

(
A

χ

)
χ(−ux)

)

+
1

(q − 1)2

∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(−ux)λ(−vy).

It is easily seen from the binomial theorem that

∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(−ux)λ(−1) =

∑
χ

(
A

χ

)
χ(−ux)

∑
λ

(
Aχ

λ

)
λ(−1) = 0,

which implies that

∑
u∈Fq

B(u)B′(y−1)BC(1− u)B′C ′(1− y−1)
∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(−ux)λ(−1) = 0.

Then, by (2.2),

∑
u∈Fq ,v 6=y−1

B(u)B′(v)BC(1− u)B′C ′(1− v)
∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(−ux)λ(−vy)

=
∑
u,v∈Fq

B(u)B′(v)BC(1− u)B′C ′(1− v)
∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(−ux)λ(−vy)

−
∑
u∈Fq

B(u)B′(y−1)BC(1− u)B′C ′(1− y−1)
∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(−ux)λ(−1)

=
∑
χ,λ

(
Aχ

χ

)(
Aχλ

λ

)(
Cχ

BC

)(
C ′λ

B′C ′

)
χ(x)λ(y).
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Thus, by the fact that ε(xy)δ(ux)B(u) = δ(v)B′(v) = 0, (2.1) and (2.2),

F2(A;B,B′;C,C ′;x, y) = ε(xy)BB′CC ′(−1)

 ∑
u∈Fq ,v=y−1

+
∑

u∈Fq ,v 6=y−1


= A(−x)C ′(y)B′C ′(1− y)

(
AB

BC

)
+BB′CC ′(−1)

∑
v 6=y−1

B(u)B′(v)BC(1− u)B′C ′(1− v)

· 1

(q − 1)2

∑
χ,λ

(
A

χ

)(
Aχ

λ

)
χ(−ux)λ(−vy)

=
1

(q − 1)2

∑
χ,λ

(
Aχ

χ

)(
Aχλ

λ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y) +A(−x)C ′(y)B′C ′(1− y)

(
AB

BC

)
.

In view of the above, we complete the proof of Theorem 1.3.

3. Reduction and Transformation formulae

In this section we give some reduction and Transformation for F2(A;B,B′;C,C ′;x, y).
In order to derive these formulae we need some auxiliary results.

Proposition 3.1. (See [6, Corollary 3.16 and Theorem 3.15]) For any A,B,C,D ∈ F̂q and
x ∈ Fq, we have

2F1

(
A, ε
C

∣∣∣∣x) =

(
C

A

)
A(−1)C(x)AC(1− x)− C(−1)ε(x)(3.1)

+ (q − 1)A(−1)δ(1− x)δ(AC),

2F1

(
A,B
A

∣∣∣∣x) =

(
B

A

)
ε(x)B(1− x)−A(−x)(3.2)

+ (q − 1)A(−1)δ(1− x)δ(B),

3F2

(
A,B,C
A,D

∣∣∣∣x) =

(
B

A

)
2F1

(
B,C
D

∣∣∣∣x)−A(−x)

(
CA

DA

)
(3.3)

+ (q − 1)A(−1)D(x)CD(1− x)δ(B).

From the definition of F2(a; b, b′; c, c′;x, y) we know that

F2(a; b, 0; c, c′;x, y) = 2F1

(
a, b
c

∣∣∣∣x) ,
F2(a; 0, b′; c, c′;x, y) = 2F1

(
a, b′

c′

∣∣∣∣y) .
We now give a finite field analogue of the above identities.
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Theorem 3.1. For any A,B,B′, C, C ′ ∈ F̂q and x, y ∈ Fq, we have

F2(A;B, ε;C,C ′;x, y)(3.4)

= −ε(y)C ′(−1)2F1

(
A,B
C

∣∣∣∣x)+ C ′(y)AC ′(1− y)

(
AC ′

A

)
2F1

(
AC ′, B
C

∣∣∣∣ x

1− y

)
+ (q − 1)A(−1)C(x)C ′(y)ABC2C ′(1− y)BC(1− x− y)δ(AC ′)

for y 6= 1,

F2(A; ε,B′;C,C ′;x, y)(3.5)

= −ε(x)C(−1)2F1

(
A,B′

C ′

∣∣∣∣y)+ C(x)AC(1− x)

(
AC

A

)
2F1

(
AC,B′

C ′

∣∣∣∣ y

1− x

)
+ (q − 1)A(−1)C ′(y)C(x)AB′C ′2C(1− x)B′C ′(1− x− y)δ(AC)

for x 6= 1.

Proof. We first prove (3.4). It follows from (3.1) that∑
λ

(
Aχλ

λ

)(
λ

C ′λ

)
λ(y) = (q − 1)2F1

(
Aχ, ε
C ′

∣∣∣∣y)
= (q − 1)

(
C ′

Aχ

)
Aχ(−1)C ′(y)AχC ′(1− y)− (q − 1)C ′(−1)ε(y).

Then, using the above identity in Theorem 1.3, by (2.1)–(2.3), (1.1) and (3.3), and canceling
some terms, we get

F2(A;B, ε;C,C ′;x, y)

=
1

(q − 1)2

∑
χ

(
Aχ

χ

)(
Bχ

Cχ

)
χ(x)

∑
λ

(
Aχλ

λ

)(
λ

C ′λ

)
λ(y) +A(−x)C ′(y)C ′(1− y)

(
AB

BC

)
= C ′(y)AC ′(1− y)3F2

(
A,AC ′, B
A,C

∣∣∣∣ x

1− y

)
− ε(y)C ′(−1)2F1

(
A,B
C

∣∣∣∣x)
+A(−x)C ′(y)C ′(1− y)

(
AB

BC

)
= −ε(y)C ′(−1)2F1

(
A,B
C

∣∣∣∣x)+ C ′(y)AC ′(1− y)

(
AC ′

A

)
2F1

(
AC ′, B
C

∣∣∣∣ x

1− y

)
+ (q − 1)A(−1)C(x)C ′(y)ABC2C ′(1− y)BC(1− x− y)δ(AC ′).

This proves (3.4).
Identity (3.5) follows from (3.4) and (1.3). This completes the proof of Theorem 3.1.

In [1, §9.5, (3)], Bailey gave the following reduction formula:

F2(a; b, b′; b, c′;x, y) = (1− x)−a2F1

(
a, b′

c′

∣∣∣∣ y

1− x

)
.

We also deduce the finite field analogue of the above formula.
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Theorem 3.2. For any A,B,B′, C ′ ∈ F̂q and x ∈ Fq\{1}, y ∈ Fq, we have

F2(A;B,B′;B,C ′;x, y)

= −ε(x)A(1− x)2F1

(
A,B′

C ′

∣∣∣∣ y

1− x

)
+A(−x)C ′(y)B′C ′(1− y)

+A(−x)C ′(y)B′C ′(1− y)
(
−1 + (q − 1)δ(AB)

)
+B(x)

(
AB

B

)
2F1

(
AB,B′

C ′

∣∣∣∣y) .
Proof. We know from [6, (3.11)] that for any A, B ∈ F̂q and x ∈ Fq, we have

(3.6)
∑
χ

(
Aχ

Bχ

)
χ(x) = B(x)

∑
χ

(
ABχ

χ

)
χ(x) = (q − 1)B(x)AB(1− x).

It is easily seen from (3.2) that∑
χ

(
Aχ

χ

)(
Aλχ

Aχ

)
χ(x) = (q − 1)2F1

(
A,Aλ
A

∣∣∣∣x)
= (q − 1)

(
Aλ

A

)
ε(x)Aλ(1− x)− (q − 1)A(−x).

Then, by (1.1) and (3.6),

(3.7)

∑
χ,λ

(
Aχ

χ

)(
Aχλ

Aχ

)(
B′λ

C ′λ

)
χ(x)λ(y)

=
∑
λ

(
B′λ

C ′λ

)
λ(y)

∑
χ

(
Aχ

χ

)(
Aλχ

Aχ

)
χ(x)

= (q − 1)2ε(x)A(1− x)2F1

(
A,B′

C ′

∣∣∣∣ y

1− x

)
− (q − 1)2A(−x)C ′(y)B′C ′(1− y).

Thus, by (2.1) and (2.4),

F2(A;B,B′;B,C ′;x, y)

=
1

(q − 1)2

∑
χ,λ

(
Aχ

χ

)(
Aχλ

Aχ

)
(−1 + (q − 1)δ(Bχ))

(
B′λ

C ′λ

)
χ(x)λ(y)

+A(−x)C ′(y)B′C ′(1− y)
(
−1 + (q − 1)δ(AB)

)
= −ε(x)A(1− x)2F1

(
A,B′

C ′

∣∣∣∣ y

1− x

)
+A(−x)C ′(y)B′C ′(1− y)

+A(−x)C ′(y)B′C ′(1− y)
(
−1 + (q − 1)δ(AB)

)
+B(x)

(
AB

B

)
2F1

(
AB,B′

C ′

∣∣∣∣y) .
This concludes the proof of Theorem 3.2.
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From Theorem 3.2 and (1.3) we can easily derive the following identity which is the finite
field analogue of the formula

F2(a; b, b′; c, b′;x, y) = (1− y)−a2F1

(
a, b
c

∣∣∣∣ x

1− y

)
.

Theorem 3.3. For any A,B,B′, C ∈ F̂q and x ∈ Fq, y ∈ Fq\{1}, we have

F2(A;B,B′;C,B′;x, y)

= −ε(y)A(1− y)2F1

(
A,B
C

∣∣∣∣ x

1− y

)
+A(−y)C(x)BC(1− x)

+A(−y)C(x)BC(1− x)
(
−1 + (q − 1)δ(AB′)

)
+B′(y)

(
AB′

B′

)
2F1

(
AB′, B
C

∣∣∣∣x) .
From the definition of F2(A;B,B′;C,C ′;x, y), we can easily deduce the following trans-

formation formulae for F2(A;B,B′;C,C ′;x, y).

Theorem 3.4. For any A,B,B′, C, C ′ ∈ F̂q and x, y ∈ Fq, we have

F2(A;B,B′;C,C ′;x, y)(3.8)

= A(1− x)F2

(
A;BC,B′;C,C ′;− x

1− x
,

y

1− x

)
= A(1− y)F2

(
A;B,B′C ′;C,C ′;

x

1− y
,− y

1− y

)
= A(1− x− y)F2

(
A;BC,B′C ′;C,C ′;− x

1− x− y
,− y

1− x− y

)
.

Proof. Using the definition of F2(A;B,B′;C,C ′;x, y) and then making the substitutions (1)
u = 1− u′, v = v′, (2) u = u′, v = 1− v′, (3) u = 1− u′, v = 1− v′ at the left side of (3.8)
we can easily obtain these transformation formulae.

It is easily seen that these transformation formulae in (3.8) can be regarded as the finite
field analogue of [1, §9.4, (6)–(8)].

4. Generating functions

In this section, we establish some generating functions for F2(A;B,B′;C,C ′;x, y).
We first state a result of Greene in our notations.

Proposition 4.1. (See [6, (2.15)]) For any A,B,C ∈ F̂q, we have(
A

B

)(
C

A

)
=

(
C

B

)(
CB

AB

)
− (q − 1)B(−1)δ(A) + (q − 1)AB(−1)δ(BC).

The following theorem involves a generating function for F2(A;B,B′;C,C ′;x, y).
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Theorem 4.1. For any A,B,B′, C, C ′ ∈ F̂q and x ∈ Fq\{0}, y ∈ Fq, t ∈ Fq\{0, 1}, we
have

∑
θ

(
Aθ

θ

)
F2(Aθ;B,B′;C,C ′;x, y)θ(t)

= (q − 1)A(1− t)F2

(
A;B,B′;C,C ′;

x

1− t
,

y

1− t

)
− (q − 1)A(−x)C ′(y)B′C ′(1− t− y)B′(1− t)

(
AB

BC

)
− (q − 1)A(−t)C ′(y)B′C ′(1− y)2F1

(
A,B
C

∣∣∣∣− x

t

)
− (q − 1)A(−t)

((
B

C

)(
B′

C ′

)
ε(y)− F2(ε;B,B′;C,C ′;x, y)

)
+ (q − 1)A(−x)C ′((1− t)y)B′C ′(1− (1− t)y)

(
AB

AC

)
+ (q − 1)BC(−1)A(−x)C ′(y)B′C ′(1− y)2F1

(
A,AC
AB

∣∣∣∣− t

x

)
.

Proof. It is easily seen from (3.2) that

2F1

(
Aχ,Aχλ
Aχ

∣∣∣∣t) =

(
Aχλ

Aχ

)
Aχλ(1− t)−Aχ(−t).

Then from (3.3) we know that

3F2

(
A,Aχ,Aχλ
A,Aχ

∣∣∣∣t)
=

(
Aχ

A

)
2F1

(
Aχ,Aχλ
Aχ

∣∣∣∣t)−A(−t)
(
χλ

χ

)
+ (q − 1)A(−1)Aχ(t)λ(1− t)δ(Aχ)

=

(
Aχ

χ

)(
Aχλ

Aχ

)
Aχλ(1− t)−

(
Aχ

χ

)
Aχ(−t)−A(−t)

(
χλ

χ

)
+ (q − 1)A(−1)Aχ(t)λ(1− t)δ(Aχ).
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Thus ∑
θ,χ,λ

(
Aθ

θ

)(
Aχθ

Aθ

)(
Aχλθ

Aχθ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)θ(t)(4.1)

= (q − 1)
∑
χ,λ

(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)3F2

(
A,Aχ,Aχλ
A,Aχ

∣∣∣∣t)

= (q − 1)A(1− t)
∑
χ,λ

(
Aχ

χ

)(
Aχλ

Aχ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ

(
x

1− t

)
λ

(
y

1− t

)

− (q − 1)A(−t)
∑
χ,λ

(
Aχ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ
(
−x
t

)
λ(y)

− (q − 1)A(−t)
∑
χ,λ

(
χλ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)

+ (q − 1)2A(−x)

(
AB

AC

)∑
λ

(
B′λ

C ′λ

)
λ((1− t)y).

From Theorem 1.3 we see that∑
χ,λ

(
Aχ

χ

)(
Aχλ

Aχ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ

(
x

1− t

)
λ

(
y

1− t

)
(4.2)

= (q − 1)2F2

(
A;B,B′;C,C ′;

x

1− t
,

y

1− t

)
− (q − 1)2A(−x)C ′(y)B′C ′(1− t− y)AB′(1− t)

(
AB

BC

)
.

By (2.2) and (3.6), ∑
χ,λ

(
Aχ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ
(
−x
t

)
λ(y)(4.3)

=
∑
χ

(
Aχ

χ

)(
Bχ

Cχ

)
χ
(
−x
t

)∑
λ

(
B′λ

C ′λ

)
λ(y)

= (q − 1)2C ′(y)B′C ′(1− y)2F1

(
A,B
C

∣∣∣∣− x

t

)
.

It can be deduced from (2.4) and (3.6) that∑
λ

(
λ

λ

)(
B′λ

C ′λ

)
λ(y) = −

∑
λ

(
B′λ

C ′λ

)
λ(y) + (q − 1)

(
B′

C ′

)
ε(y)

= −(q − 1)C ′(y)B′C ′(1− y) + (q − 1)

(
B′

C ′

)
ε(y).
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This combines (2.4) to give

∑
χ,λ

(
χ

χ

)(
χλ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)

= (q − 1)

(
B

C

)∑
λ

(
λ

λ

)(
B′λ

C ′λ

)
λ(y)−

∑
χ,λ

(
χλ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)

= (q − 1)2

(
B

C

)(
B′

C ′

)
ε(y)− (q − 1)2C ′(y)B′C ′(1− y)

(
B

C

)
−
∑
χ,λ

(
χλ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y).

From Theorem 1.3 and (2.1) we have

∑
χ,λ

(
χ

χ

)(
χλ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y) = (q − 1)2F2(ε;B,B′;C,C ′;x, y)

− (q − 1)2C ′(y)B′C ′(1− y)

(
B

C

)
.

So we deduce from the above two identities that∑
χ,λ

(
χλ

χ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y) = (q − 1)2

(
B

C

)(
B′

C ′

)
ε(y)(4.4)

− (q − 1)2F2(ε;B,B′;C,C ′;x, y).

By Theorem 1.3 and (2.1)–(2.3),

∑
θ

(
Aθ

θ

)
F2(Aθ;B,B′;C,C ′;x, y)θ(t)

=
1

(q − 1)2

∑
θ,χ,λ

(
Aθ

θ

)(
Aχθ

Aθ

)(
Aχλθ

Aχθ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)θ(t)

+BC(−1)A(−x)C ′(y)B′C ′(1− y)
∑
θ

(
Aθ

θ

)(
ACθ

ABθ

)
θ(−t/x).

Using (4.2)–(4.4) and (3.6) in (4.1) and then substituting (4.1) in the above identity, we
obtain the result. This ends the proof of Theorem 4.1.

Theorem 4.1 is actually the finite field analogue of [3, (2.2)].
We also establish two other generating functions for F2(A;B,B′;C,C ′;x, y).
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Theorem 4.2. For any A,B,B′, C, C ′ ∈ F̂q and x, y ∈ Fq, t ∈ Fq\{1}, we have∑
θ

(
BCθ

θ

)
F2(A;Bθ,B′;C,C ′;x, y)θ(t)(4.5)

= (q − 1)ε(t)B(1− t)F2

(
A;B,B′;C,C ′;

x

1− t
, y

)
− (q − 1)BC(−t)ε(x)A(1− x)2F1

(
A,B′

C ′

∣∣∣∣ y

1− x

)
for x 6= 1, ∑

θ

(
B′C ′θ

θ

)
F2(A;B,B′θ;C,C ′;x, y)θ(t)(4.6)

= (q − 1)ε(t)B′(1− t)F2

(
A;B,B′;C,C ′;x,

y

1− t

)
− (q − 1)B′C ′(−t)ε(y)A(1− y)2F1

(
A,B
C

∣∣∣∣ x

1− y

)
for y 6= 1.

Proof. We first prove (4.5). It is easy to know from Theorem 1.3 that∑
θ

(
BCθ

θ

)
F2(A;Bθ,B′;C,C ′;x, y)θ(t)(4.7)

=
1

(q − 1)2

∑
θ,χ,λ

(
BCθ

θ

)(
Bθχ

BCθ

)(
Aχ

χ

)(
Aχλ

λ

)(
B′λ

C ′λ

)
χ(x)λ(y)θ(t)

+A(−x)C ′(y)B′C ′(1− y)
∑
θ

(
BCθ

θ

)(
ABθ

BCθ

)
θ(t).

It can be seen from Proposition 4.1 that(
BCθ

θ

)(
Bθχ

BCθ

)
=

(
Bθχ

θ

)(
Bχ

BC

)
− (q − 1)θ(−1)δ(BCθ) + (q − 1)BC(−1)δ(Bχ).

Then ∑
θ,χ,λ

(
BCθ

θ

)(
Bθχ

BCθ

)(
Aχ

χ

)(
Aχλ

λ

)(
B′λ

C ′λ

)
χ(x)λ(y)θ(t)(4.8)

=
∑
θ,χ,λ

(
Bθχ

θ

)(
Bχ

BC

)(
Aχ

χ

)(
Aχλ

λ

)(
B′λ

C ′λ

)
χ(x)λ(y)θ(t)

− (q − 1)BC(−t)
∑
χ,λ

(
Aχ

χ

)(
Aχλ

λ

)(
B′λ

C ′λ

)
χ(x)λ(y).
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It follows from (2.1), (3.6) and Theorem 1.3 that∑
θ,χ,λ

(
Bθχ

θ

)(
Bχ

BC

)(
Aχ

χ

)(
Aχλ

λ

)(
B′λ

C ′λ

)
χ(x)λ(y)θ(t)(4.9)

=
∑
χ,λ

(
Aχ

χ

)(
Aχλ

λ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ(x)λ(y)

∑
θ

(
Bχθ

θ

)
θ(t)

= (q − 1)ε(t)B(1− t)
∑
χ,λ

(
Aχ

χ

)(
Aχλ

λ

)(
Bχ

Cχ

)(
B′λ

C ′λ

)
χ

(
x

1− t

)
λ(y)

= (q − 1)3ε(t)B(1− t)F2

(
A;B,B′;C,C ′;

x

1− t
, y

)
− (q − 1)3ε(t)AB(1− t)A(−x)C ′(y)B′C ′(1− y)

(
AB

BC

)
.

It is easily known from (3.2) that∑
θ

(
BCθ

θ

)(
ABθ

BCθ

)
θ(t) = (q − 1)2F1

(
BC,AB
BC

∣∣∣∣t)(4.10)

= (q − 1)

(
AB

BC

)
ε(t)AB(1− t)− (q − 1)BC(−t).

Using (4.9) and (3.7) in (4.8), combining (4.7), (4.8) and (4.10) and canceling some terms,
we get ∑

θ

(
BCθ

θ

)
F2(A;Bθ,B′;C,C ′;x, y)θ(t)

= (q − 1)ε(t)B(1− t)F2

(
A;B,B′;C,C ′;

x

1− t
, y

)
− (q − 1)BC(−t)ε(x)A(1− x)2F1

(
A,B′

C ′

∣∣∣∣ y

1− x

)
,

which proves (4.5).
Identity (4.6) follows easily from (4.5) and (1.3). This finishes the proof of Theorem 4.2.
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