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Abstract – We present solutions for the Euler and Navier-Stokes equations in finite 

and infinite series of time, in spatial dimension 𝑁 = 3, firstly based on expansion in 

Taylor’s series of time and then, in special case, solutions for velocity given by 

irrotational vectors, for incompressible flows and conservative external force, the 

Bernoulli’s law. A little description of the Lamb’s solution for Euler equations is 

done. 
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§ 1 

 Let 𝑝, 𝑞, 𝑟 be the three components of velocity of an element of fluid in the 3-

D orthogonal Euclidean system of spatial coordinates (𝑥, 𝑦, 𝑧) and 𝑡 the time in this 

system.  

 Lagrange in his Mécanique Analitique, firstly published in 1788, proved that 

if the quantity (𝑝 𝑑𝑥 + 𝑞 𝑑𝑦 + 𝑟 𝑑𝑧) is an exact differential when 𝑡 = 0 it will also 

be an exact differential when 𝑡 has any other value. If the quantity (𝑝 𝑑𝑥 + 𝑞 𝑑𝑦 +

𝑟 𝑑𝑧) is an exact differential at an arbitrary instant, it should be such for all other 

instants. Consequently, if there is one instant during the motion for which it is not 

an exact differential, it cannot be exact for the entire period of motion. If it were 

exact at another arbitrary instant, it should also be exact at the first instant.[1]   

 To prove it Lagrange used 

(1.1)  {
𝑝 = 𝑝𝐼 + 𝑝𝐼𝐼𝑡 + 𝑝𝐼𝐼𝐼𝑡2 + 𝑝𝐼𝑉𝑡3 +⋯

𝑞 = 𝑞𝐼 + 𝑞𝐼𝐼𝑡 + 𝑞𝐼𝐼𝐼𝑡2 + 𝑞𝐼𝑉𝑡3 +⋯

𝑟 = 𝑟𝐼 + 𝑟𝐼𝐼𝑡 + 𝑟𝐼𝐼𝐼𝑡2 + 𝑟𝐼𝑉𝑡3 +⋯

 

in which the quantities 𝑝𝐼 , 𝑝𝐼𝐼 , 𝑝𝐼𝐼𝐼 , etc., 𝑞𝐼 , 𝑞𝐼𝐼 , 𝑞𝐼𝐼𝐼 , etc., 𝑟𝐼 , 𝑟𝐼𝐼, 𝑟𝐼𝐼𝐼, etc., are functions 

of 𝑥, 𝑦, 𝑧 but without 𝑡. 

 Here we will finally solve the equations of Euler and Navier-Stokes using 

this representation of the velocity components in infinite series, as pointed by 

Lagrange. We assume satisfied the condition of incompressibility, for brevity. 
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Without it the resulting equations are more complicated, as we know, but the 

method of solution is essentially the same in both cases. We focus our attention in 

the general case of the Navier-Stokes equations, with 𝜈 ≥ 0 constant, and for the 

Euler equations simply set the viscosity coefficient as 𝜈 =  0.  

 To facilitate and abbreviate our writing, we represent the fluid velocity by 

its three components in indicial notation, i.e., 𝑢 = (𝑢1, 𝑢2, 𝑢3), as well as the 

external force will be 𝑓 = (𝑓1, 𝑓2, 𝑓3) and the spatial coordinates 𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦,

𝑥3 ≡ 𝑧. The pressure, a scalar function, will be represented as 𝑝. As frequently used 

in mathematics approach, the density mass will be 𝜌 = 1. We consider all functions 

belonging to 𝐶∞, being valid the use of 
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
=

𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑗
 and other inversions in 

order of derivatives, so much in relation to space as to time. 

 The representation (1.1) is as the expansion of the velocity in a Taylor´s 

series in relation to time around 𝑡 = 0, considering 𝑥, 𝑦, 𝑧 as constant, i.e., for 

1 ≤ 𝑖 ≤ 3, 

(1.2)  𝑢𝑖 = 𝑢𝑖|𝑡=0 +
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 𝑡 +

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0  

𝑡2

2
+
𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0  

𝑡3

6
+⋯ 

   +
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0  

𝑡𝑘

𝑘!
+⋯ 

or  

(1.3)  𝑢𝑖 = 𝑢𝑖
0 + ∑

𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0  

𝑡𝑘

𝑘!

∞
𝑘=1 . 

 For the calculation of  
𝜕𝑢𝑖

𝜕𝑡
,
𝜕2𝑢𝑖

𝜕𝑡2
,
𝜕3𝑢𝑖

𝜕𝑡3
, … we use the values that are obtained 

directly from the Navier-Stokes equations and its derivatives in relation to time, 

i.e., 

(1.4)  
𝜕𝑢𝑖

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
− ∑ 𝑢𝑗

3
𝑗=1

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖 + 𝑓𝑖 , 

and therefore    

(1.5)  
𝜕2𝑢𝑖

𝜕𝑡2
= −

𝜕2𝑝

𝜕𝑡 𝜕𝑥𝑖
− ∑ (

𝜕𝑢𝑗

𝜕𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
)3

𝑗=1 + 𝜈 ∇2
𝜕𝑢𝑖

𝜕𝑡
+
𝜕𝑓𝑖

𝜕𝑡
, 

(1.6)  
𝜕3𝑢𝑖

𝜕𝑡3
= −

𝜕3𝑝

𝜕𝑡2 𝜕𝑥𝑖
− ∑ (

𝜕2𝑢𝑗

𝜕𝑡2
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
)3

𝑗=1  

   +𝜈 ∇2
𝜕2𝑢𝑖

𝜕𝑡2
+
𝜕2𝑓𝑖

𝜕𝑡2
,  

(1.7)  
𝜕4𝑢𝑖

𝜕𝑡4
= −

𝜕4𝑝

𝜕𝑡3 𝜕𝑥𝑖
− ∑ 𝑁𝑗

33
𝑗=1 +  𝜈 ∇2

𝜕3𝑢𝑖

𝜕𝑡3
+
𝜕3𝑓𝑖

𝜕𝑡3
, 
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  𝑁𝑗
3 =

𝜕

𝜕𝑡
𝑁𝑗
2, 𝑁𝑗

2 =
𝜕2𝑢𝑗

𝜕𝑡2
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
, 

  𝑁𝑗
3 =

𝜕3𝑢𝑗

𝜕𝑡3
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 3

𝜕2𝑢𝑗

𝜕𝑡2
𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 3

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
, 

(1.8)  
𝜕5𝑢𝑖

𝜕𝑡5
= −

𝜕5𝑝

𝜕𝑡4 𝜕𝑥𝑖
− ∑ 𝑁𝑗

43
𝑗=1 +  𝜈 ∇2

𝜕4𝑢𝑖

𝜕𝑡4
+
𝜕4𝑓𝑖

𝜕𝑡4
, 

  𝑁𝑗
4 =

𝜕

𝜕𝑡
𝑁𝑗
3 =

𝜕4𝑢𝑗

𝜕𝑡4
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 4

𝜕3𝑢𝑗

𝜕𝑡3
𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 6

𝜕2𝑢𝑗

𝜕𝑡2
𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
+ 

    +4
𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕4𝑢𝑖

𝜕𝑡4
, 

and using induction we come to    

(1.9)  
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
= −

𝜕𝑘𝑝

𝜕𝑡𝑘−1 𝜕𝑥𝑖
− ∑ 𝑁𝑗

𝑘−13
𝑗=1 +  𝜈 ∇2

𝜕𝑘−1𝑢𝑖

𝜕𝑡𝑘−1
+
𝜕𝑘−1𝑓𝑖

𝜕𝑡𝑘−1
, 

  𝑁𝑗
𝑘−1 =

𝜕

𝜕𝑡
𝑁𝑗
𝑘−2 = ∑  (𝑘−1

𝑙
)𝑘−1

𝑙=0 𝜕𝑡
𝑘−1−𝑙𝑢𝑗  

𝜕

𝜕𝑥𝑗
𝜕𝑡
𝑙𝑢𝑖 , 

  𝜕𝑡
0𝑢𝑛 = 𝑢𝑛, 𝜕𝑡

𝑚𝑢𝑛 =
𝜕𝑚𝑢𝑛

𝜕𝑡𝑚
, (𝑘−1

𝑙
) =

(𝑘−1)!

(𝑘−1−𝑙)! 𝑙!
.  

 In (1.2) and (1.3) it is necessary to know the values of the derivatives 

𝜕𝑢𝑖

𝜕𝑡
,
𝜕2𝑢𝑖

𝜕𝑡2
, … ,

𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
  in 𝑡 = 0 then we must to calculate, from (1.4) to (1.9),   

(1.10)  
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 = −

𝜕𝑝0

𝜕𝑥𝑖
− ∑ 𝑢𝑗

03
𝑗=1

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖

0 + 𝑓𝑖
0, 

the superior index 0 meaning the value of the respective function at 𝑡 = 0, and 

(1.11)  
𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 = −

𝜕2𝑝

𝜕𝑡 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

13
𝑗=1 |𝑡=0 + 

             + 𝜈 ∇2
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 +

𝜕𝑓𝑖

𝜕𝑡
|𝑡=0,    

  𝑁𝑗
1|𝑡=0 = ∑ (

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 𝑢𝑗

0 𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0)

3
𝑗=1 , 

(1.12)  
𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 = −

𝜕3𝑝

𝜕𝑡2 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

2|𝑡=0
3
𝑗=1 + 

                        + 𝜈 ∇2
𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 +

𝜕2𝑓𝑖

𝜕𝑡2
|𝑡=0,    

  𝑁𝑗
2|𝑡=0 =

𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 + 

           + 𝑢𝑗
0 𝜕

𝜕𝑥𝑗

𝜕
2
𝑢𝑖

𝜕𝑡2
|𝑡=0, 

(1.13)  
𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0 = −

𝜕4𝑝

𝜕𝑡3 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

33
𝑗=1 |𝑡=0 +  
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                        + 𝜈 ∇2
𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 +

𝜕3𝑓𝑖

𝜕𝑡3
|𝑡=0,  

  𝑁𝑗
3|𝑡=0 =

𝜕3𝑢𝑗

𝜕𝑡3
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 3

𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 + 

                  + 3
𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 + 𝑢𝑗

0 𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0,  

(1.14)  
𝜕5𝑢𝑖

𝜕𝑡5
|𝑡=0 = −

𝜕5𝑝

𝜕𝑡4 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

43
𝑗=1 |𝑡=0 + 

             + 𝜈 ∇2
𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0 +

𝜕4𝑓𝑖

𝜕𝑡4
|𝑡=0,   

  𝑁𝑗
4|𝑡=0 =

𝜕4𝑢𝑗

𝜕𝑡4
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 4

𝜕3𝑢𝑗

𝜕𝑡3
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 

              + 6
𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 + 4

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 + 

   + 𝑢𝑗
0 𝜕

𝜕𝑥𝑗

𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0, 

and of generic form, 

(1.15)  
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0 = −

𝜕𝑘𝑝

𝜕𝑡𝑘−1 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

𝑘−13
𝑗=1 |𝑡=0 + 

                + 𝜈 ∇2
𝜕𝑘−1𝑢𝑖

𝜕𝑡𝑘−1
|𝑡=0 +

𝜕𝑘−1𝑓𝑖

𝜕𝑡𝑘−1
|𝑡=0, 

  𝑁𝑗
𝑘−1|𝑡=0 = ∑  (𝑘−1

𝑙
)𝑘−1

𝑙=0 𝜕𝑡
𝑘−1−𝑙𝑢𝑗|𝑡=0  

𝜕

𝜕𝑥𝑗
𝜕𝑡
𝑙𝑢𝑖|𝑡=0, 

  𝜕𝑡
0𝑢𝑛|𝑡=0 = 𝑢𝑛

0 , 𝜕𝑡
𝑚𝑢𝑛|𝑡=0 =

𝜕𝑚𝑢𝑛

𝜕𝑡𝑚
|𝑡=0. 

 If the external force is conservative there is a scalar potential 𝑈 such as 

𝑓 = ∇𝑈 and the pressure can be calculated from this potential 𝑈, i.e.,  

(1.16)  
𝜕𝑝

𝜕𝑥𝑖
= 𝑓𝑖 =

𝜕𝑈

𝜕𝑥𝑖
, 

and then 

(1.17)  𝑝 = 𝑈 + 𝜃(𝑡), 

𝜃(𝑡) a generic function of time of class 𝐶∞, so it is not necessary the use of  the 

pressure 𝑝 and external force 𝑓, and respective derivatives, in (1.4) to (1.15) if the 

external force is conservative. In this case, the velocity can be independent of the 

both pressure and external force, otherwise it will be necessary to use both the 

pressure and external force derivatives to calculate the velocity in powers of time.  

 The result that we obtain here in this development in Taylor’s series seems 

to me a great advance in the search of the solutions of the Euler’s and Navier-

Stokes equations. It is possible now to know on the possibility of non-uniqueness 
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solutions as well as breakdown solution respect to unbounded energy of another 

manner. We now can choose previously an infinity of different pressures such that 

the calculation of 
𝜕𝑢

𝜕𝑡
 and derivatives can be done, for a given initial velocity and 

external force, although such calculation can be very hard. 

 It is convenient say that Cauchy[2] in his memorable and admirable Mémoire 

sur la Théorie des Ondes, winner of the Mathematical Analysis award, year 1815,  

firstly does a study on the equations to be obeyed by three-dimensional molecules 

in a homogeneous fluid in the initial instant 𝑡 = 0, coming to the conclusion which 

the initial velocity must be irrotational, i.e., a potential flow. Of this manner, after, 

he comes to conclusion that the velocity is always irrotational, potential flow, if the 

external force is conservative, which is essentially the Lagrange’s theorem 

described in the begin of this article, but it is shown without the use of series 

expansion (a possible exception to the theorem occurs if one or two components of 

velocity are identically zero, when the reasonings on 3-D molecular volume are not 

valid). The solution obtained by Cauchy for Euler's equations is the Bernoulli's law, 

as almost always happens. Now at first a more generic solution is obtained, in 

special when it is possible a solution be expanded in polynomial series of time. 

Though not always a function can be expanded in Taylor’s series, there is certainly   

an infinity of possible cases of solutions where this is possible. 

 If the mentioned series is divergent in some point or region may be an 

indicative of that the correspondent velocity and its square diverge, again going to 

the case of breakdown solution due to unbounded energy. With the three functions 

initial velocity, pressure and external force belonging to Schwartz Space is 

expected that the solution for velocity also belongs to Schwartz Space, obtaining 

physically reasonable and well-behaved solution throughout the space. 

 The method presented here in this first section can also be applied in other 

equations, of course, for example in the heat equation, Schrödinger equation, wave 

equation and many others. Always will be necessary that the remainder in the 

Taylor's series goes to zero when the order 𝑘 of the derivative tends to infinity 

(Courant[3], chap. VI). Applying this concept in (1.3) and (1.9), substituting 𝑡 by 𝜏, 

the remainder 𝑅𝑖,𝑘 of order 𝑘 for velocity component 𝑖 is 

(1.18)  𝑅𝑖,𝑘 =
1

𝑘!
∫ (𝑡 − 𝜏)𝑘
𝑡

0
 
𝜕𝑘+1𝑢𝑖

𝜕𝑡𝑘+1
𝑑𝜏, 

which can be estimated by Lagrange’s remainder, 

(1.19)  𝑅𝑖,𝑘 =
𝑡𝑘+1

(𝑘+1)!

𝜕𝑘+1𝑢𝑖

𝜕𝑡𝑘+1
(𝜉), 

or by Cauchy’s remainder, 
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(1.20)  𝑅𝑖,𝑘 =
𝑡𝑘+1

𝑘!
(1 − 𝜃)𝑘

𝜕𝑘+1𝑢𝑖

𝜕𝑡𝑘+1
(𝜉), 

with 0 ≤ 𝜉 ≤ 𝑡 and 0 ≤ 𝜃 ≤ 1. 

§ 2 

 In this section we will build a series of powers of time solving the Navier-

Stokes equations, differently than that used in the previous section. From theorem 

of uniqueness of series of powers (A function 𝑓(𝑥) can be represented by a power 

series in 𝑥 in only one way, if it all, i.e., the representation of a function by a power 

series is “unique”; Every power series which converges for points other than 𝑥 = 0 

is the Taylor series of the function which it represents (Courant[3], chap. VIII)),   

both solutions need be the same, for a same initial velocity, pressure, external 

force, compressibility condition and all boundary conditions. 

 Defining 

(2.1)  𝑢𝑖 = 𝑢𝑖
0 + 𝑋𝑖,1𝑡 + 𝑋𝑖,2𝑡

2 +⋯+ 𝑋𝑖,𝑛𝑡
𝑛 +⋯ = ∑ 𝑋𝑖,𝑛𝑡

𝑛∞
𝑛=0 ,  

  𝑋𝑖,0 = 𝑢𝑖
0 = 𝑢𝑖(𝑥1, 𝑥2, 𝑥3, 0), 

where each 𝑋𝑖,𝑛 is a function of position (𝑥1, 𝑥2, 𝑥3), without 𝑡, and 

(2.2)  
𝜕𝑝

𝜕𝑥𝑖
= 𝑞𝑖

0 + 𝑞𝑖,1𝑡 + 𝑞𝑖,2𝑡
2 +⋯+ 𝑞𝑖,𝑛𝑡

𝑛 +⋯ = ∑ 𝑞𝑖,𝑛𝑡
𝑛∞

𝑛=0 ,  

  𝑞𝑖,0 = 𝑞𝑖
0 =

𝜕𝑝0

𝜕𝑥𝑖
, 𝑝0 = 𝑝(𝑥1, 𝑥2, 𝑥3, 0), 

(2.3)  𝑓𝑖 = 𝑓𝑖
0 + 𝑓𝑖,1𝑡 + 𝑓𝑖,2𝑡

2 +⋯+ 𝑓𝑖,𝑛𝑡
𝑛 +⋯ = ∑ 𝑓𝑖,𝑛𝑡

𝑛∞
𝑛=0 ,  

  𝑓𝑖,0 = 𝑓𝑖
0 = 𝑓𝑖(𝑥1, 𝑥2, 𝑥3, 0), 

we can put these series in the Navier-Stokes equation  

(2.4)  
𝜕𝑢𝑖

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
− ∑ 𝑢𝑗

3
𝑗=1

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖 + 𝑓𝑖 . 

 The velocity derivative in relation to time is 

(2.5)  
𝜕𝑢𝑖

𝜕𝑡
= 𝑋𝑖,1 + 2𝑋𝑖,2𝑡 + 3𝑋𝑖,3𝑡

2 +⋯+ 𝑛𝑋𝑖,𝑛𝑡
𝑛−1 +⋯ = 

                   = ∑ (𝑛 + 1)𝑋𝑖,𝑛+1𝑡
𝑛∞

𝑛=0 , 

the nonlinear terms are, of order zero (constant in time), 

(2.6)  ∑ 𝑢𝑗
03

𝑗=1
𝜕𝑢𝑖

0

𝜕𝑥𝑗
, 

of order 1, 
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(2.7)   ∑ (𝑢𝑗
0 𝜕𝑋𝑖,1

𝜕𝑥𝑗
+ 𝑋𝑗,1

𝜕𝑢𝑖
0

𝜕𝑥𝑗
) 𝑡3

𝑗=1 , 

of order 2, 

(2.8)   ∑ (𝑢𝑗
0 𝜕𝑋𝑖,2

𝜕𝑥𝑗
+ 𝑋𝑗,1

𝜕𝑋𝑖,1

𝜕𝑥𝑗
+ 𝑋𝑗,2

𝜕𝑢𝑖
0

𝜕𝑥𝑗
) 𝑡23

𝑗=1 , 

of order 3, 

(2.9)   ∑ (𝑢𝑗
0 𝜕𝑋𝑖,3

𝜕𝑥𝑗
+ 𝑋𝑗,1

𝜕𝑋𝑖,2

𝜕𝑥𝑗
+ 𝑋𝑗,2

𝜕𝑋𝑖,1

𝜕𝑥𝑗
+ 𝑋𝑗,3

𝜕𝑢𝑖
0

𝜕𝑥𝑗
) 𝑡33

𝑗=1 , 

and of order 𝑛, of generic form, equal to  

(2.10)  ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0 𝑡𝑛3

𝑗=1 ,   

with 𝑋𝑗,0 = 𝑢𝑗
0,

𝜕𝑋𝑖,0

𝜕𝑥𝑗
=

𝜕𝑢𝑖
0

𝜕𝑥𝑗
. 

 Applying these sums in (2.4) we have 

(2.11)  ∑ (𝑛 + 1)𝑋𝑖,𝑛+1𝑡
𝑛∞

𝑛=0 = −∑ 𝑞𝑖,𝑛𝑡
𝑛∞

𝑛=0 − 

  −∑ ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0 𝑡𝑛3

𝑗=1
∞
𝑛=0 + 𝜈∑ ∇2𝑋𝑖,𝑛

∞
𝑛=0 𝑡𝑛 +  

  +∑ 𝑓𝑖,𝑛𝑡
𝑛∞

𝑛=0 ,  

and then 

(2.12)  (𝑛 + 1)𝑋𝑖,𝑛+1 = −𝑞𝑖,𝑛 − ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0

3
𝑗=1 +  

              + 𝜈∇2𝑋𝑖,𝑛 +𝑓𝑖,𝑛,  

which allows us to obtain, by recurrence,  𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, etc., that is, for 1 ≤ 𝑖 ≤ 3 

and 𝑛 ≥ 0, 

(2.13)  𝑋𝑖,𝑛+1 =
1

𝑛+1
𝑆𝑛,  

  𝑆𝑛 = −𝑞𝑖,𝑛 − ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0

3
𝑗=1 + 𝜈∇2𝑋𝑖,𝑛 + 𝑓𝑖,𝑛. 

 You can see how much will become increasingly difficult calculate the terms 

𝑋𝑖,𝑛 with increasing the values of 𝑛, for example, will appear terms in 

𝜈𝑛, ∇2∇2…∇2𝑢𝑖
0, etc. If 𝜈 > 1 certainly there is a specific problem to be studied 

with relation to convergence of the series, which of course also occurs in the 

representation given in section § 1. The same can be said for 𝑡 → ∞.  
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§ 3 

 The previous solutions show us that we need to have, for all integers 

1 ≤ 𝑖 ≤ 3 and 𝑛 ≥ 0, 

(3.1)  
1

𝑛!

𝜕𝑛𝑢𝑖

𝜕𝑡𝑛
|𝑡=0 = 𝑋𝑖,𝑛, 

and both members of this relation are very difficult to be calculated, either 

equation (1.15) as well as (2.13). Add to this difficulty the fact that besides the 

main Navier-Stokes equations (1.4)-(2.4) must be included the condition of 

incompressibility, 

(3.2)  ∇ ∙ 𝑢 = ∑
𝜕

𝜕𝑥𝑖
𝑢𝑖

3
𝑖=1 = 0. 

 Using (2.1) in (3.2) we have  

(3.3)  ∇ ∙ 𝑢 = ∑
𝜕

𝜕𝑥𝑖

3
𝑖=1 ∑ 𝑋𝑖,𝑛𝑡

𝑛∞
𝑛=0 = ∑ (∑

𝜕

𝜕𝑥𝑖

3
𝑖=1 𝑋𝑖,𝑛)

∞
𝑛=0 𝑡𝑛 = 0. 

 As this equation need be valid for all 𝑡 ≥ 0 we have  

(3.4)  ∑
𝜕

𝜕𝑥𝑖

3
𝑖=1 𝑋𝑖,𝑛 = ∇ ∙ 𝑋𝑛 = 0, 

defining 𝑋𝑛 = (𝑋1,𝑛, 𝑋2,𝑛, 𝑋3,𝑛), i.e., all coefficients 𝑋𝑛 must obey the condition 

of incompressibility in the vector representation of velocity, 

(3.5)  𝑢 = ∑ 𝑋𝑛
∞
𝑛=0 𝑡𝑛. 

 As we realized that it is possible infinite solutions for a same initial 

condition for velocity then we can try choose a more easier solution, whose 

maximum value of 𝑛 is finite, in special 𝑛 = 1, i.e., 

(3.6)  𝑢𝑖 = 𝑢𝑖
0 + 𝑋𝑖,1𝑡, 

where  

(3.7)  𝑋𝑖,1 =
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0. 

 Then of (3.4), for 𝑛 = 0, it is necessary that 

(3.8)  ∇ ∙ 𝑢0 = 0, 

which is also an initial condition, for 𝑛 = 1 it is necessary that 

(3.9)  ∑
𝜕

𝜕𝑥𝑖

3
𝑖=1 (−𝑞𝑖,0 − ∑ 𝑢𝑗

0 𝜕𝑢𝑖
0

𝜕𝑥𝑗

3
𝑗=1 + 𝜈∇2𝑢𝑖

0 + 𝑓𝑖
0) = 0, 
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𝑞𝑖,0 =
𝜕𝑝

𝜕𝑥𝑖
(𝑥1, 𝑥2, 𝑥3, 0), and for 𝑛 ≥ 2 do not have no term for velocity, by 

definition in (3.6), but we need that the nonlinear terms of second order in time 

vanishes in the sum   ∑ 𝑢𝑗
3
𝑗=1

𝜕𝑢𝑖

𝜕𝑥𝑗
, i.e., 

(3.10)  ∑ 𝑋𝑗,1
3
𝑗=1

𝜕𝑋𝑖,1

𝜕𝑥𝑗
= 0. 

 The two last conditions are obviously satisfied when 𝑋𝑖,1 is zero, any other 

numerical constant or a generic smooth function of time 𝜏𝑖(𝑡), i.e., 

(3.11)   𝑋𝑖,1 = −𝑞𝑖,0 − ∑ 𝑢𝑗
0 𝜕𝑢𝑖

0

𝜕𝑥𝑗

3
𝑗=1 + 𝜈∇2𝑢𝑖

0 + 𝑓𝑖
0 = 𝜏𝑖(𝑡), 

and then  

(3.12)  𝑢𝑖 = 𝑢𝑖
0 + 𝑇𝑖(𝑡) 

may be our solution obtained for velocity, with 𝑇𝑖(0) = 0 and 𝑇 = 𝜏 𝑡, still lacking 

the calculation of pressure. 

 As our initial hypothesis was that 𝑋𝑖,1 was not time dependent we need 

review the solution or simply choose 𝑇𝑖(𝑡) = 𝑐𝑖𝑡, 𝑐𝑖 a numerical constant. Note that 

for compliance with the Millenium Problem[4], case (A), only if 𝑇𝑖(𝑡) is identically 

zero we can have the condition of bounded energy satisfied, i.e., 

(3.13)  ∫ |𝑢|2𝑑𝑥
ℝ3

 < 𝐶 finite, 𝑥 ∈ ℝ3,  

what force us to choose 𝑇𝑖(𝑡) ≡ 0 and thus the final solution for velocity will be 

𝑢 = 𝑢0 for any 𝑡 ≥ 0, since that 𝑢0 obey to the necessary conditions of case (A). For 

case (B), related with periodical spatially solutions, where the condition of 

bounded energy in whole space is not necessary, it is possible 𝑇𝑖(𝑡) ≠ 0, and in fact 

this is a promising and well behaved solution for Euler and Navier-Stokes 

equations in periodic spatially solutions cases, choosing  𝑇(𝑡) ∈ 𝐶∞ limited, as well 

as 𝑢0 and consequently 𝑢.   

  Note that the solution (3.12) also is compatible with the condition (3.4) of 

divergence free for series of form 

(3.14)  𝑢𝑖 = 𝑢𝑖
0 + ∑ 𝑐𝑖,𝑛

∞
𝑛=1 𝑡𝑛, 

i.e., 

(3.15)  𝑇𝑖(𝑡) = ∑ 𝑐𝑖,𝑛
∞
𝑛=1 𝑡𝑛,  𝑋𝑖,𝑛 = 𝑐𝑖,𝑛,  



10 
 

supposing that (3.8) is valid. The same is said if the maximum value of 𝑛 is finite, 

obviously. All 𝑐𝑖,𝑛 are numerical constants for 𝑛 ≥ 1.   

§ 4 

 How calculate the pressure value, if it is not given nor previously chosen? 

 From Navier-Stokes equations, it is equal to the line integral 

(4.1)  𝑝 = ∫ (−
𝜕𝑢

𝜕𝑡
− (𝑢 ∙ ∇)𝑢 +  ∇2𝑢 + 𝑓)

𝐿
∙ 𝑑𝑙, 

where 𝐿 is any sectionally smooth curve going from a point (𝑥0, 𝑦0, 𝑧0) to (𝑥, 𝑦, 𝑧), 

for a fixed time 𝑡, and for this calculation it is necessary that the vector 

(4.2)  𝑆 = −
𝜕𝑢

𝜕𝑡
− (𝑢 ∙ ∇)𝑢 +  ∇2𝑢 + 𝑓 

is gradient, i.e., 

(4.3)  𝑆 = ∇𝑝, 𝑝 = ∫ 𝑆
𝐿

∙ 𝑑𝑙, 

so the condition 

(4.4)  
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
, 

need be satisfied for all integer 1 ≤ 𝑖, 𝑗 ≤ 3 in order that (4.1) can be calculated, 

where 𝑆 = (𝑆1, 𝑆2, 𝑆3) and  

(4.5)  𝑆𝑖 = −
𝜕𝑢𝑖

𝜕𝑡
− ∑ 𝑢𝑗

3
𝑗=1

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖 + 𝑓𝑖 . 

Obviously, even if the pressure is given or chosen previously, as indicated in 

sections § 1 and § 2, the equations (4.1) and (4.4) need to be fulfilled. 

 The condition (4.4) is a very hard condition to be satisfied, instead the 

incompressibility condition 

(4.6)  ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0. 

Following Lagrange[1], getting two differentiable and continuous functions 𝛼 and 𝛽 

of class 𝐶2 and defining 

(4.7.1)  𝑢1 =
𝜕𝛼

𝜕𝑧
,  𝑢2 =

𝜕𝛽

𝜕𝑧
,  𝑢3 = −(

𝜕𝛼

𝜕𝑥
+
𝜕𝛽

𝜕𝑦
), 

(4.7.2)  𝑢1
0 =

𝜕𝛼0

𝜕𝑧
,  𝑢2

0 =
𝜕𝛽0

𝜕𝑧
,  𝑢3

0 = −(
𝜕𝛼0

𝜕𝑥
+
𝜕𝛽0

𝜕𝑦
), 
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with 𝛼0 = 𝛼(𝑡 = 0) and 𝛽0 = 𝛽(𝑡 = 0), we have satisfied the condition (4.6), 

which it is easy to see. Other manner is when 𝑢 is derived from a vector potential 

𝐴, i.e., 

(4.8.1)  𝑢 = ∇ × 𝐴, 

(4.8.2)  𝑢0 = ∇ × 𝐴0, 

with 𝐴0 = 𝐴(𝑡 = 0). 

 The relations (4.7) are very useful and easy to be implemented. Given any 

continuous, differentiable and integrable vector components 𝑢1 and 𝑢2 then 

(4.9.1)  𝛼 = ∫𝑢1 𝑑𝑧, 

(4.9.2)  𝛽 = ∫𝑢2 𝑑𝑧, 

and thus 𝑢3 and 𝑢3
0 need to be according 

(4.10.1) 𝑢3 = −∫(
𝜕𝑢1

𝜕𝑥
+
𝜕𝑢2

𝜕𝑦
) 𝑑𝑧 = −(

𝜕𝛼

𝜕𝑥
+
𝜕𝛽

𝜕𝑦
), 

(4.10.2) 𝑢3
0 = −∫(

𝜕𝑢1
0

𝜕𝑥
+
𝜕𝑢2

0

𝜕𝑦
) 𝑑𝑧 = −(

𝜕𝛼0

𝜕𝑥
+
𝜕𝛽0

𝜕𝑦
), 

which reminds us that the components of the velocity vector maintains conditions 

to be complied to each other, i.e., it is not any initial velocity which can be used for 

solution of Euler and Navier-Stokes equations in incompressible flows case.  

 Following these transformations, in the equations of the sections § 1 and § 

2, instead 𝑢1 we will use 
𝜕𝛼

𝜕𝑧
, instead 𝑢2 will be 

𝜕𝛽

𝜕𝑧
, and −(

𝜕𝛼

𝜕𝑥
+
𝜕𝛽

𝜕𝑦
) instead 𝑢3, as 

well as the correspondents initial values, replacing 𝑢1
0 by 

𝜕𝛼0

𝜕𝑧
,  𝑢2

0 by 
𝜕𝛽0

𝜕𝑧
, and 𝑢3

0 by 

−(
𝜕𝛼0

𝜕𝑥
+

𝜕𝛽0

𝜕𝑦
). Of this manner, we will be developing series for 

𝜕𝛼

𝜕𝑧
, 
𝜕𝛽

𝜕𝑧
 and 

−(
𝜕𝛼

𝜕𝑥
+
𝜕𝛽

𝜕𝑦
), so that ∇ ∙ 𝑢 = 0. Then this is a preliminary problem to be solved, the 

calculation of 𝛼0 and 𝛽0 giving 𝑢1
0, 𝑢2

0 and 𝑢3
0 when ∇ ∙ 𝑢0 = 0 and it is necessary 

that ∇ ∙ 𝑢 = 0, i.e., 

(4.11.1) 𝛼0 = ∫𝑢1
0 𝑑𝑧, 

(4.11.2) 𝛽0 = ∫𝑢2
0 𝑑𝑧, 

with the validity of (4.10.2). Done this, the exact solution for the principal problem 

can be calculated from reasoning exposed here, if there is not an equivalent 

solution described in a most simplified formulation, for example, according 

Bernoulli’s law and Laplace’s equation.  
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 Another relation need be obeyed for obtaining the mentioned solution, both 

in compressible as incompressible flows, described below. 

 For obtaining a solution for the system 

(4.12)  

{
 
 

 
 
𝜕𝑝

𝜕𝑥
= 𝑆1

𝜕𝑝

𝜕𝑦
= 𝑆2

𝜕𝑝

𝜕𝑧
= 𝑆3
 

 

representing the Euler ( = 0) and Navier-Stokes equations, with 𝑆𝑖 given by (4.5) 

using 𝑥 ≡ 𝑥1, 𝑦 ≡ 𝑥2, 𝑧 ≡ 𝑥3, it is necessary that ∇ × 𝑆 = 0,  𝑆 = (𝑆1, 𝑆2, 𝑆3). This 

condition is equivalent to follow system 

(4.13)  

{
 
 

 
 
𝜕𝑆1

𝜕𝑦
=

𝜕𝑆2

𝜕𝑥

𝜕𝑆1

𝜕𝑧
=

𝜕𝑆3

𝜕𝑥
𝜕𝑆2

𝜕𝑧
=

𝜕𝑆3

𝜕𝑦

   

which is the mentioned condition (4.4). 

 The first of these equations leads to 

(4.14)  
𝜕

𝜕𝑦

𝜕𝑢1

𝜕𝑡
=

𝜕

𝜕𝑥

𝜕𝑢2

𝜕𝑡
  

respect to equality of temporal derivatives of velocity components 1 and 2, or 

(4.15)  
𝜕

𝜕𝑡

𝜕𝑢1

𝜕𝑦
=

𝜕

𝜕𝑡

𝜕𝑢2

𝜕𝑥
.  

 Repeating this reasoning for the second and third equations of (4.13) we 

come to 

(4.16.1) 
𝜕

𝜕𝑡

𝜕𝑢1

𝜕𝑧
=

𝜕

𝜕𝑡

𝜕𝑢3

𝜕𝑥
,    

(4.16.2) 
𝜕

𝜕𝑡

𝜕𝑢2

𝜕𝑧
=

𝜕

𝜕𝑡

𝜕𝑢3

𝜕𝑦
,   

or 

(4.17)  
𝜕

𝜕𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗
=

𝜕

𝜕𝑡

𝜕𝑢𝑗

𝜕𝑥𝑖
,  1 ≤ 𝑖, 𝑗 ≤ 3,  

i.e., ∇ ×
𝜕

𝜕𝑡
𝑢 =

𝜕

𝜕𝑡
∇ × 𝑢 = 0 for all 𝑡 ≥ 0, which contains ∇ × 𝑢 = 0 and 

𝜕𝑢

𝜕𝑡
= 0 as 

solutions.  
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 Continuing the reasoning for the Laplacian terms, we have for the first 

equation of (4.13)  

(4.18)  
𝜕

𝜕𝑦
𝜈 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) 𝑢1 =

𝜕

𝜕𝑥
𝜈 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) 𝑢2, 

where we can have   

(4.19)  
𝜕

𝜕𝑦

𝜕2𝑢1

𝜕𝑥2
=

𝜕3𝑢2

𝜕𝑥3
,  

𝜕

𝜕𝑦

𝜕2𝑢1

𝜕𝑦2
=

𝜕3𝑢2

𝜕𝑥𝜕𝑦2
,  

𝜕

𝜕𝑦

𝜕2𝑢1

𝜕𝑧2
=

𝜕3𝑢2

𝜕𝑥𝜕𝑧2
,   

for the second equation of (4.13) 

(4.20)  
𝜕

𝜕𝑧
𝜈 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)𝑢1 =

𝜕

𝜕𝑥
𝜈 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) 𝑢3, 

with the possibility  

(4.21)  
𝜕

𝜕𝑧

𝜕2𝑢1

𝜕𝑥2
=

𝜕3𝑢3

𝜕𝑥3
,  

𝜕

𝜕𝑧

𝜕2𝑢1

𝜕𝑦2
=

𝜕3𝑢3

𝜕𝑥𝜕𝑦2
,  

𝜕

𝜕𝑧

𝜕2𝑢1

𝜕𝑧2
=

𝜕3𝑢3

𝜕𝑥𝜕𝑧2
,     

and for the third equation of (4.13) 

(4.22)  
𝜕

𝜕𝑧
𝜈 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)𝑢2 =

𝜕

𝜕𝑦
𝜈 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) 𝑢3, 

again as the respective previous equalities, equaling each parcel of the left side to 

the respective parcel of the right side, we can have 

(4.23)  
𝜕

𝜕𝑧

𝜕2𝑢2

𝜕𝑥2
=

𝜕3𝑢3

𝜕𝑦𝜕𝑥2
,  

𝜕

𝜕𝑧

𝜕2𝑢2

𝜕𝑦2
=

𝜕3𝑢3

𝜕𝑦3
,   

𝜕

𝜕𝑧

𝜕2𝑢2

𝜕𝑧2
=

𝜕3𝑢3

𝜕𝑦𝜕𝑧2
.      

 For the nonlinear terms of (4.13) we have, for the first equation  

(4.24)  
𝜕

𝜕𝑦
(𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
) =

𝜕

𝜕𝑥
(𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
+ 𝑢3

𝜕𝑢2

𝜕𝑧
) 

(4.25)  
𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑦
+ 𝑢1

𝜕2𝑢1

𝜕𝑥𝜕𝑦
+
𝜕𝑢1

𝜕𝑦

𝜕𝑢2

𝜕𝑦
+ 𝑢2

𝜕2𝑢1

𝜕𝑦2
+
𝜕𝑢1

𝜕𝑧

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕2𝑢1

𝜕𝑦𝜕𝑧
=  

  =
𝜕𝑢1

𝜕𝑥

𝜕𝑢2

𝜕𝑥
+ 𝑢1

𝜕2𝑢2

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥

𝜕𝑢2

𝜕𝑦
+ 𝑢2

𝜕2𝑢2

𝜕𝑥𝜕𝑦
+
𝜕𝑢3

𝜕𝑥

𝜕𝑢2

𝜕𝑧
+ 𝑢3

𝜕2𝑢2

𝜕𝑥𝜕𝑧
  

for the second equation 

(4.26)  
𝜕

𝜕𝑧
(𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
) =

𝜕

𝜕𝑥
(𝑢1

𝜕𝑢3

𝜕𝑥
+ 𝑢2

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕𝑢3

𝜕𝑧
) 

(4.27)  
𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑧
+ 𝑢1

𝜕2𝑢1

𝜕𝑥𝜕𝑧
+
𝜕𝑢1

𝜕𝑦

𝜕𝑢2

𝜕𝑧
+ 𝑢2

𝜕2𝑢1

𝜕𝑦𝜕𝑧
+

𝜕𝑢1

𝜕𝑧

𝜕𝑢3

𝜕𝑧
+ 𝑢3

𝜕2𝑢1

𝜕𝑧2
=  

  =
𝜕𝑢1

𝜕𝑥

𝜕𝑢3

𝜕𝑥
+ 𝑢1

𝜕2𝑢3

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥

𝜕𝑢3

𝜕𝑦
+ 𝑢2

𝜕2𝑢3

𝜕𝑥𝜕𝑦
+
𝜕𝑢3

𝜕𝑥

𝜕𝑢3

𝜕𝑧
+ 𝑢3

𝜕2𝑢3

𝜕𝑥𝜕𝑧
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and for the last equation 

(4.28)  
𝜕

𝜕𝑧
(𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
+ 𝑢3

𝜕𝑢2

𝜕𝑧
) =

𝜕

𝜕𝑦
(𝑢1

𝜕𝑢3

𝜕𝑥
+ 𝑢2

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕𝑢3

𝜕𝑧
) 

(4.29)  
𝜕𝑢1

𝜕𝑧

𝜕𝑢2

𝜕𝑥
+ 𝑢1

𝜕2𝑢2

𝜕𝑥𝜕𝑧
+
𝜕𝑢2

𝜕𝑦

𝜕𝑢2

𝜕𝑧
+ 𝑢2

𝜕2𝑢2

𝜕𝑦𝜕𝑧
+

𝜕𝑢2

𝜕𝑧

𝜕𝑢3

𝜕𝑧
+ 𝑢3

𝜕2𝑢2

𝜕𝑧2
=  

  =
𝜕𝑢1

𝜕𝑦

𝜕𝑢3

𝜕𝑥
+ 𝑢1

𝜕2𝑢3

𝜕𝑥𝜕𝑦
+
𝜕𝑢2

𝜕𝑦

𝜕𝑢3

𝜕𝑦
+ 𝑢2

𝜕2𝑢3

𝜕𝑦2
+
𝜕𝑢3

𝜕𝑦

𝜕𝑢3

𝜕𝑧
+ 𝑢3

𝜕2𝑢3

𝜕𝑦𝜕𝑧
.  

 All these equations, from (4.17) to (4.29), admit for solution the condition  

(4.30)  
𝜕𝑢𝑖

𝜕𝑥𝑗
=

𝜕𝑢𝑗

𝜕𝑥𝑖
,  1 ≤ 𝑖, 𝑗 ≤ 3,  

in which case 𝑢 is an irrotational vector, ∇ × 𝑢 = 0, and so there is a velocity 

potential 𝜙 such that 𝑢 = ∇𝜙. We will use this condition that 𝑢 is irrotational and 

that also it is incompressible for the calculation of pressure in this special 

situation, coming to the known Bernoulli’s law. For this also it is necessary to 

consider that the external force is conservative, i.e., it has a potential 𝑈 such that 

𝑓 = ∇𝑈 and ∇ × 𝑓 = 0, because then we will have satisfied the system (4.13) 

completely, when 

(4.31)  
𝜕𝑓𝑖

𝜕𝑥𝑗
=

𝜕𝑓𝑗

𝜕𝑥𝑖
,  1 ≤ 𝑖, 𝑗 ≤ 3. 

 If ∇ × 𝑢 = 0 and ∇ ∙ 𝑢 = 0 then 

(4.32)   ∇2𝑢 = ∇(∇ ∙ 𝑢) − ∇ × (∇ × 𝑢) = 0,  

i.e., the Laplacian in the Navier-Stokes equations vanishes for any viscosity 

coefficient and the Navier-Stokes reduced to Euler equations. 

 If ∇ × 𝑢 = 0 then the nonlinear term in vector form is simplified, according  

(4.33)  (𝑢 ∙ ∇)𝑢 = (∇ × 𝑢) × 𝑢 +
1

2
∇|𝑢|2 =

1

2
∇|𝑢|2,    

thus, using (4.32) and (4.33) and more the potentials of the velocity and external 

force, the Navier-Stokes (and Euler) equations reduced to 

(4.34)  ∇𝑝 +
𝜕

𝜕𝑡
∇𝜙 +

1

2
∇|𝑢|2 = ∇𝑈, 

therefore the solution for pressure is 

(4.35)  𝑝 = −
𝜕𝜙

𝜕𝑡
−
1

2
|𝑢|2 + 𝑈 + 𝜃(𝑡), 
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the Bernoulli’s law, where 𝜃(𝑡) is a generic time function, let’s suppose 𝜃(𝑡) ∈ 𝐶∞ a 

limited time function, a numeric constant or even zero.   

 If 𝑢 = ∇𝜙 and ∇ ∙ 𝑢 = 0, according we are admitting, then from 

incompressibility condition 

(4.36)  ∇ ∙ 𝑢 =
𝜕

𝜕𝑥

𝜕𝜙

𝜕𝑥
+

𝜕

𝜕𝑦

𝜕𝜙

𝜕𝑦
+

𝜕

𝜕𝑧

𝜕𝜙

𝜕𝑧
= 0 

we come to the Laplace’s equation 

(4.37)  ∇2𝜙 = 0, 

where each possible solution gives the respective values of velocity components, 

such that 

(4.38)  𝑢1 =
𝜕𝜙

𝜕𝑥
,  𝑢2 =

𝜕𝜙

𝜕𝑦
,  𝑢3 =

𝜕𝜙

𝜕𝑧
,      

and the pressure is given by (4.35), with 

(4.39)  |𝑢|2 = 𝑢1
2 + 𝑢2

2 + 𝑢3
2 = (

𝜕𝜙

𝜕𝑥
)
2
+ (

𝜕𝜙

𝜕𝑦
)
2
+ (

𝜕𝜙

𝜕𝑧
)
2

. 

  According Courant[5] (p.241), for 𝑛 = 2 the “general solution” of the 

potential equation (or Laplace’s equation) is the real part of any analytic function 

of the complex variable 𝑥 + 𝑖𝑦. For 𝑛 = 3 one can also easily obtain solutions 

which depend on arbitrary functions. For example, let 𝑓(𝑤, 𝑡) be analytic in the 

complex variable 𝑤 for fixed real 𝑡. Then, for arbitrary values of 𝑡, both the real and 

imaginary parts of the function 

(4.40)  𝑢 = 𝑓(𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡 , 𝑡) 

of the real variables 𝑥, 𝑦, 𝑧 are solutions of the equation ∇2𝑢 = 0. Further solutions 

may be obtained by superposition: 

(4.41)  𝑢 = ∫ 𝑓(𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡 , 𝑡)𝑑𝑡
𝑏

𝑎
.    

 For example, if we set 

(4.42)  𝑓(𝑤, 𝑡) = 𝑤𝑛𝑒𝑖ℎ𝑡 , 

where 𝑛 and ℎ are integers, and integrate from –𝜋 to +𝜋, we get homogeneous 

polynomials 

(4.43)  𝑢 = ∫ (𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡)𝑛
𝜋

−𝜋
𝑒𝑖ℎ𝑡𝑑𝑡 
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in 𝑥, 𝑦, 𝑧, following example given by Courant. Introducing polar coordinates 

𝑧 = 𝑟 cos 𝜃, 𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙 , we obtain 

(4.44)  𝑢 = 2𝑟𝑛𝑒𝑖ℎ𝜙 ∫ (cos 𝜃 + 𝑖 sin 𝜃 cos 𝑡)𝑛 cos ℎ𝑡  𝑑𝑡
𝜋

0
  

                 = 𝑟𝑛𝑒𝑖ℎ𝜙𝑃𝑛,ℎ(cos𝜃),   

where 𝑃𝑛,ℎ(cos𝜃) are the associated Legendre functions.   

§ 5 

 The series obtained in two first sections admitted that the incompressibility 

condition is satisfied for any 𝑡 ≥ 0, but we saw how difficult are the expressions 

(1.15) and (2.13) for that this can really occur for 𝑡 > 0. In 𝑡 = 0 this can be 

satisfied without great problems because the terms in 𝑡, 𝑡2, 𝑡3, etc. vanish. We can   

construct a solution using the indicated in equations (4.7), more general than 

(4.8), but the easier solution is to consider all coefficients, since the order zero, the 

free time power coefficient, as components of an irrotational and incompressible 

vector, this when the initial velocity is compatible with these conditions, i.e., our 

solutions for velocity in series of time (finite and also infinite) are, in this case, of a 

generic form 

(5.1)  𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑋𝑘(𝑥, 𝑦, 𝑧) 𝑇𝑘(𝑡)
𝑚
𝑘=0 , 

where all 𝑋𝑘(𝑥, 𝑦, 𝑧) are irrotational and incompressible vectors, i.e., solutions of 

Laplace’s equation in vector form, they are harmonic functions, according 

superposition principle, as well as the respective velocity potentials are the scalar 

functions 𝜙𝑘(𝑥, 𝑦, 𝑧) such that  

(5.2)  𝜙(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝜙𝑘(𝑥, 𝑦, 𝑧) 𝑇𝑘(𝑡)
𝑚
𝑘=0 , 

solutions of  

(5.3)  ∇2𝜙𝑘 = 0, 

where 

(5.4)  𝑋𝑖,𝑘 =
𝜕

𝜕𝑥𝑖
𝜙𝑘, 

with 𝑋𝑘 = (𝑋1,𝑘, 𝑋2,𝑘, 𝑋3,𝑘), 𝑋0 = 𝑢
0 the initial velocity, 𝑇0(0) = 1 and 𝑇𝑘(0) = 0 

if 𝑘 ≥ 1. The functions 𝑇𝑘(𝑡) ∈ 𝐶
∞(ℝ) are limited for 𝑡 finite, by our convention. 

 Resorting again to the mentioned theorem of uniqueness of series of 

powers in § 2 and using the Taylor’s theorem (Courant[3], chap. VI), we can choose 

𝑇𝑘(𝑡) = 𝑡
𝑘  and 𝑚 → ∞ in (5.1), i.e., 

(5.5)  𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑋𝑘(𝑥, 𝑦, 𝑧) 𝑡
𝑘∞

𝑘=0 , 
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and conclude that the coefficients of series of time given by (1.15) and (2.13) are, 

when 𝑢0 is irrotational, solutions of Laplace’s equation, at least in cases of 

conservative external forces and incompressible flows, for a same initial velocity, 

pressure, external force, compressibility condition and all boundary conditions, 

without contradictions with Lagrange[1] and Cauchy[2], and for this reason in these 

cases the Bernoulli’s law is the correct solution for pressure in Euler and Navier-

Stokes equations. We are assuming, but it is possible to prove in more detail, that 

always there some solution for Euler and Navier-Stokes equations in series of 

power (even, for example, 𝑢 = 0), that it is analytical in a non-empty region for all 

𝑡 ≥ 0 finite, and even not existing uniqueness of solutions, for each possible 

solution 𝑢 it can be put in the form (5.5) using (1.15) or (2.13) or, for irrotational 

and incompressible flows, (5.3) and (5.4), existing the relation of equivalence 

(3.1), i.e., 

(5.6)  
1

𝑘!

𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0 = 𝑋𝑖,𝑘 ,  

for 𝑖 = 1, 2, 3. Note that if it is not possible to make a series around 𝑡 = 0 (for 

example, to the functions log 𝑡 , √𝑡
3
, 𝑒−1/𝑡

2
, according Courant[3], chap. VI) an other 

instant 𝑡0 of convergence and remainder 𝑅𝑖,𝑘→∞ zero must be found, and then 

replacing 𝑡𝑘  by (𝑡 − 𝑡0)
𝑘 and the calculations in 𝑡 = 0 by 𝑡 = 𝑡0 in previous 

equations. 

 It is not necessary the use of viscosity coefficient for smooth and 

incompressible fluids with conservative external force (or without any force). For 

non-stationary flows it is knows that the Lagrange’s theorem[6],[7], as well as the 

Kelvin’s circulation theorem[7],[8], is not valid for Navier-Stokes equations, but here 

it is implied that 𝜈∇2𝑢 ≠ 0, the general case. The necessity of smooth velocity in 

whole space leads us to exclude all obstacles and regions without velocity of the 

fluid in study, which naturally occur using boundaries. The vorticity 𝜔 = ∇ × 𝑢 ≠ 0 

is generated at solid boundaries[9], thus without boundaries (spatial domain 

Ω = ℝ3) no generation of vorticity, and without vorticity there is potential flow 

and vanishes the Laplacian of velocity if ∇ ∙ 𝑢 = 0, then it is possible again the 

validity of Lagrange’s theorem in an unlimited domain without boundaries and 

with both smooth and irrotational initial velocities and external forces, for 

incompressible fluids, because thus ∇2𝑢 = 0, independently of viscosity coefficient.  

 Note that according Liouville’s theorem[10], a harmonic function which is 

limited is constant, and equal to zero if it tends to zero at infinity. How the 

Millennium Problem requires a limited solution in all space for velocity and a 

limited initial velocity which goes to zero at infinity (in cases (A) and (C)), then we 

are forced to choose only 𝑢0 = 0 for case (A) if ∇2𝑢 = 0, what automatically 

implies the occurrence of case (C) due to infinite examples of prohibited 𝑢0 and 

using any conservative external force 𝑓. If ∇2𝑢 = 0 and 𝑢0 = 0 then the unique 
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possible solution for case (A), where it is necessary that 𝑓 = 0, is 𝑢 = 0 otherwise 

𝑢 would not be limited or  𝑢 would be equal to constant greater than zero or any 

not null function of time, that violated the condition of bounded energy, equation 

(3.13). 

 If ∇2𝑢 ≠ 0 then the suitable general solution for Navier-Stokes equations is 

as indicated in sections § 1 and § 2 using (4.7), for an infinity of possible pressures 

of 𝐶∞ class. 

§ 6 

 I finish this article mentioning that Lamb[7] (chap. VII) gives a complete 

solution for velocity in Euler equations when the velocity vanishes at infinity. 

 He said that “no irrotational motion is possible in an incompressible fluid 

filling infinite space, and subject to the condition that the velocity vanishes at 

infinity.” This is equivalent to the unique possible solution 𝑢 = 0. 

 From this result he proved the following theorem: “The motion of a fluid 

which fills infinite space, and is at rest at infinity, is determinate when we know 

the values of the expansion (𝜃, say) and of the component angular velocities 𝜉, 𝜂, 𝜁, 

at all points of the region.”, where 

(6.1)  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 𝜃  

is the named expansion and 

(6.2.1)  
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
= 2𝜉 

(6.2.2)  
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
= 2𝜂 

(6.2.3)  
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
= 2𝜁 

are the equations for angular velocities. The components of the velocity are 𝑢, 𝑣, 𝑤, 

and vanish at infinity as well as  𝜃, 𝜉, 𝜂, 𝜁.   

 Lamb obtain the solution for velocity 

(6.3.1)  𝑢 = −
𝜕Φ

𝜕𝑥
+
𝜕𝐻

𝜕𝑦
−
𝜕𝐺

𝜕𝑧
 

(6.3.2)  𝑣 = −
𝜕Φ

𝜕𝑦
+
𝜕𝐹

𝜕𝑧
−
𝜕𝐻

𝜕𝑥
 

(6.3.3)  𝑤 = −
𝜕Φ

𝜕𝑧
+

𝜕𝐺

𝜕𝑥
−
𝜕𝐹

𝜕𝑦
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where  

(6.4.1)  Φ =
1

4𝜋
∭

𝜃′

𝑟
𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

(6.4.2)  𝐹 =
1

2𝜋
∭

𝜉′

𝑟
𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

(6.4.3)  𝐺 =
1

2𝜋
∭

𝜂′

𝑟
𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

(6.4.4)  𝐻 =
1

2𝜋
∭

𝜁′

𝑟
𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

the accents attached to 𝜃, 𝜉, 𝜂, 𝜁 are used to distinguish the values of these 

quantities at the point (𝑥′, 𝑦′, 𝑧′), 𝑟 denoting the distance  

(6.5)  𝑟 = {(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2}1/2 

and the integrations including all places which 𝜃′, 𝜉′, 𝜂′, 𝜁′ differ from zero, 

respectively.   

 The following relations are valid: 

(6.6)  𝑢1 = −
𝜕Φ

𝜕𝑥
,  𝑣1 = −

𝜕Φ

𝜕𝑦
,  𝑤1 = −

𝜕Φ

𝜕𝑧
, 

(6.7)  
𝜕𝑢1

𝜕𝑥
+
𝜕𝑣1

𝜕𝑦
+
𝜕𝑤1

𝜕𝑧
= −∇2Φ = 𝜃 

for solution of (6.1), and 

(6.8)  𝑢2 =
𝜕𝐻

𝜕𝑦
−
𝜕𝐺

𝜕𝑧
, 𝑣2 =

𝜕𝐹

𝜕𝑧
−
𝜕𝐻

𝜕𝑥
, 𝑤2 =

𝜕𝐺

𝜕𝑥
−
𝜕𝐹

𝜕𝑦
, 

(6.9)  
𝜕𝑢2

𝜕𝑥
+
𝜕𝑣2

𝜕𝑦
+
𝜕𝑤2

𝜕𝑧
= 0 

(6.10)  2𝜉 =
𝜕𝑤2

𝜕𝑦
−
𝜕𝑣2

𝜕𝑧
=

𝜕

𝜕𝑥
(
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
+

𝜕𝐻

𝜕𝑧
) − ∇2𝐹 

(6.11)  2𝜂 =
𝜕𝑢2

𝜕𝑧
−
𝜕𝑤2

𝜕𝑥
=

𝜕

𝜕𝑦
(
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
+
𝜕𝐻

𝜕𝑧
) − ∇2𝐺 

(6.12)  2𝜁 =
𝜕𝑣2

𝜕𝑥
−
𝜕𝑢2

𝜕𝑦
=

𝜕

𝜕𝑧
(
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
+
𝜕𝐻

𝜕𝑧
) − ∇2𝐻 

(6.13)  
𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
+
𝜕𝐻

𝜕𝑧
= 0 

(6.14)  ∇2𝐹 = −2𝜉,  ∇2𝐺 = −2𝜂, ∇2𝐻 = −2𝜁, 

for solution of (6.2). 
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 The solution (𝑢, 𝑣, 𝑤) given by (6.3) is obtained by superposition 

(6.15.1) 𝑢 = 𝑢1 + 𝑢2 

(6.15.2) 𝑣 = 𝑣1 + 𝑣2 

(6.15.3) 𝑤 = 𝑤1 +𝑤2 

 From the reasoning of Lamb, derived from von Helmholtz, and following 

your calculations, we cannot understand a priori that the equations (6.3) are the 

correct solutions of Euler equations because the equations (6.2) are not the Euler 

equations and the pressure is not mentioned, i.e., the relation (4.4) is not verified.  

 The equations (6.3) are a form of representation of any vector 𝒖 = (𝑢, 𝑣, 𝑤), 

a fluid flow or not, satisfying appropriate smoothness and decay conditions, in a 

sum of one gradient vector (𝒖𝚽 = −∇Φ), the velocity potential, and one rotational 

vector (𝒖𝝎 = ∇ × (𝐹, 𝐺, 𝐻), with ∇ ∙ (𝐹, 𝐺, 𝐻) = 0), which is the know Helmholtz or 

Hodge decomposition[11]. Adopting the minus sign of Lamb in ∇, 

(6.16)  𝒖 = 𝒖 + 𝒖𝝎 = −∇+ ∇ ×𝝍,  

where Φ is the scalar potential and 𝝍 = (𝐹, 𝐺, 𝐻) is the vector potential, with 

(6.17)  ∇2𝝍 = −𝒖𝝎. 

 The solution given by Lamb in a sum derived of one scalar potential and one 

vector potential can be expressed as a single vector, gradient of scalar potential, in 

case of incompressible flow. 

 If 𝑢 = (𝑢1, 𝑢2, 𝑢3) and 𝐴 = (𝐴1, 𝐴2, 𝐴3) are vectors, 𝜙 is a scalar function, 

𝑢, 𝐴, 𝜙 are smooth functions and we define 

(6.18)  𝑢 = ∇ × 𝐴 = ∇𝜙 

then we have 

(6.19)  ∇ ∙ 𝑢 = 0,  ∇ × 𝑢 = 0,  ∇2𝑢 = 0, 

and 

(6.20)  𝜙 = ∫ (∇ × 𝐴)
𝐿

∙ 𝑑𝑙 = ∫ 𝑢
𝐿

∙ 𝑑𝑙, 

since that ∇ × 𝐴 is a gradient vector function, as well as the velocity 𝑢. 

 For that ∇ × 𝐴 is gradient it is necessary that, for 1 ≤ 𝑖, 𝑗 ≤ 3, 

(6.21)  
𝜕

𝜕𝑥𝑖
(∇ × 𝐴)𝑗 =

𝜕

𝜕𝑥𝑗
(∇ × 𝐴)𝑖. 
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 Developing we have, with 𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦, 𝑥3 ≡ 𝑧, 

(6.22.1) 
𝜕2𝐴3

𝜕𝑥2
+
𝜕2𝐴3

𝜕𝑦2
=

𝜕

𝜕𝑥

𝜕𝐴1

𝜕𝑧
+

𝜕

𝜕𝑦

𝜕𝐴2

𝜕𝑧
=

𝜕

𝜕𝑧
(
𝜕𝐴1

𝜕𝑥
+
𝜕𝐴2

𝜕𝑦
)   

(6.22.2) 
𝜕2𝐴2

𝜕𝑥2
+
𝜕2𝐴2

𝜕𝑧2
=

𝜕

𝜕𝑥

𝜕𝐴1

𝜕𝑦
+

𝜕

𝜕𝑧

𝜕𝐴3

𝜕𝑦
=

𝜕

𝜕𝑦
(
𝜕𝐴1

𝜕𝑥
+
𝜕𝐴3

𝜕𝑧
) 

(6.22.3) 
𝜕2𝐴1

𝜕𝑦2
+
𝜕2𝐴1

𝜕𝑧2
=

𝜕

𝜕𝑦

𝜕𝐴2

𝜕𝑥
+

𝜕

𝜕𝑧

𝜕𝐴3

𝜕𝑥
=

𝜕

𝜕𝑥
(
𝜕𝐴2

𝜕𝑦
+
𝜕𝐴3

𝜕𝑧
) 

 When ∇ ∙ 𝐴 = 0 then comes 

(6.23.1) 
𝜕2𝐴1

𝜕𝑥2
+
𝜕2𝐴1

𝜕𝑦2
+
𝜕2𝐴1

𝜕𝑧2
= 0 

(6.23.2) 
𝜕2𝐴2

𝜕𝑥2
+
𝜕2𝐴2

𝜕𝑦2
+
𝜕2𝐴2

𝜕𝑧2
= 0 

(6.23.3) 
𝜕2𝐴3

𝜕𝑥2
+
𝜕2𝐴3

𝜕𝑦2
+
𝜕2𝐴3

𝜕𝑧2
= 0 

i.e., each component of the vector 𝐴 is a harmonic function and so 

(6.24)   ∇2𝐴 = 0. 

 We see then that it is possible to have simultaneously a potential flow 

(𝑢 = ∇𝜙) and a vortex motion (𝑢 = ∇ × 𝐴), since that ∇ ∙ 𝐴 = 0, without be 

necessary that neither ∇ × 𝐴 = 0 nor 𝑢 = 0. In this case the equation (6.16) can be 

rewritten as 

(6.25)   𝑢 = 𝑢𝜙 = 𝑢𝜔 = ∇𝜙 = ∇ × A, 

where we use 𝜙 = −Φ and 𝐴 = 𝜓, without use of bold characters for indicate 

vectors. As we saw in section § 4 for incompressible and potential flow, the 

pressure is given by Bernoulli’s law, equation (4.34), 

(6.26)  𝑝 = −
𝜕𝜙

𝜕𝑡
−
1

2
|𝑢|2 + 𝑈 + 𝜃(𝑡), 

because here too ∇ ∙ 𝑢 = 0 and 𝑢 = ∇𝜙, even though 𝑢 = ∇ × 𝐴 (due to lack of a 

better name I also called vortex motion the not null velocity generated by a curl of 

a not null vector). 
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Lagrange, grande matemático. 

 

A Matemática é um desafio quando se começa, 

uma alegria quando pensamos estar certos pela 1ª vez, 

uma vergonha quando se erra, 

tortura quando o problema é difícil, 

esporte gostoso quando o problema é fácil, 

um alívio quando se termina, 

um luxo quando se prova tudo. 

Acima de tudo é grande beleza. 
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