
Induction and Code for Collatz Conjecture or
3x+1 Problem

Wei Ren

School of Computer Science,
China University of Geosciences, Wuhan, China 430074

Hubei Key Laboratory of Intelligent Geo-Information Processing
(China University of Geosciences (Wuhan)), Wuhan, Hubei, China

Email: weirencs@cug.edu.cn

Abstract. Collatz conjecture (or 3x+1 problem) has not been proved
to be true or false for about 80 years. The exploration on this problem
seems to ask for introducing a totally new method. In this paper, a
mathematical induction method is proposed, whose proof can lead to the
proof of the conjecture. According to the induction, a new representation
(for dynamics) called “code” is introduced, to represent the occurred
3 ∗x+1 and x/2 computations during the process from starting number
to the first transformed number that is less than the starting number. In a
code 3∗x+1 is represented by 1 and x/2 is represented by 0. We find that
code is a building block of the original dynamics from starting number to
1, and thus is more primitive for modeling quantitative properties. Some
properties only exist in dynamics represented by code, but not in original
dynamics. We discover and prove some inherent laws of code formally.
Code as a whole is prefix-free, and has a unified form. Every code can be
divided into code segments and each segment has a form {10}p≥00q≥1.
Besides, p can be computed by judging whether x ∈ [0]2, x ∈ [1]4, or
computed by t = (x−3)/4, without any concrete computation of 3∗x+1
or x/2. Especially, starting numbers in certain residue class have the same
code, and their code has a short length. That is, CODE(x ∈ [1]4) = 100,
CODE((x−3)/4 ∈ [0]4) = 101000, CODE((x−3)/4 ∈ [2]8) = 10100100,
CODE((x − 3)/4 ∈ [5]8) = 10101000, CODE((x − 3)/4 ∈ [1]32) =
10101001000, CODE((x − 3)/4 ∈ [3]32) = 10101010000, CODE((x −
3)/4 ∈ [14]32) = 10100101000. The experiment results again confirm
above discoveries. We also give a conjecture on x ∈ [3]4 and an approach
to the proof of Collatz conjecture. Those discoveries support the proposed
induction and are helpful to the final proof of Collatz conjecture.

Keywords: Collatz Conjecture; 3X+1 Problem; Computational Algebra; Algo-
rithmic Number Theory;

1 Introduction

The Collatz conjecture is a mathematical conjecture that is first proposed by
Lothar Collatz in 1937. It is also known as the 3x+1 conjecture, the Ulam

conjecture, the Kakutani’s problem, the Thwaites conjecture, or the Syracuse
problem [1].

Simply speaking, the conjecture can be stated as follows. Take any positive
integer number x. If x is even, divide it by 2 to get x/2. If x is odd, multiply it
by 3 and add 1 to get 3 ∗x+1. Repeat the process again and again. The Collatz
conjecture is that no matter what the number (i.e., x) is taken, the process will
always eventually reach 1.

Although the statement of this problem is simply, the exploration of the
conjecture in existing methods seems to have experienced remarkable difficulties
for further new advances. Thus, new research object (variables or functions) and
corresponding methods may be asked for bringing new approaches to the proof
of the conjecture.

The contributions and results of the paper are listed as follows:

1. We propose an induction method whose proof can lead to the proof of Collatz
conjecture. A new variable called code is introduced to represent dynamics
of Collatz transformation procedure and is taken as research object. Code is
a new measurement for modeling properties and a more primitive element
for exploring Collatz conjecture.

2. We prove that code as a whole called CODE is prefix-free. x/2 (denoted as
0) always occur after 3∗x+1 (denoted as 1). That is, 10 always consecutively
occurs in CODE. We prove that CODE has a unified format. Any code can be
divided into code segments and each segment has the form {10}p0q, p, q ∈ N.
Dynamics represented by code is a building block of original dynamics from
starting number to 1.

3. We also discover that the code of starting numbers in certain residue class
is the same. Especially, ceratin residue classes have codes with short length
(i.e., ≤ 7), when and only when x ∈ [0]2 ∪ [1]4, and especially (x − 3)/4 =
t ∈ [0]4 ∪ [2]8 ∪ [5]8 ∪ [1]32 ∪ [3]32 ∪ [14]32).

4. We prove that CODE({x|x ∈ [1]4}) = 100, CODE({x|(x− 3)/4 ∈ [0]4}) =
101000, CODE({x|(x − 3)/4 ∈ [2]8}) = 10100100, CODE({x|(x − 3)/4 ∈
[5]8}) = 10101000, CODE({x|(x−3)/4 ∈ [1]32}) = 10101001000, CODE({x|(x−
3)/4 ∈ [3]32}) = 10101010000, CODE({x|(x−3)/4 ∈ [14]32}) = 10100101000.

5. The analysis results on short code can shorten the verification time for Col-
latz conjecture to 10% as before. That is, only 10% numbers are left and
need to be verified. We also point out an approach and a conjecture on
t = (x− 3)/4 ∈ [i]m whose proof can lead to the proof of Collatz conjecture.

Next, we state the Collatz conjecture (3x + 1 conjecture) more formally. For
any positive integer x, after finite times of computations of Computation I or
Computation II, x will always become 1. The Computation I is x ⇐ 3∗x+1 when
x is odd, which is called Triple Plus One, denoted as TPO; The Computation
II is x ⇐ x/2 when x is even, which is called Half, denoted as H. We call these
two types of computation (TPO and H) as Collatz Transformation. Specifically,
the Collatz conjecture can be formulated as follows:

Definition 1. Collatz Transformation (denoted as CT (x)). ∀x ∈ N, CT (x) =
TPO(x) = 3 ∗ x + 1 when x is odd, and CT (x) = H(x) = x/2 when x is even.

Here, N is a set of positive integer numbers. That is, N = {a|a ∈ Z, a ≥ 1}.
Note that, in this paper we call positive integer numbers as natural numbers.

That is,

CT (x) =

{
TPO(x) = 3 ∗ x + 1 (TPO) (x ∈ [1]2)

H(x) = x/2 (H) (x ∈ [0]2)
(1)

Here, [1]2 denotes odd natural numbers, [0]2 denotes even natural numbers.
That is, [1]2 = {a|a mod 2 = 1, a ∈ N}, [0]2 = {a|a mod 2 = 0, a ∈ N}.

TPO(x) can be simply denoted as TPO, and H(x) can be simply denoted
as H.

Definition 2. The Collatz Conjecture. ∀x ∈ N. After finite times of Collatz
Transformation x ⇐ CT (x), x will become 1. (Here “⇐” is assignment symbol
and “x ⇐ y” means to assign value y to x.)

Example 1. The dynamics consisting of each Collatz Transformation from a
starting value (at head, e.g., 7) to 1 (at rear) are as follows:

(1) 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1;
(2) 5 → 16 → 8 → 4 → 2 → 1
(3) 7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 →

16 → 8 → 4 → 2 → 1.

2 Results

2.1 Induction

To simplify the statement for conjecture, we define “Returnable” as follows.

Definition 3. Returnable. x ∈ N is Returnable, if x will become 1 after finite
times of Collatz Transformation x ⇐ CT (x).

If x is Returnable, we denote it as x ∈ RT N for simplicity.
To verify (or prove further) Collatz conjecture, the basic idea in this paper

is mathematical induction.
The Collatz conjecture is True, if following induction can be proved.
Induction (for Collatz conjecture):
(1) x = 1 ∈ RT N (see Example 1(1)).
(2) If x ≤ k (x, k ∈ N) is Returnable, x = k + 1 will be Returnable. That is,

if x ∈ RT N , (x ≤ k, x, k ∈ N), x = k + 1 ∈ RT N can be proved.
In shorthand, the induction is as follows:

x ≤ k ∈ RT N ⇒ x = k + 1 ∈ RT N ,

where x, k ∈ N.
If we call x = k + 1 as a “starting number”, and a number after Collatz

Transformation (i.e., CT (x)) as a “transformed number”. It is worth to note

that we ONLY need to check whether transformed number is less than starting
number. Once transformed number is less than starting number, the starting
number will be Returnable (i.e., x = k + 1 ∈ RT N) due to the induction
assumption (x ≤ k ∈ RT N).

Fig. 1 illustrates the rationale in our Induction.

x = k+1

x k

CT(x)

CT(CT(x))

CT(CT(CT(x)))

Fig. 1. Induction Rationale. Once transformed number is smaller than the start-
ing number, the starting number will be called “Returnable”. That is, once
CT (CT (...CT (x))) < x, x ∈ RT N

Proposition 1. If the Induction can be proved, Collatz Conjecture is True.

Proof. Straightforward. ut
In the following of the paper, we only discuss natural number x, thus we omit

x ∈ N for simplicity. We will also omit “*” for multiplication representations (e.g.,
3x + 1 is 3 ∗ x + 1 for short).

Besides, it is trivial to check that k = 1, x = k = 1 ∈ RT N , x = k + 1 = 2 ∈
RT N (see Example 1(1)).

Proposition 2. If in the Induction k is odd, the Induction is trivial to be proved.

Proof. Suppose x ≤ k ∈ RT N , k > 1. k is odd, thus k +1 is even. That is, when
x = k + 1, CT (x) = (k + 1)/2 < k. Thus, x = k + 1 ∈ RT N . ut

Therefore, for the proof of Induction we only need to prove the case that k
is even.

Proposition 3. If in the Induction k is even with k = 4t, t ∈ N, the Induction
is straightforward to be proved.

Proof. Suppose x ≤ k = 4t is Returnable. That is, x ≤ k = 4t ∈ RT N , t ∈ N.
Thus, k + 1 = 4t + 1. Next, let’s check whether x = k + 1 ∈ RT N . CT (k +
1) = (3(4t + 1) + 1) = 12t + 4 ∈ [0]2, CT (CT (x)) = (12t + 4)/2 = 6t + 2 ∈
[0]2, CT (CT (CT (x))) = (6t + 2)/2 = 3t + 1 ≤ 4t. Thus, x = k + 1 ∈ RT N . ut

Therefore, we only need to prove the case that k is even with k = 4t +
2, t ∈ Z, t ≥ 0 in the Induction due to above propositions (proposition 2 and
proposition 3).

Note that, above analysis on induction should be distinguished with following
discussion on reduced induction.

Induction (Reduced Induction for Collatz conjecture):
(1) x = 1, 2, 3, 4, 5, 6 ∈ RT N (see Example 1(1)).
(2) If x ≤ k = 2t+1 (x, k, t ∈ N) is Returnable, x = k+1 will be Returnable.

That is, if x ∈ RT N , (x ≤ k = 2t + 1, x, k, t ∈ N), x = k + 1 ∈ RT N can be
proved.

(3) If x ≤ k = 4t (x, k, t ∈ N) is Returnable, x = k + 1 will be Returnable.
That is, if x ∈ RT N , (x ≤ k = 4t, x, k, t ∈ N), x = k+1 ∈ RT N can be proved.

(4) If x ≤ k = 4t+2 (x, k, t ∈ N) is Returnable, x = k+1 will be Returnable.
That is, if x ∈ RT N , (x ≤ k = 4t + 2, x, k, t ∈ N), x = k + 1 ∈ RT N can be
proved.

As Step (2) and Step (3) can be proved due to Proposition 2 and 3, respec-
tively. In shorthand, the reduced version of the induction is as follows:

x ≤ k = 4t + 2 ∈ RT N ⇒ x = k + 1 ∈ RT N ,

where x, k, t ∈ N.
Remark 1. Reduced version of Induction for 3x + 1 conjecture reduces the veri-
fication numbers by 75% (we only need to check 1/4 natural numbers as before,
so total checking time for Collatz conjecture is accelerated at least 75%). (See
Appendix I program 1.)

Note that, Reduced Induction is different from the Induction that x is in
different partitions of N. To explain this, we hereby additionally give following
loosen (or weaker version) conjectures for Collatz conjecture.

Conjecture 1. Collatz conjecture on x ∈ [0]2. ∀x = 2t, x, t ∈ N. After finite times
of Collatz Transformation x ⇐ CT (x), x will become 1.

Conjecture 2. Collatz conjecture on x ∈ [1]4. ∀x = 4t + 1, x ∈ N, t ∈ Z, t ≥ 0.
After finite times of Collatz Transformation x ⇐ CT (x), x will become 1.

Conjecture 3. Collatz conjecture on x ∈ [3]4. ∀x ∈ N, x = 4t + 3, t ∈ Z, t ≥ 0.
After finite times of Collatz Transformation x ⇐ CT (x), x will become 1.

Proposition 4. If 3x + 1 conjecture on x ∈ [0]2, on x ∈ [1]4 and on x ∈ [3]4
are ALL True, Collatz conjecture is True.

Proof. Straightforward. ut
Above loosen conjectures provide an approach for the proof of Collatz con-

jecture. However, the proof for weaker version conjectures seems to be not easier
than Collatz conjecture itself.

For example, the Induction for 3x + 1 conjecture on x ∈ [0]2 is as follows:

Induction (for Collatz conjecture on x ∈ [0]2):
(1) x = 2 ∈ RT N (see Example 1(1)).
(2) If x ≤ k = 2t (x, k, t ∈ N) is Returnable, x = 2(t + 1) = k + 2 will be

Returnable. That is, if x ∈ RT N , (x ≤ k = 2t, x, t ∈ N), x = k + 2 ∈ RT N can
be proved.

In shorthand, the induction is as follows:

x ≤ k = 2t ∈ RT N ⇒ x = k + 2 ∈ RT N ,

where x, k ∈ N.
Next, we try to prove this Induction to explain why it seems not to be easier

than original Induction.
Suppose x ≤ 2t ∈ RT N , where t ∈ N. Next, try to prove x = 2t+2 ∈ RT N .

As x = 2t + 2 ∈ [0]2, CT (x) = H(x) = (2t + 2)/2 = t + 1 ≤ 2t.
(1) If t + 1 ∈ [0]2, according to Induction condition x ≤ 2t ∈ RT N , we have

t + 1 ∈ RT N . Thus, x = 2t + 2 ∈ RT N .
(2) If t + 1 6∈ [0]2, (3(t + 1) + 1)/2 = (3t + 4)/2 = 3

2 t + 2.
(2.1) If t ∈ [0]4, 3

2 t + 2 ∈ [0]2. Check when 3
2 t + 2 ≤ 2t, we have t ≥ 4.

Thus, 3
2 t + 2 ∈ [0]2 ∩ 3

2 t + 2 ≤ 2t, when t ≥ 4, t ∈ [0]4. 3
2 t + 2 ∈ RT N . Thus,

x = 2t + 2 ∈ RT N .
(2.2) If t ∈ [2]4, we have 3

2 t + 2 ∈ [1]2. 3(3
2 t + 2) + 1)/2 = (9t + 14)/4. It

depends on t ∈ [2]8 or t ∈ [6]8 whether (9t + 14)/4 = 2t + 3 + (t + 2)/4 ∈ [0]2
or not. Thus, to judge whether (9t + 14)/4 ∈ RT N should be discussed further
according to the partition of t ∈ [2]4.

From above discussion, we can see that the proof for different partition of
x ∈ N in weaker version conjectures is not easier than the proof of the Reduced
Induction. Thus, we concentrate on Reduced Induction.

Definition 4. Starting Number. It is the number to be checked whether it is
Returnable.

Definition 5. Transformed Number. It is the number returned by Collatz Trans-
formation during checking processes (dynamics) on a Starting Number.

For example, in Example 1, starting numbers are 3, 5, 7 in each item, and
transformed numbers are y in all “x → y” (on the right of “→”).

Moreover, if a computing algorithm or program is created to verify whether
a given starting number (sn) is Returnable (i.e., sn ∈ RT N), we only need
to output the dynamics of its Collatz Transformations (i.e., x ⇐ CT (x)) until
transformed number (tn) is less than the starting number (i.e., tn < sn). Of
course, the checking sequence begins from a smaller starting number to a larger
starting number. Obviously, this technique (until tn < sn instead of tn = 1)
further shortens the verification time for Collatz conjecture.

2.2 Code for Representing Dynamics

In this section, we define a new concept called code for representing dynam-
ics during the verification of Collatz conjecture, which is a string consists of 1
representing “3 ∗ x + 1” and 0 representing “x/2”.

Notations.
(1) The Collatz transformation is denoted as “1” and “0”. That is, TPO(x) =

3∗x+1 is denoted as 1 and H(x) = x/2 is denoted as 0. For easily remembering
and understanding, we may sometime call TPO as “Up” (because TPO(x) =
3 ∗ x + 1 > x) and H as “Down” (because H(x) = x/2 < x).

(2) Dynamics. It consists of a serial of occurred Collatz transformations, and
represents the process from a starting number to the first transformed number
that is less than the starting number. For example, the original dynamics of
5 (recall Example 1 (2)) is TPO, H, H,H, or 1000. The “truncated” dynamics
from starting number to the first transformed number (i.e., 4) is TPO, H, H, or
100. (We will prove that “truncated” dynamics is more primitive than original
dynamics. Besides, our induction concentrates on “truncated” dynamics.)

(3) Code. It is a string consisting of 1 and 0 that represents the “truncated”
dynamics of a starting number. For example, code for 5 is 100.

(4) Here for the convenience of presentation, we denote code for x as CODE(x).
CODE : x → y, where x ∈ N is a starting number, and y is a bit string consisting
of 1 and 0.

Note that, CODE(x) is introduced as a notation mainly for representing code
for x; We do not assume the existence of CODE(x) for ∀x ∈ N, which is exactly
what Collatz conjecture wants to prove. CODE(x) represents the dynamics of x
that is already known or outputted by our computer program. We output codes
for all x ∈ [3, 99999999] (see Appendix and supplement information). We observe
and analyze those outputted codes, discover and conjecture some inherent laws
in codes. Such laws are proved as theorems and are held for all natural numbers.

Besides, Collatz transformations (i.e, TPO(·) and H(·)) are both functions.
Thus, given a starting number, transformed number after each Collatz transfor-
mation is unique. A serial of all transformed numbers is unique. The occurred
transformation type (i.e., 1 or 0) is thus unique. Thus, code for a starting number
is unique.

Definition 6. Function CODE(·). CODE : x → y takes as input x ∈ N and
outputs a bit string y = {0, 1}n, n = |y|, where | · | returns the length of a bit
string. y represents occurred Collatz Transformations during the processes from
a starting number x to the first transformed number that is less than x.

Example 2. Dynamics for some x = 4t + 3, t ∈ N are as follows:
(1) 107 → 322 → 161 → 484 → 242 → 121 → 364 → 182 → 91 < 107. That

is, the dynamics is “10100100”, or CODE(107) = 10100100.
(2) 115 → 346 → 173 → 520 → 260 → 130 → 65 < 115. In shorthand, the

dynamics is “101000” or CODE(115) = 101000.

Remark 2. (1) If n = |y| is finite for x, CODE(x) exists; If CODE(x) exists, n
is finite.

(2) If CODE(x) exists, x ∈ RT N ; If x ∈ RT N , CODE(x) exists.
(3) If Collatz conjecture is true, ∀x ∈ N, CODE(x) exists; If ∀x ∈ N, Collatz

conjecture is true.

(4) If the length of the code y is finite, the computer program for computing
CODE(·) can be terminable; If the computer program for computing CODE(·)
can be terminable, the length of the code y is finite. (The computer program,
algorithm and outputted code are provided in appendix and supplement infor-
mation.)

Indeed, without the knowledge of proposed induction and from a viewpoint of
experimental mathematics, the proposal and analysis of code are also beneficial
and necessary.

Remark 3. Indeed, code for all x = 4t + 3 ∈ [3, 99999999] are outputted by our
computer program. We verify Collatz conjecture from a smaller starting number
to a larger starting number one by one. That is, if starting number is x and
x can return to 1 after finite Collatz transformations, next starting number is
x+1. Thus, in the verification of a larger starting number (i.e., x+1), if current
transformed number is already less than starting number (i.e., < x + 1), the
verification procedure can stop. The reason is that the transformed number can
be looked as a verified starting number, and this verified starting number can
return to 1. For example, in Example 1 (3), when transformed number is 5,
the verification process stops. (The reason is that 5 has already been verified
previously).

The computer program outputs all dynamics during the process from a start-
ing number to a transformed number that is smaller than the starting number
(“truncated” dynamics), instead of from a starting number to 1 (“un-truncated”
dynamics or original dynamics). Note that, such treatment for recording such
“truncated” dynamics has following advantages.

1. It will remove the redundance in “un-truncated” dynamics and help to dis-
cover inherent laws in codes. In fact, certain laws only exist in such “trun-
cated” dynamics.

2. The “un-truncated” dynamics can be looked as the combination of finite
“truncated” dynamics, thus “truncated” dynamics is more primitive element
for exploration.

3. It will save the verification time largely and avoid the large amount of re-
dundant verification.

E.g., Example 1 (4) (“un-truncated” dynamics) can be looked as “truncated”
dynamics of 7 combines “truncated” dynamics of 5.

As a review of previous conclusions (e.g., Proposition 3), following example
is given. It is straightforward to compute that the dynamics for x = 4t+1, t ∈ N
is “100”.

Example 3. The dynamics for x = 4t+1, t ∈ N is as follows (namely, CODE(x) =
100):

(1) 5 → 16 → 8 → 4 < 5;
(2) 101 → 304 → 152 → 76 < 101;

Proposition 5. CODE({x|x = 4t + 1, t ∈ N}) = 100. That is, the dynamics
for x = 4t + 1(t ∈ N) is “100” (namely, “TPO, H, H” or “Up, Down, Down”).

Proof. Straightforward. x = 4t + 1 is odd, 3x + 1 = 3(4t + 1) + 1 = 12t +
4 = 4(3t + 1) ∈ [0]4. Thus, double “Down” (“Down” is denoted as “0”) occur
intermediately after one “Up” (denoted as “1”). 3t + 1 < 4t + 1 = x, thus the
dynamics is terminated. The final dynamics is “100”. That is, CODE(x) = 100,
where x = 4t + 1, t ∈ N. ut

Above proposition includes all x ∈ [1]4, x ≥ 5 and does not include x = 1.
It can be easily found that CODE(1) = 100, as 1 → 4 → 2 → 1. Therefore,
together with Proposition 5, CODE({x|x ∈ [1]4}) = 100.

For the completeness, it is easy to check following fact.

Proposition 6. CODE(x) = 0, where x = 4t ∪ x = 4t + 2, t ∈ N.
Proof. Straightforward. It is due to Proposition 2. x = 4t, 4t + 2 is even, thus
next transformation is H and x/2 < x. Thus, the dynamic is one “Down”. ut

Together with CODE(2) = 0, we have CODE({x|x ∈ [0]4 ∪ [2]4}) = 0.
In summary,

CODE(x) =

{
100 (x ∈ [1]4)

0 (x ∈ [0]4 ∪ [2]4)
(2)

If x ∈ [0]2 ∪ [1]4, x ∈ RT N . We thus only need to check the dynamics for x,
where x = 4t+3, t ∈ Z. Recall that in Example 1 (1), CODE(3) = 101000. That
is, t = 0, x = 4t + 3 = 3 ∈ RT N . Thus, t ∈ N (instead of t ∈ Z) is considered in
the following.

2.3 Properties of CODE

If all CODE(x) is looked as a whole for the exploration of its general prop-
erties, we call it as CODE. That is, CODE = {code|∀x ∈ N ∩ RT N , code =
CODE(x)}. We next analyze the properties of CODE, and further extend the
properties of CODE to the dynamics for all nature numbers.

Theorem 1. CODE must be prefix-free. That is, ∀c ∈ CODE, c‖{1, 0}∗ 6∈
CODE.

Proof. Straightforward. Suppose CODE(x) = {1, 0}n. Due to the definition
of CODE(x), after the last transformation that is represented by the last bit
of CODE(x), the transformed number is less than the starting number x. If
CODE(x′) = {1, 0}n‖{1, 0}m exists (‖ denotes concatenation), after the n-th
transformation that is represented by the n-th bit of CODE(x′), the transformed
number is already less than the starting number x′. Thus, CODE(x′) will be
stopped at this bit, which means CODE(x′) = {1, 0}n. Therefore, CODE must
be prefix-free. ut

Proposition 7. CODE must not be postfix-free.

Proof. Intuitively, the transformed number of a starting number may equal an-
other starting number. For example, the dynamics of 119 and 179 are as follows,
thus, CODE(119) = 101000 is the postfix of CODE(179) = 10101000. More
specifically,

119 → 358 → 179→ 538 → 269 → 808 → 404 → 202 → 101,
179→ 538 → 269 → 808 → 404 → 202 → 101. ut

Theorem 2. If TPO occurs, H occurs intermediately after it. That is, “10”
always consecutively (or together) occurs in any dynamics.

Proof. If x ∈ [1]2, TPO(x) = 3∗x+1 ∈ [0]2. Thus, the next Collatz transforma-
tion immediately after “TPO” must be “H”. Therefore, H always occurs after a
TPO transformation. That is, “10” always consecutively occurs. ut

Note that, this conclusion holds for any dynamics without the concept of
code.

Notation.
Due to Theorem 2, we introduce two notations as follows:
I(x) is used to denote H(TPO(x)), where TPO(x) is TPO transformation

and H(x) is H transformation. H always occurs after TPO, thus H(TPO(x))
can be written together (see Theorem 2), which is denoted by I(x). That is,
I(x) = H(TPO(x)).

Besides, we use O(x) to denote H(x) for easily remembering and better
visualization (as I(·) looks like 1 and O(·) looks like 0).

For example, CODE(x) = 100, so dynamics sequences (i.e., transforma-
tion sequences) for x are TPO, H, and H. The transformation procedures
are TPO(x), H(TPO(x)), and H(H(TPO(x))). It can also be simplified as
O(I(x)) = H(H(TPO(x))). Thus, “100” can be written as “IO”. Also, O(I(x))
can be simply written as IO(x). Besides, 100(x) = H(H(TPO(x))) = IO(x),
where 100(·) and IO(·) are a composite function.

Proposition 8. ∀x ∈ [3]4, t = (x − 3)/4 ∈ [0]2, the first five Collatz transfor-
mations are 10100.

Proof. x = 4t + 3 ∈ [1]2, (3x + 1)/2 = (12t + 10)/2 = 6t + 5 ∈ [1]2. (3(6t + 5) +
1)/2 = 9t + 8. As t ∈ [0]2, 9t + 8 ∈ [0]2. Thus, the next transformation is “x/2”.
Thus, the first five Collatz transformations are “10100”. ut
Proposition 9. ∀x ∈ [3]4, t = (x − 3)/4 ∈ [1]2 = 101010, the first six Collatz
transformations are 101010.

Proof. x = 4t + 3 ∈ [1]2, (3x + 1)/2 = (12t + 10)/2 = 6t + 5 ∈ [1]2. (3(6t + 5) +
1)/2 = 9t+8. As t ∈ [1]2, 9t+8 ∈ [1]2. Thus, the first six Collatz transformations
are “101010”. ut
Proposition 10. If CODE(x ∈ [3]4) exists, CODE(x) = {10}p‖..., p ≥ 2.

Proof. It can be obtained by Proposition 8 and Proposition 9.
Here put it in another way. Recall Eq. 2 CODE(x ∈ [0]2) = 0, CODE(x ∈

[1]4) = 100, and CODE is prefix-free due to Theorem 1, thus “0” and “100”
cannot be the head of CODE(x ∈ [3]4). Besides, “10” is always consecutively
occurs in CODE due to Theorem 2. Therefore, if CODE(x ∈ [3]4) exists, it must
be “10100‖...” or “101010‖...”. Thus, p ≥ 2. ut

Sometimes, the current transformed number after some transformations is of
interest. For starting number x ∈ [3]4, observing following equations for current
transformed number x (denoted as Xc) after consecutive p ≥ 2 pairs of “10”:

Xc = (3...(3(3x + 1)/2) + 1)/2... + 1/2

= (
3
2
)px +

1
2
((

3
2
)p−1 + (

3
2
)p−2 + ... + 1)

=
3
2
(
3
2
(...

3
2
(
3
2
x +

1
2
) +

1
2
) + ... +

1
2
) +

1
2

= (
3
2
)px +

1
2
(
(3
2)p − 1
3
2 − 1

)

= (
3
2
)px + (

3
2
)p − 1

= (
3
2
)p(x + 1)− 1

(3)

As x = 4t+3, x, t ∈ N, above equation is also equivalent to following equation:

Xc = (
3
2
)p(x + 1)− 1 = (

3
2
)p(4t + 3 + 1)− 1

= (
3p

2p−2
)(t + 1)− 1.

(4)

As Xc ∈ N, two cases will be occurred as follows:
Case I: (t + 1) ∈ [1]2, thus p = 2;
Case II: (t + 1) ∈ [0]2, i.e., t+1

2p−2 ∈ N, t ∈ [2p−2 − 1]2p−2 , p > 2.
Above analysis again confirms Proposition 10.

2.4 CODE Has a Unified Form

We next prove a formal theorem. This theorem shows that CODE has a unified
form. That is, head of each code in CODE is {10}p‖0‖..., p ∈ Z, p ≥ 0, which is
called FORMAT . Here p ∈ Z instead of p ∈ N is used for including the case
p = 0, in which x ∈ [0]4 ∪ [2]4 is tackled.

Theorem 3. (CODE Format Theorem.) CODE(x) ∈ FORMAT = {10}p‖0‖...,
where p ∈ Z, p ≥ 0. Besides,

p =

0 x ∈ [0]2, ([0]2 = [0]4 ∪ [2]4)
1 x ∈ [1]4
2 x = 4t + 3, t ∈ [0]2,

α + 2 t + 1 = 2α ∗A,A ∈ [1]2, α ∈ N x = 4t + 3, t ∈ [1]2.

(5)

Proof. If x ∈ [0]2, CODE(x) = 0 ∈ FORMAT and p = 0.
If x ∈ [1]4, CODE(x) = 100 = {10}‖0 ∈ FORMAT and p = 1.
Next, we concentrate on x ∈ [3]4. Let x = 4t + 3, t ∈ N.
(1) Case I: t ∈ [0]2.
As x ∈ [3]4 ⊂ [1]2, I(·) is conducted consequently.
Xc ⇐ I(x) = (3x + 1)/2 = (3(4t + 3) + 1)/2 = (12t + 10)/2 = 6t + 5 ∈ [1]2,

thus transformation I(·) is conducted consequently.
Xc ⇐ I(Xc) = (3(6t + 5) + 1)/2 = (18t + 16)/2 = 9t + 8 ∈ 9[0]2 + 8 = [0]2.

Thus, O(·) is conducted consequently.
Therefore, CODE(x) = I2O‖... = {10}2‖0‖... ∈ FORMAT .
(2) Case II: t ∈ [1]2.
As x ∈ [3]4 ⊂ [1]2, I(·) is conducted consequently.
Xc ⇐ I(x) = (3x + 1)/2 = (3(4t + 3) + 1)/2 = (12t + 10)/2 = 6t + 5 ∈ [1]2,

thus I(·) is conducted consequently.
Xc ⇐ I(Xc) = (3(6t + 5) + 1)/2 = (18t + 16)/2 = 9t + 8 ∈ [1]2. Thus, I(·) is

conducted consequently.
Xc ⇐ I(Xc) = (3(9t + 8) + 1)/2 = (27t + 25)/2. It depends on t (more

specifically, t ∈ [1]4 or not) whether (27t + 25)/2 is even or odd because of
following observations:

(27t + 25)/2 ∈ [0]2
⇔ (27t + 25)/2 = 2K1,K1 ∈ N
⇔ 27t + 25 = 4K1

⇔ 27t = 4K2 + 3,K2 ∈ N
⇔ 3t = 4K3 + 3,K3 ∈ N
⇔ t = 4K4 + 1,K4 ∈ N
⇔ t ∈ [1]4.

Thus, if t ∈ [1]4, Xc = (27t + 25)/2 is even and O(·) will occur consequently.
Thus, the transformed number after O(·) is Xc = (27t+25)/4 = (27[1]4+25)/4 =
([3]4 + [1]4)/4 = [0]4/4.

Otherwise, if t ∈ [3]4, Xc is odd and I(·) will occur consequently. Thus,
the transformed number after I(·) is Xc ⇐ I(Xc) = (3(27t + 25)/2 + 1)/2 =
(81t + 77)/4 ∈ (81[3]4 + 77)/4 = ([3]4 + [1]4)/4 = [0]4/4. The judgement on
whether current Xc ∈ [0]2 or not is undecidable (unless the range t ∈ [1]2 =
[1, 3]4 = [1]4 ∪ [3]4 is partitioned further).

For exploring more general result, we put it in another way. In general, due
to Theorem 2, “10” occurs together. Suppose there p (p > 2, p ∈ N) pairs of
“10” exist in the head of CODE(x) (recall that here only Case II - t ∈ [1]2 is
considered). According to Eq. 3, current transformed number (after p times of
I(·)) Xc is as follows:

Xc = (3...(3(3x + 1)/2 + 1)/2... + 1)/2

= (
3
2
)p(x + 1)− 1 = (

3
2
)p(4t + 3 + 1)− 1

= (
3p

2p−2
)(t + 1)− 1 ∈ N.

Note that, it hereby implicitly includes a requirement (due to p times of
consecutive I(·)) as follows: all transformed numbers during the processes satisfy

Xc = (
3i

2i−2
)(t + 1)− 1 ∈ [1]2,

where 2 ≤ i ≤ p− 1, i ∈ N.

Besides, when i = p, Xc = (3i

2i−2)(t + 1)− 1 ∈ [0]2, as only p consecutive I(·)
occur. In other words, p can also be looked as the minimal value to let current
transformed number Xc ∈ [0]2 during such dynamics. Thus, we need to explore
the requirement that for given t how to get p such that

(
3i

2i−2
)(t + 1)− 1 ∈ [1]2, 2 ≤ i ≤ p− 1 ∩ (

3p

2p−2
)(t + 1)− 1 ∈ [0]2.

We call this requirement as REQ.
Represent t + 1 as 2α ∗A,A ∈ [1]2, α ∈ N. That is, t + 1 = 2α ∗A. Obviously,

this representation is unique. We thus need to prove that REQ is satisfied if and
only if p = α + 2. Note that, here p is indeed determined by α.

For 2 ≤ i < p = α + 2, i ∈ N, we have α + 2− i > 0 and

Xc = (
3i

2i−2
)(t + 1)− 1 = (

3i

2i−2
) ∗ 2α ∗A− 1

= 3i ∗ 2α−i+2 ∗A− 1 ∈ 3i ∗ [0]2 ∗A− 1 = [1]2.

When i = p = α + 2, we have
Xc = (3p

2p−2)(t + 1)− 1 = (3p

2p−2) ∗ 2α ∗A− 1
= 3p ∗ 2α−p+2 ∗A− 1 = 3p ∗A− 1 ∈ 3p ∗ [1]2 − 1 ∈ [0]2.

It is easy to see that p = α + 2 is the minimal value to satisfy REQ. Thus,
p = α + 2 is the one and only one for REQ, as desired.

ut

Corollary 1. (t Determine p Theorem.) Given starting number x = 4t + 3, the
number of consecutive “10” (denoted as p) is determined by t according to Eq.
6.

p =

2 t ∈ [0]2,

α + 2 α = log2

t + 1
A

∈ N, A ∈ [1]2 t ∈ [1]2.
(6)

Above theorem shows that p can be computed from t directly without con-
ducting any concrete computation of 3 ∗ x + 1 and x/2 for counting times of
“{10}”.

For example, CODE(7) = 10101001000 = {10}30{10}100 = IIIOIOO =
I3O‖IO2. t = (7−3)/4 = 1 ∈ [1]2. α = log2(t+1)/A = log2(1+1)/1 = log2 2 = 1.
p = α + 2 = 1 + 2 = 3.

Corollary 2.

CODE(x = 2n − 1, n ∈ N) = {10}n‖0‖....
Proof. Suppose CODE(x) = {10}p‖0‖..., due to Theorem 3.

(1) If n = 1, x = 2−1 = 1 ∈ [1]4. Thus, p = 1 = n. Indeed, CODE(x = 1) =
{10}1‖0.

(2) If n ∈ N, n ≥ 2, thus x = 2n − 1 ∈ [3]4.
(2.1) If n = 2, x = 22 − 1 = 3, (x − 3)/4 = 0 ∈ [0]2, p = 2. Thus, p = n.

Indeed, CODE(x = 3) = 101000 = {10}2‖0‖...
(2.2) If n > 2, t = (x− 3)/4 = (2n− 1− 3)/4 = 2n−2− 1 ∈ [1]2. t+1 = 2n−2.

A = 1. α = log2(t + 1)/A = log2 2n−2 = n− 2. Thus, p = α + 2 = n− 2 + 2 = n.
Therefore, CODE(x = 2n − 1, n ∈ N) = {10}n‖0‖.... ut
(Indeed, Eq. 6 can be used to design an automata that takes as input x and

outputs CODE(x). We leave it as future work and will discuss it in another
paper.)

Next corollary shows that double down or “00” must exist in each code, which
means that the times of “down” are always more than “up”.

Corollary 3. (Double Down Must Occur.) Code segment “00” must occur in
CODE({x|x = 4t + 3, t ∈ N}. That is, ...00... ∈ CODE.

Proof. It is straightforward due to Format Theorem (Theorem 3).
For more details or put it another way, observing Eq. 3 and Eq. 4, we have
Xc = (3

2)p(x + 1)− 1 = (3
2)p(4t + 3 + 1)− 1 = (3p

2p−2)(t + 1)− 1 ∈ N.
If t ∈ [0]2, t + 1 ∈ [1]2, p = 2. Thus, Xc = 32(t + 1)− 1 = 9t + 8 ∈ [0]2. Thus,

next transformation will be “0”. Thus, “00” occurs.
If t ∈ [1]2, t + 1 ∈ [0]2. Suppose t + 1 = 2α ∗ A,α ∈ N, A ∈ N, A ∈ [1]2.

In this case, p − 2 = α to make Xc an integer, as p is determined by α, where
α = log2(

t+1
A), A ∈ [1]2, A ∈ N. Therefore, Xc = 3α+2∗A−1 ∈ [1]2∗[1]2−1 ∈ [0]2.

Thus, “00” occurs. More specifically, CODE(x) = {10}α+2‖0‖y. It depends on
Xc ∈ [0]4 or not whether “y” is 0 or 1. ut

Above corollary shows that we can divide CODE(x) into different code seg-
ments that end with double or more ‘0’s.

Corollary 4. CODE(x) satisfies

CODE(x) =

O 0 x ∈ [0]2,
IO 100 x ∈ [1]4,

II‖... 1010‖... x ∈ [3]4.
(7)

Proof. Straightforward. ut

Next corollary gives more details on CODE({x|x ∈ [3]4}) that has a unified
form as

{10}p1≥2‖0q1≥1‖{10}p2≥1‖0q2≥1‖...{10}pn≥1‖0qn≥1.

That is, each code consists of one or more segments, and each segment has a
unified form as {10}p0q, p ≥ 1, q ≥ 1.

Corollary 5. CODE(x) = Segment0‖Segmentn, Segment0 = Ip0Oq0 , p0 ≥
2, p0 ∈ N, q0 ∈ N, Segment ∈ {Segmenti|Segmenti = IpiOqi , i, pi, qi ∈ N}.

Proof. Straightforward. As current transformed number Xc after p consecutive
pairs of “I” is even, Xc will become odd after one or more “O” transformations.
When Xc becomes odd, next round of I transformations will occur. Above dy-
namics occur iteratively. Thus, each segment of codes has a unified form IpiOqi ,
where pi, qi ∈ N.

It is worth to stress that why the first segment is listed solely in front of other
segments, because the distinction between the first segment and other segments
is that p0 ≥ 2, but pi ≥ 1, i ∈ N. ut

Obviously, in each code segments, more ‘0’ than ‘1’ exist. Thus, for all seg-
ments in codes, more ‘0’ than ‘1’. Next corollary shows that D is more than U
in each code (or during dynamics).

Corollary 6. There exists more 0 than 1 in each code.

Proof. Straightforward.
It is trivial when x ∈ [0]2 ∪ [1]4, in which there exist one more 0 than 1.
Regarding x ∈ [3]4, each segment in a code has a form IpiOqi , pi, qi ∈ N, i ≥

0, i ∈ N. In each segment, the number of ‘1’ is pi and the number of ‘0’ is pi + qi.
Thus, there exist more ‘0’ than ‘1’ in each segment. More specifically, the gap of
more ‘0’ than ‘1’ is qi. As all segments in a code have a unified form, the total
number of ‘1’ is more than the total number of ‘0’. More specifically, suppose
CODE(x) = Ip1Oq1‖Ip2Oq2‖...‖IpnOqn , i, pi, qi ∈ N. Thus, U = Σi=n

i=1 pi, D =
Σi=n

i=1 qi + U , and the gap between ‘0’ and ‘1’ is D − U = Σi=n
i=1 qi. ut

CODE Format Theorem and its corollaries are all verified by our outputting
CODE for x ∈ [3, 99999999], x ∈ N, although it is not necessary. The source
code and outputting code data will be provided as a supplement information,
and also can be downloaded publicly.

Following proposition states the “truncated” dynamics is the building block
of “un-truncated” dynamics. Thus, it is more primitive.

Proposition 11. The “un-truncated” dynamics is the combination of “trun-
cated” dynamics.

Proof. Straightforward. The “un-truncated” dynamics means from a starting
number (denoted as x) to 1. In this process, x must reach the first transformed
number (denoted as a1) that is less than x (i.e., a1 < x). Thus, “truncated”
dynamics (denoted as CODE(x)) is the first code segment of “un-truncated” dy-
namics. Next, start from a1 or look a1 as a new starting number, CODE(a1) will
reach to a2 where a2 < a1. Do it iteratively, we have ai < ai−1, i = 2, ..., n. Sup-
pose an = 2, CODE(an) = 0 and transformed number is 1. Thus, “un-truncated”
dynamics is CODE(x)‖CODE(a1)‖...‖CODE(an), which is the combination of
“truncated” dynamics.

ut

2.5 Numbers in Specific Residue Class Have Short Code

After observation of codes for [3, 99999999] outputting by our computer pro-
gram, we discover that certain specific numbers have code with short length. We
formally prove those observations as theorems in the following.

Theorem 4. CODE(x) = 101000, where x ∈ [3]4 and t = (x− 3)/4 ∈ [0]4.

Proof. x = 4t + 3 ∈ [0]4, 3x + 1 = 3(4t + 3) + 1 = 12t + 10 ∈ [0]2. As t ∈ [0]4,
(3x+1)/2 = (12t+10)/2 = 6t+5 ∈ [1]2, (3(6t+5)+1)/2 = 9t+8 ∈ [0]4. Thus,
the next transformation should be “00”. As (9t + 8)/2/2 = 2.25t + 2 < 3t + 2 <
4t + 3 = x, the code ends hereby with “101000”. That is, CODE(x) = 101000.
Certainly, it can also be written as CODE(x) = IIOO or CODE(x) = I2O2

for convenience. ut
Example 4. 115 → 346 → 173 → 520 → 260 → 130 → 65 < 115; CODE(115) =
101000, t = (115− 3)/4 = 28 ∈ [0]4.

Theorem 5. CODE(x) = 10100100, where x ∈ [3]4 and t = (x− 3)/4 ∈ [2]8.

Proof. x = 4t + 3 ∈ [1]2, thus 3x + 1 ∈ [0]2. As t ∈ [2]8 ⊂ [0]2, (3x + 1)/2 =
(12t+10)/2 = 6t+5 ∈ [1]2. As t ∈ [2]8, (3(6t+5)+1)/2 = 9t+8 ∈ [2]8 ⊂ [2]4 =
[0]2 ∩ ¬[0]4. Thus, the CODE segment “10100” occurs consequently. (It is easy
to know that current transformed number is still larger than starting number
due to 9t + 8 > 4t + 3, thus further transformation will occur.)

As t ∈ [2]8, 3 9t+8
2 +1 ∈ 3 9∗[2]8+8

2 +1 = 3∗ [2]8/2+1 = 3∗ [1]4 +1 = [0]4. Thus
the CODE segment “00” occurs consequently. (In the following, “*” in a ∗ [i]m
may be omitted and a ∗ [i]m can be written as a[i]m for simplicity.)

(3 9t+8
2 + 1)/2/2 = (13.5t + 13)/2/2 = (6.75t + 6.5)/2 = 3.375t + 3.25 =

4t + 3 + (0.25 − 0.625t) < 4t + 3 = x, the code ends with “10100100”. That is,
CODE(x) = 10100100, where x ∈ [3]4 and t = (x−3)/4 ∈ [2]8. Certainly, it can
also be written as CODE(x) = IIOIO or CODE(x) = I2OIO for convenience.

ut
Example 5. 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 < 11;
CODE(11) = 10100100, (11− 3)/4 = 2 ∈ [2]8.

Theorem 6. CODE(x) = 10101001000, where x ∈ [3]4 and t = (x − 3)/4 ∈
[1]32.

Proof. x = 4t + 3 ∈ [1]2, t ∈ [1]32.
I(x) = (3x + 1)/2 = (12t + 10)/2 = 6t + 5 ∈ [1]2.
I2(x) = (3(6t + 5) + 1)/2 = 9t + 8 ∈ 9[1]32 + 8 = [17]32 ⊂ [1]2.
I3(x) = (3(9t + 8) + 1)/2 ∈ (3[17]32 + 1)/2 = [20]32/2 = [10]16 ⊂ [0]2.

Therefore, CODE segment for above dynamics is “1010100”.
As [10]16/2 = [5]8 ⊂ [1]2,

I(O(I3(x))) = (3[5]8 + 1)/2 = [0]8/2 = [0]4.

Thus, double “0” will follow immediately. In summary, above dynamics to current
transformed number is thus I3OIOO.

Next, we check whether it is the final code (or dynamics is terminated at this
transformed number) by checking whether current transformed number (denoted
as Xc) is less than the staring number (i.e., x).

Xc ⇐ I3(x) = (3(9t + 8) + 1)/2 = (27t + 25)/2 = 13.5t + 12.5,
Xc ⇐ O(Xc) = O(I3(x)) = (13.5t + 12.5)/2 = 6.75t + 6.25,
Xc ⇐ I(Xc) = (I(O(I3(x))) = (3(6.75t + 6.25) + 1)/2

= (20.25t + 18.75 + 1)/2 = (20.25t + 19.75)/2 = 10.125t + 9.875,
Xc ⇐ O(Xc) = O(I(O(I3(x)))

= (10.125t + 9.875)/2 = 5.0625t + 4.9375 > 4t + 3 = x,
Xc ⇐ O(Xc) = O(O(I(O(I3(x))))

= (5.0625t + 4.9375)/2 = 2.53125t + 2.46875 < 3t + 3 < 4t + 3 = x.
Therefore, dynamics ends with “10101001000” (dynamics is terminated). That

is, CODE(x) = 10101001000.
Certainly, it can also be written as CODE(x) = IIIOIOO or CODE(x) =

I3OIO2 for convenience. ut
Actually, we can use Eq. 3 for computing Xc after I3(x) to simplify above

process in the proof. After I3(x),
Xc ⇐ (3

2)3(x + 1)− 1 = 1.53x + 1.53 − 1 = 3.375x + 2.375,
Xc ⇐ O(Xc) = 0.5(3.375x + 2.375) = 1.6875x + 1.1875,
Xc ⇐ I(Xc) = 1.5(1.6875x + 1.1875) + 0.5 = 2.53125x + 2.28125,
Xc ⇐ O(Xc) = 0.5(2.53125x + 2.28125) = 1.265625x + 1.140625,
Xc ⇐ O(Xc) = 0.5(1.265625x + 1.140625) = 0.6328125x + 0.5703125 = x +
(0.5703125− 0.3671875x) < x, as x ≥ 2 due to x ∈ [3]4.

Example 6. 135 → 406 → 203 → 610 → 305 → 916 → 458 → 229 → 688 →
344 → 172 → 86 < 135; CODE(135) = 10101001000, (x− 3)/4 = (135− 3)/4 =
33 ∈ [1]32.

Following two theorems originally stem from our conjectures on the base of
our observations. Here we formally prove them as two theorems.

Theorem 7. CODE(x) = 10100101000, where x ∈ [3]4 and t = (x − 3)/4 ∈
[14]32.

Proof. x = 4t + 3 ∈ [1]2, t ∈ [14]32.
I(x) = (3x+1)/2 = (12t+10)/2 = 6t+5 ∈ [1]2, thus I will follow consequently.
I2(x) = (3(6t+5)+1)/2 = 9t+8 ∈ 9[14]32 +8 = [6]32 ⊂ [0]2, thus O will follow.
O(I2(x)) = [6]32/2 = [3]16 ⊂ [1]2, thus I will follow.
I(O(I2(x))) = (3[3]16 + 1)/2 = [10]16/2 = [5]8 ⊂ [1]2, thus I will follow.
I2(O(I2(x))) = (3[5]8+1)/2 = [0]8/2 = [0]4, thus double “O” (or “0”) will follow.

Next, Xc will be checked for whether Xc < x after above transformations.
Xc ⇐ I2(x) = 9t + 8,
Xc ⇐ O(Xc) = O(I2(x)) = (9t + 8)/2 = 4.5t + 4,
Xc ⇐ I(Xc) = (I(O(I2(x))) = (3(4.5t+4)+1)/2 = (13.5t+13)/2 = 6.75t+6.5,
Xc ⇐ I(Xc) = I2(O(I2(x))) = (3(6.75t + 6.5) + 1)/2 = (20.25t + 20.5)/2 =
10.125t + 10.25,
Xc ⇐ O(Xc) = O(I2(O(I2(x))) = (10.125t + 10.25)/2 = 5.0625t + 5.125 >
4t + 3 = x,
Xc ⇐ O(Xc) = O2(I2(O(I2(x))) = (5.0625t + 5.125)/2 = 2.53125t + 2.5625 <
3t + 3 < 4t + 3 = x.
Therefore, the dynamics ends with “10100101000”. That is, CODE(x) = 10100101000.
Of course, it can also be written as IIOIIOO, I2OI2O2. ut
Theorem 8. CODE(x) = 10101010000, where x ∈ [3]4 and t = (x − 3)/4 ∈
[3]32.

Proof. x = 4t + 3 ∈ [1]2, t ∈ [3]32.
I(x) = (3x + 1)/2 = (12t + 10)/2 = 6t + 5 ∈ [1]2,
I2(x) = (3(6t + 5) + 1)/2 = 9t + 8 ∈ 9[3]32 + 8 = [3]32 ⊂ [1]2.
I3(x) = (3[3]32 + 1)/2 = [10]32/2 = [5]16 ⊂ [1]2.
I4(x) = (3[5]16 + 1)/2 = [0]16/2 = [0]8, thus triple “0” will follow.

Xc ⇐ I2(x) = 9t + 8,
Xc ⇐ I(Xc) = I3(x) = (3(9t + 8) + 1)/2 = (27t + 25)/2 = 13.5t + 12.5,
Xc ⇐ I(Xc) = I4(x) = (3(13.5t+12.5)+1)/2 = (40.5t+38.5)/2 = 20.25t+19.25,
Xc ⇐ O(Xc) = O(I4(x))) = (20.25t + 19.25)/2 = 10.125t + 9.625,
Xc ⇐ O(Xc) = O2(I4(x))) = (10.125t+9.625)/2 = 5.0625t+4.8125 > 4t+3 = x,
Xc ⇐ O(Xc) = O3(I4(x))) = 2.53125t + 2.40625 < 3t + 3 < 4t + 3 = x.
Therefore, the dynamics ends with “10101010000”. That is, CODE(x) = 10101010000.
Of course, it can also be written as IIIIOOO or I4O3. ut

In summary, similar to Eq. 2, aforementioned codes that have short length
are given in Eq. 8 as follows:

CODE({x|x = 4t + 3, t ∈ N}) =

101000 IIOO t ∈ [0]4,
10100100 IIOIO t ∈ [2]8,
10101000 IIIOO t ∈ [5]8,

10101001000 IIIOIOO t ∈ [1]32,
10101010000 IIIIOOO t ∈ [3]32,
10100101000 IIOIIOO t ∈ [14]32.

(8)

Note that, we call above codes have short length, because ‖CODE(x)‖ is
short, where ‖ ·‖ is the length of CODE(x). The length is measured by the total
number of “I” or “O”. For example, CODE({x|x ∈ [3]4, t = (x− 3)/4 ∈ [0]4}) =
‖IIOO‖ = 4, CODE({x|x ∈ [3]4, t = (x− 3)/4 ∈ [2]8}) = ‖IIOIO‖ = 5.

In summary, Eq. 2 and Eq. 8 are both presented together in Eq. 9 as follows.
It again verifies that CODE is prefix-free (recall Theorem 1). It also verifies that
CODE is unique, as all intersection sets for x or t are empty.

CODE(x) =

0 O 1 x ∈ [0]2,
100 IO 2 x ∈ [1]4,

101000 IIOO 4 x = 4t + 3, t ∈ [0]4,
10100100 IIOIO 5 x = 4t + 3, t ∈ [2]8,
10101000 IIIOO 5 x = 4t + 3, t ∈ [5]8,

10101001000 IIIOIOO 7 x = 4t + 3, t ∈ [1]32,
10101010000 IIIIOOO 7 x = 4t + 3, t ∈ [3]32,
10100101000 IIOIIOO 7 x = 4t + 3, t ∈ [14]32.

(9)

We discover that Eq. 9 list all {x|‖CODE(x)‖ ≤ 7}.

Proposition 12. {x|‖CODE(x)‖ ≤ 7} = {x|x ∈ [0]2 ∪ [1]4} ∪ {x|x ∈ [3]4, (x−
3)/4 ∈ [0]4 ∪ [2]8 ∪ [5]8 ∪ [1]32 ∪ [3]32 ∪ [14]32.}

Proof. If ‖CODE(x)‖ = 3, CODE(x) = IIO due to Theorem 2 and Theorem
1. However, IIO(x) = (3(3x + 1)/2 + 1)/2/2 = (3(1.5x + 1.5) + 1)/4 = 4.5/4x +
5.5/4 = 1.125x + 1.375 > x. Thus, ‖CODE(x)‖ 6= 3.

If ‖CODE(x)‖ = 4, CODE(x) = IIOO due to Theorem 3. That is, there
exists only one type of code for ‖CODE(x)‖ = 4. Similarly, we can prove that
there exists two types of code for ‖CODE(x)‖ = 5 and three types of code for
‖CODE(x)‖ = 7. Besides, ‖CODE(x)‖ = 6 is impossible, as IIIOIO(x) > x,
IIIIOO(x) > x and IIOIIO(x) > x. ut

The simpler proof relies on a result about the relation between the number
of 1 and the number of 0 in codes, which is extensively discussed in our another
paper.

Corollary 7. {x|x ∈ [0]2∪[1]4, t = (x−3)/4 ∈ [2]8∪[5]8 ∪[1]32∪[3]32∪[14]32} ∈
RT N .

Note that, for the proof of Collatz conjecture, we need to prove that ∀x ∈
N, x ∈ RT N .

Corollary 8. According to Eq. 8 only 1 − (1/4 + 2/8 + 3/32) = 1 − 19/32 =
13/32 = 40.625% for x ∈ [3]4 needs to be checked (for being returnable). That
is, verification time is shorten by 59.375%.

Corollary 9. According to Eq. 8 and Eq. 2, only 1/4 ∗ 13/32 = 13/128 =
10.15625% for x ∈ N needs to be checked. That is, verification time is shorten
about 90%.

In general, we give a conjecture as follows:

Conjecture 4. t ∈ [i]m conjecture. ∀x = 4t + 3, t ∈ N, ∃m, i, m ∈ N,m ≥ 4, 0 ≤
i ≤ m− 1, i ∈ Z, such that CODE({x|x = 4t + 3, t ∈ [i]m} exists.

Proposition 13. If t ∈ [i]m conjecture is true, ∀x ∈ [3]4, CODE(x) = CODE({x|x =
4i + 3}) = CODE({x|x = 4(km + i) + 3, k ∈ N}).
Proposition 14. If t ∈ [i]m conjecture is true, Collatz conjecture is true.

Proof. If t ∈ [i]m conjecture is true, ∀x = 4t+3, t ∈ N will lead to (x−3)/4 = t ∈
[i]m, which results in the existence of CODE(x). Together with CODE({x|x ∈
[0]2}) = 0, CODE({x|x ∈ [1]4}) = 100, we have ∀x ∈ N, CODE(x) exists.
Thus, Collatz conjecture is true. ut

In other words, if we can discover the link between the existence of CODE(x)
and (x − 3)/4 = t ∈ [i]m, and if we can prove

⋃{t|t ∈ [i]m} = N, the proof of
Collatz conjecture will be accomplished.

3 Conclusion

In this paper, we propose a mathematical induction method whose proof leads to
the proof of Collatz conjecture. We define a new concept called code to represent
the dynamics, which consists of occurred Collatz transformations in the process
from a starting number to the first transformed number that is smaller than the
starting number. Some inherent laws only exist in above “truncated” dynamics.
Above “truncated” dynamics is more primitive than “un-truncated” dynamics,
as “un-truncated” dynamics can be looked as the combination of “truncated”
dynamics.

The analysis of code properties can help prove the Collatz conjecture. We
discover that code as a whole called CODE is prefix-free. We also discover that
starting numbers that in certain residue class have the same code, such as (x−
3)/4 ∈ [0]4 ∪ [2]8 ∪ [5]8 and (x− 3)/4 ∈ [1]32 ∪ [3]32 ∪ [14]32.

Moreover, we prove that codes for certain residue classes have short length
(‖CODE(x)‖ ≤ 7). CODE(x ∈ [1]4) = 100, CODE((x − 3)/4 ∈ [0]4) =
101000, CODE((x − 3)/4 ∈ [2]8) = 10100100, CODE((x − 3)/4 ∈ [5]8) =
10101000, CODE((x−3)/4 ∈ [1]32) = 10101001000, CODE((x−3)/4 ∈ [3]32) =
10101010000, CODE((x − 3)/4 ∈ [14]32) = 10100101000. Especially, we also
prove that only those residue classes have short code length no more than 7.

We prove that code as a whole have a unified form. Every code can be divided
into code segments and each segment has a form {10}p0q.

Our discovery can shorten the verification time for Collatz conjecture to 10%.
That is, only 10% numbers are left and need to be verified. Our analysis also
provides foundation for designing an automata for verifying Collatz conjecture.

We also give a conjecture on x ∈ [3]4, whose proof can lead to the proof of
Collatz conjecture. We point out the possible approach for the proof of Collatz
conjecture on the base of CODE({x|x ∈ [3]4, (x− 3)/4 = t ∈ [i]m}).

Those discoveries on codes instantiate the proposed induction, describe the
properties of dynamics of occurred Collatz transformations, and are helpful to
the final proof of Collatz conjecture via proposed induction. The experiment re-
sults for x ∈ [3, 99999999] or even larger also confirm our discoveries, although all
proofs for above conclusions are formal and sufficient enough for their soundness.

Acknowledgement

The research was financially supported by the National Natural Science Foun-
dation of China (61170217).

References

1. Wikipedia. Collatz conjecture. https://en.wikipedia.org/wiki/Collatz_conjecture,
Retrieved Sept. 10, 2016.

Appendix: Algorithm for outputting code

The major algorithm is listed as follows. Input is a starting number x; Output
is code(x).

Data: x
Result: code = CODE(x)

1 a ⇐ x;
2 while (a >= x) do
3 if (a is odd) then
4 a ⇐ 3 ∗ a + 1;
5 code ⇐ code‖′1′;
6 continue;
7 end
8 if (a is even) then
9 a ⇐ a/2;

10 code ⇐ code‖′0′;
11 if (a < x) then
12 return code;
13 end
14 continue;
15 end
16 end

Algorithm 1: CODE(x)

All codes for x ∈ [3, 99999999] are provided as supplement information (some
of them have big size over 100MB will be provided by personal web site or
other public achieves). Source codes in ANSI C are provided as supplement
information.

