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Abstract

This document adds to the collection of GA solutions to plane-geometry

problems, most of them dealing with tangency, that are presented in [1]-

[7]. Reference [1] presented several ways of solving the CPP limiting case

of the Problem of Apollonius. Here, we use ideas from [6] to solve that

case in yet another way.

1 Statement of the problem

The CPP limiting case of the Problem of Apollonius reads,

“Given a circle and two points outside of it, construct the circles

that are tangent to the given one, and that also pass through both of

the given points” (Fig. 1).

2 Expressing elements of the problem in ways

that facilitate solution via GA

We should note that instead of

the angles shown, we could have

used angles of rotation from

b− t to t̂, and from b− c2 to t̂.

Experience gained from earlier work (especially [6]) suggests that we use

the elements identified in Fig. 2. Note, especially, that the angles θ and 2θ

terminate at the line that connects the centers of the two circles, and have as

their vertices the point of tangency and the center of the solution circle.
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Figure 1: The CPP limiting case of the Problem of Apollonius: Given a circle

and two points outside of it, construct the circles that are tangent to the given

one, and that also pass through both of the given points.

Figure 2: The point of tangency t, and the geometric elements of the problem

that will be used to identify t via GA.

3 Solution

We will follow [6] in beginning by deriving an expression for r2 and r1+r2, which

we will then use in an equation that equates two expressions for the multivector

e2θi. Please see [6] for further details.

3.1 Expressions for r2 and r1 + r2

From Fig. 2, we can derive that

(r1 + r2) t̂ =
a + b

2
+

[
(a− b) i

‖a− b‖

]√
r22 −

(
a− b

2

)2

.

We’ll rearrange that as

(r1 + r2) t̂− a + b

2
=

[
(a− b) i

‖a− b‖

]√
r22 −

(
a− b

2

)2

,

2



then square both sides. After simplifying and solving for r2, we find that

r2 =
2r1 (a + b) · t̂− a2 − b2 − 2r1

2

4r1 − 2 (a + b) · t̂
. (1)

From that result, we can then derive

r1 + r2 =
2r1

2 − a2 − b2

4r1 − 2 (a + b) · t̂
. (2)

3.2 Equating two expressions for the multivector e2θi

Note that of the two given

points, only one of them (in this

case, a) figures in multivector

that we are using. We make no

use of the other point, than to

develop an expression for r2 in

Eq. (3.1).

Still following [6], we see from Fig. 2 that[
a− t

‖a− t‖

] [
t̂
]

︸ ︷︷ ︸
=eθi

[
a− t

‖a− t‖

] [
t̂
]

︸ ︷︷ ︸
=eθi

=

[
a− c2
‖a− c2‖

] [
t̂
]

︸ ︷︷ ︸
=e2θi

,

from which

[a− t]
[
t̂
]

[a− t] [a− c2] = some scalar.

We use the identity uv ≡ 2u ∧ u + vu to rewrite that result as(
2 [a− t] ∧ t̂ + t̂ [a− t]

)
[a− t] [a− c2] = some scalar.

We expand that result as(
2a ∧ t̂

)
[a− t] [a− c2]− (a− t)

2
t̂ [a− c2] = some scalar,

from which

〈
(
2a ∧ t̂

)
[a− t] [a− c2]− (a− t)

2
t̂ [a− c2]〉2 = 0.

After further expansions and simplifications, we obtain

a2 − r12 − 2a · c2 + 2r1 (r1 + r2) = 0. (3)

Let’s pause now to compare that result to

p2 − r12 − 2p · c3 + 2t · c3 = 0,

which was obtained in [6] for the CCP limiting case. The geometric elements

referred to therein are shown in Fig. 3 .

Returning now to the present (CPP) limiting case, we continue by recog-

nizing that c2 = (r1 + r2) t̂, then substituting in Eq. (3) the expression for

r1 + r2 that’s given in Eq. (2):

a2 − r12 − 2a ·
{[

2r1
2 − a2 − b2

4r1 − 2 (a + b) · t̂

]
t̂

}
+ 2r1

[
2r1

2 − a2 − b2

4r1 − 2 (a + b) · t̂

]
= 0
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Figure 3: The geometric elements used in [6]’s solution of the CCP limiting

case.

After another round of expansions, simplifications, and rearrangements, we ar-

rive at {(
b2 − r12

)
a−

(
a2 − r12

)
b
}
· t̂ = r1

(
b2 − a2

)
,

both sides of which we multiply by r1, giving the result that was obtained in

several ways in [1]:{(
b2 − r12

)
a−

(
a2 − r12

)
b
}
· t = r1

2
(
b2 − a2

)
.

As we know from [1]-[7], a solution of that form means that there are two

solution circles, whose points of tangency are reflections of each other with

respect to the vector w =
(
b2 − r12

)
a−

(
a2 − r12

)
b (Fig. 4). The projections

upon ŵ of the vectors to those points of tangency are equal, and are given by

P ŵ (t) =

[
r1

2
(
b2 − a2

)
‖w‖

]
ŵ.
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