DEVELOPEMENT OF A MULTIPURPOSE COLD STORAGE DESIGN SOFTWARE MCS_BCKV v.1.14.1.

DipankarMandal[†]

[†]B.Tech(Agril.Engg), Faculty of Agricultural Engineering, Bidhan Chandra KrishiViawavidyalaya, Mohanpur, Nadia, West Bengal, India, Pin: 741252 Email Id: **dipankar.agrilengg@gmail.com**

Abstract

The paper proposes development of an interactive, flexible and user friendly software for designing a multipurpose cold storage in Visual Studio Express Desktop2012 environment and evaluation. The developed software--- "MCS_BCKV" has a criterion for typical load estimation and designing of cold storage, selection of evaporator, compressor and condenser in developing country. Load estimating and designing through computer automation is likely to make a positive impact in the dynamic nature of cold storage applications.

Keywords : Multipurpose Cold Storage; Cooling Load; Ventilation Load; Design Software; Respiration Load;

Compressor.

Nomenclature:

 $Q_{\rm s} = amount of heat transfer through structure, W$

A = area of outside wall or inside wall or roof or floor, m²

 ΔT = temparature difference between outside and inside condition

 $U = overall heat - transfer coefficient, W/m^2K$

 $hi = convective heat - transfer coefficient of outside, W/m^2K$

 $ho = convective heat - transfer coefficient of inside, W/m^2K.$

 $\Delta X = thickness of layers (it may be wall, roof, floor, insulator, plasteretc), m,$

 $A_i, A_m, A_o = inside, mean. outside evaporator tube surface area, m^2$

 $K = thermal \ conductivity \ of \ the \ material, W/mK$

$Q_p = heat \ load \ from \ the \ product, W$	$m = mass \ of \ the \ product, K_g$
$C_p = specific heat of the product, J/K_g K$	$A_e = Area \ of \ evaporator, m^2$
$\Delta T = temparature \ difference$	$Q_{design} = Design \ load \ of \ cold \ storage$,KW
$Q_v = heat \ load \ for \ ventilation, W$	$\Delta T_m = Log mean temparature difference$
n = number of air exchange	$U_e = overall heat - transfer coefficient, W/m^2 K$
$\rho = density \ of \ air \ , K_g/m^3$	$\Delta x = thickness of metal wall, m$
$H_0 = outside \ enthalpy, KJ/K_g$	$f_r = refrigerant$ side heat transfer coefficient

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

Volume-4, Issue-6, 519-535

 $f_c = conductance \ of \ condensate \ layer, W/m^2 K$ $H_i = inside \ enthalpy, KJ/K_a$ $Q_i = infiltration load, W$ K = thermal conductivity of the material, W/mK $D_h = door height, m$ d = outside tube diameter, m $\rho_o = density \ of \ outside \ air, K_a/m^3$ $A_c = Area \ of \ the \ condersor, \ m^2$ $W_b = Wattage \ of \ individual \ bulb, W$ $A_d = Area \ of \ door, m^2$ $\rho_i = density \ of \ inside \ air, K_a/m^3$ $Q_{design} = Design \ load \ of \ cold \ storage$, KW $H_0 = outside \ enthalpy, \frac{KJ}{K_a}$ $h_a = spcific heat of respiration, J/Kg$ $H_i = inside \ enthalpy, KJ/K_g$ $\Delta T_m = Log mean temparature difference$ $Q_f = heat \ load \ from \ fans. W$ $r_2 = outer \ pipe \ radius \ of \ condenser, m$ N_f = Number of fan used in the cold storage $r_1 = inner pipe radius of condenser, m$ $W_f = Wattage \ of \ each \ fan, W$ $Q_r = respiration load, W$ $Q_b = heat \ load \ from \ bulb, W$ $L_s = stroke \ length, m$ $N_b = Number of bulb$ $K = thermal \ conductivity \ of \ thematerial, W/mK$ UF = use factor (0.5 for industry) d_c = outer diameter of condenser, m AF = allowance factorL = Length of the condenser tube, mm = mass flow rate, kg/sw = specific work, kJ/kg $\gamma = compression ratio$ $p_d = discharge \ pressure, P_a$ $v_s = specific \ volume, \frac{m^3}{Ka}$ D = bore diameter, m $V_p = Piston \ displacement \ per \ cylinder, \frac{m^3}{min}$ N = rpm $U_c = overall heat transfer coefficient of condensor, \frac{W}{m^2 K}$

 h_i = inside heat transfer coefficient of condenser, $W/m^2 K$

 $h_o = outside heat transfer coefficient, W/m^2 K$

1. INTRODUCTION:

Traditionally, load estimation and designing a multipurpose cold storage is done either by manual calculation or judgmental estimation based on experience of the cold storage practitioner. While manual calculation is laborious, estimate based on judgment is liable to error due to gigantic, complex and dynamic nature of present day architectural designs. Load estimating and designing through computer automation is likely to make a positive impact in the dynamic nature of cold storage applications. CFD simulation of coupled heat and mass transfer through porous foods during vacuum cooling process was studied by SunD.W. and Hu Z. (2003).Simulation of transport phenomena during natural convection cooling of Bagged potatoes

in cold storage is given by Chourasia et.al.(2006). CFD model of the airflow, heat and mass transfer in cool stores was studied by Nahor et.al (2005). And simulation of effect of stack dimensions and stacking arrangement on cool down characteristics of potato in a cold store by computational fluid dynamics is also done by Chourasia et.al. (2007). Software development for cooling load estimation by CLTD method was given by T. Ahmed (2012). From different simulations and modeling an algorithm for design of cold storage can be developed easily.

2.MATERIALS AND METHODS:

2.1. Design Consideration: A cold storage system mainly consists of insulated building structure and refrigeration machinery. The design dimensions and refrigeration load of cold storage can be calculated as—

2.1.1. Heat load of wall, ceiling and floor (building load):

Building load can be calculated from the equation (Arora, 2009):

$$Q_s = UA\Delta T$$

$$\frac{1}{U} = \frac{1}{h_i} + \sum_{1}^{n} \frac{\Delta X}{K} + \frac{1}{h_o}$$

2.1.2. Heat gain from product:

$$Q_p = mC_p\Delta T$$

2.1.3 Ventilation load:

$$Q_v = n\rho V(H_0 - H_i)$$

2.1.4. Infiltration load: $Q_i = 1.33 \times A_d \times \sqrt{D_h \{1 - (\rho_o - \rho_i)\}} \times (H_o - H_i)$

2.1.5. Fan load:

$$Q_f = N_f \times W_f$$

2.1.6. Bulb load: $Q_b = N_b \times W_b \times UF \times AF$

2.1.7. Heat load for labor working: $Q_l = N_l \times W_l$

2.1.8. Total heat load of the cold storage:

$$Q_{tot} = Q_s + Q_p + Q_v + Q_i + Q_f + Q_b + Q_l$$
$$Q_{design} = \frac{Q_{tot}}{S.F.}$$
$$Q_{design} = \left(\frac{Q_{design}}{3.5167}\right) \text{ TR}$$

Volume-4, Issue-6, 519-535

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

2.1.9. Design of Evaporator: The design steps of evaporator required the knowledge of cooling load (Q_{design}). The following steps are needed for design of evaporator:

2.1.9.1. Surface area of evaporator:

$$\frac{1}{U_e} = \frac{1}{f_r} + \frac{\Delta x A_i}{K A_m} + \frac{1}{f_c} \frac{A_i}{A_o}$$

 $A_e = \frac{Q_{design}}{(\Delta T_m U_e)}$

2.1.9.2. Length of the pipe: After knowing the surface area of the evaporator, the pipe length, L_p

$$L_p = \frac{A_e}{\pi d}$$

2.1.10. Design of condenser: Design steps for condenser are as follow

2.1.10.1. Area of the condenser:
$$A_c = \frac{Q_{design}}{(\Delta T_m U_c)}$$

$$\frac{1}{U_c} = \frac{\frac{r_2}{r_1}}{h_i} + \frac{r_2}{K} \ln \frac{r_2}{r_1} + \frac{1}{h_o}$$

2.1.10.2. Length of the tube:

$$L = \frac{A_c}{\pi d_c}$$

2.1.11. Compressor design:

2.1.11.1. Power consumption:

$$W = m \times w$$
$$w = \frac{\gamma}{\gamma - 1} p_s v_s [(\frac{p_d}{P_s})^{\frac{\gamma - 1}{\gamma}} - 1]$$

2.1.11.2. Stroke & bore of the compressor:

$$V_p = \frac{\pi D^2}{4} L_s N$$

2.2. Software development:

The computer program requires different input parameters such as product selection from a panel, storage capacity, specific storage density, height of the chamber, length of the chamber, number of chamber, selection of insulation, product load per day, indoor and outdoor air condition, air ventilation, equipment's and occupants. With this input one can run the software very carefully which give absolute output to the user.

2.2.1. Calculation of dimensions and layout area of structure: At first the program will ask the user to select the products to be stored and capacity of the multipurpose cold storage. (Fig-1).Then click next button to proceed.

Volume-4, Issue-6, 519-535

n <mark></mark>			
	MCS_BCKV Multipurpose Cold Sto	v.1.14.1. rage Design Software	
Select your product			
Fresh Vegetables	Food Products _ Others	Capacity of Cold Storage(ton)	
Potato	Egg	· · · · · · · · · · · · · · · · · · ·	
Tomato	Milk Products		
Cabbage	🔲 Fish		
Cauliflower	Meat		CANCEL
Carrot			>>Next
Apple			
Pine Apple			
	Designed ByDipankar Mandal, B.Teo	ch(Agril. Engg.),BCKV//02_10_2014	

Fig-1: Software Interface (MCS_BCKV)

Then it will ask to state the capacity of the cold storage and product specific density. Supplying relevant storage density data for various fruits and vegetables, the developed program will calculate the design parameters for a multi-purpose cold storage facility. The volume of the chamber can be calculated from the formula

$$Volume = \frac{capacity(MT)}{specificstoragedensity(\frac{MT}{m^3})}$$

Thereafter, the program asks to input height of the chamber, and number of the chambers. From these data, the program will calculate different dimensions of the cold storage like length and width of chamber, anti-room, pre-cooling room and lay out area of cold storage.(Fig-2)

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

Volume-4, Issue-6, 519-535

- Form2		
Quantity of Product	Dimensional Parameters	
Potato Tomato Cabbage	Product Storage Density 3.4 No. of Chamber 4 Height of Chamber 5 Length of each Chamber 6	
Caulilower Carrot	Calculate Dimensions Width of each Chamber	Cooling Room
Apple	Width of Ante Room	
Egg Milk Product	Length of Total Cold Stor Width of Total Cold Store	Precooling Chamber
Fish	Length of Pre-cooling Chamber Width of Pre-cooling Chamber Total Layout Area of Cold Storage	< <back end="">>Next</back>

Fig-2: Dimensional Calculation

2.2.2. Calculation of structural load:

Structural load calculation determines the sensible cooling load due to the heat leakage through ceiling, floor and walls. Here the program will ask the user to choose insulating materials for the structure and structural load can be calculated.(Fig-3)

2.2.3. Calculation of product load:

For calculating the product load, the user has to input the initial product temperature and pull down time (hr). And the software calculates the unsteady state and steady state product load.

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

Volume-4, Issue-6, 519-535

🖳 For	m3	0.00	100			
			Cooling Lo	ad Calculator		
	STRUCTURAL LOAD	INFILTRATION LOAD	VENTILATION LOAD	PRODUCT LOAD	MISCELLANEOUS LOAD	TOTAL COOLING LOAD
	0					
	Outside Wall Structura	al Load Calculation				
	Physical Parame	eters				
	Inside Air Av	a Temp				
		g.remp				
	Inside Air Av	g. RH%				
	Outside Air A	lvg. Temp				
	Outside Air A	lvg. RH%				
	Insulation Option	IS				
	FPS					
	PUF		Struct	ural Load from Outside	Walls (W)	
	XPS					
	Phenolic	Foam	ſ			
				Calculate		
	Mineral W	/ool				
	Glass Wo	ol				
				< <back< td=""><td>END</td><td>>>Next</td></back<>	END	>>Next

Fig-3: Cooling Load Calculator

2.2.4. Calculation of Ventilation and Infiltration load:

For calculate ventilation and Infiltration load we mainly use equation in the program. It includes mainly no. of air exchange, inside and outside air condition.

2.2.5. Calculation of Equipment's load:

For calculation of equipment load of the cold storage through the program will ask the user to input no. of fan, no. of labor working, no. of bulbs and it automatically calculates the equipment load.

2.2.6. Calculation of Design heat load:

From above input dada and equations, the program will automatically calculate the design heat load of the cold storage in ton of refrigeration (TR).

2.2.7.Design of Evaporator: The heat transfer area of evaporator can be calculated from corresponding to the estimated refrigeration capacity. The program asks the user to enter the evaporator tube diameters. And it gives the length of tube, fin spacing, evaporator pressure, number of tube per pass.

2.2.8. Design of Compressor:

From the calculated design load the program will calculate the power, stroke and bore length, rpm of the compressor by inputting the number of cylinders.

ISSN: 2250-3676

Dipankar Mandal* et al.

Volume-4, Issue-6, 519-535

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

- Form5	A PLAN AND A				
Compressor Design					
	Compression Maters Province (UD)				
No. of Compressor Cylinder	2 Compressor Motor Power (NP)	_			
Piston Speed(m/s)	3 Dia of Cylinder(mm)				
L/D ratio	1.2 Stroke Length(mm)				
	Speed of Motor(RPM)				
Calculate					
Г					
	< <back end="">>Next</back>				

Fig-4: Compressor Design Panel

🖳 Form6	
	Design of Cooling Tower
No. of pass or No. of hrizontal rows	4
Dia of Condenser tube	0.045
Dia of Water Tubes	0.0254
Temp differential of water	5
Height of Cooling Tower	
	No. or Venical rows or condenser tube
Calculate	Water Pump HP
	< <back end<="" th=""></back>

Fig-5: Cooling Tower Design Panel

2.2.9. Design of Condenser/ Cooling Tower:

The size of the condenser can be calculated using the equations. The program calculates the total heat transfer area of condenser. The program asks the user to input the required number of pass, diameter of water tubes, height of cooling tower for the condenser and the length of the condenser and the water pump power (HP) will be calculated.

2.3.Algorithm for the Software:

Volume-4, Issue-6, 519-535

Available online @ http://www.ijesat.org

3. RESULTS AND DISCUSSION:

In the multi-purpose cold storage, various fruits and vegetables are stored at respective optimum storage conditions. Depending upon the physical properties of agricultural produce, these commodities occupy variable storage space for the same storage capacity. This variation of storage space can be represented by specific storage density. Therefore, the relationships for the design parameters are obtained at varying storage density which could be used for various products stored in multi-purpose cold storage facility.

3.1. Relationship between cooling load and specific storage density of product:

For Storage capacity of 5000Ton, Height of the cold storage: 13.5m, Length of the cold storage: 18.5m, No. of chamber: 4. The relationships between the cooling load and specific storage density for different and mixed type products have found to be linearly proportional. The graphical representation is shown in Fig-6.

Fig-6:Cooling Load vs. Specific Storage Density Plot

3.2. Relationship between Capacity of Multipurpose Cold Storage and Evaporator System:

For Height of the cold storage: 13.5m, Length of the cold storage: 18.5m, No. of chamber: 4.

The relationships between the Storage Capacity (Ton) and Number of Evaporator Tube/Pass for different and mixed type products have found to be linearly proportional. The graphical representation is shown in Fig-7. and Table-1.

Tabla 1

TableT					
		Evaporator			
Capacity(Ton)	No. of Tube/Pass				
	Potato + Fish				
1000	37	36	37	36	
2000	73	72	72	71	
3000	109	107	108	107	
4000	145	142	144	142	

ISSN: 2250-3676

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

Volume-4, Issue-6, 519-535

Fig-7:Evaporator Tube vs. Capacity

3.3. Relationship between Capacity of Multipurpose Cold Storage and Compressor System:

For Height of the cold storage: 13.5m, Length of the cold storage: 18.5m, No. of chamber: 4. The relationships between the Storage Capacity (Ton) and Power of the Compressor (HP) for different and mixed type products have found to be linearly proportional. The graphical representation is shown in Fig-8 and Table-2.

Table-2						
Capacity(Ton)	Compressor Power(HP)					
	Potato Cabbage Potato+Cabbage Potato+Fi					
1000	63.57	62.38	63.13	62.29		
2000	125	122.86	124.35	122.66		
3000	186.88	183.33	185.57	183.04		

ISSN: 2250-3676

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

Volume-4, Issue-6, 519-535

4000	248.5	243.8	246.79	243.42
5000	310.19	304.28	308.02	303.79

Fig-8:Compressor Power vs. Capacity

3.4. Relationship between Capacity of Multipurpose Cold Storage and Cooling Tower:

For Height of the cold storage: 13.5m, Length of the cold storage: 18.5m, No. of chamber: 4. The relationships between the Storage Capacity (Ton) and Water Pump Power (HP) of Cooling Tower for different and mixed type products have found to be linearly proportional. The graphical representation is shown in Fig-9. and Table-3.

Table-3					
		Cooling Tower			
Capacity(Ton)	Water Pump HP				
	Potato	Cabbage	Potato+ Cabbage	Potato+Fish	
1000	6.2	6	6.1	6	
2000	12.6	12.3	12.5	12.3	
3000	19.4	19	19.3	19	
4000	26.7	26.2	26.5	26.1	
5000	34.5	33.7	34.2	33.7	

From result and discussion we say that all the parameters regarding cold storage designing is mathematically linearly proportional with the storage capacity of cold storage and the specific storage density of product.

[IJESAT] [International Journal of Engineering Science & Advanced Technology]

Fig-9:Cooling Tower Water Pump HP vs. Capacity

4. CONCLUSIONS:

To reduce the total cost and optimize the refrigeration capacity, calculation of various design parameters of the cold storage in individual manner is inevitable. To avoid the complexity and repetition of calculation of various dimensions of cold stores for different capacities, development of a suitable computer program has no alternative. To obtain various data from the program from which we can compare relevant parameters needed for choice for the optimum design.

5. REFERENCE:

1. Geankoplis, C.J. Transport processes and Separation Process Principles, 4th ed., PrenticeHall India Ltd.; 2003.

2. Arora, C.P.Refrigeration and Air Conditioning. 3rd ed. McGraw-Hill, New Delhi..2009.

3. Prasad, M.Refrigeration and air conditioning, 2nded;New Age International Ltd.1995;370-425.

4. Chourasia, M.K. and Goswami, T.K. Efficient design, maintenance, operation and management of cold storage, Journal of Biological Science, 2009.ISSN: 2076-9946, EISSN: 2076-9954.

5. Chourasia, M.K. and Goswami, T.K. Simulation of transport phenomena during natural convection cooling of bag potatoes in cold storage, part 2: Mass transfer, J. BiosystemsEngineering, 2006;94(2), 207-219.

6. Ahmed T.Software development for cooling load estimation by CLTD method. Journal of Mechanical and Civil Engineering, 2012;3(6), 1-6.

7. Akdemir, S. Designing of cold store and choosing of cooling system elements. Journal of Applied Sciences, 2008; 8(5), 788-795. 8. Technical Standard Committee on Technical Standards and Protocol for the Cold Chain in India, National Horticulture Board -CS-Type01-2010

9. Patel A.M.; Patel, R.I. Optimization of Different Parameter of Cold Storage for Energy Conservation, IJMER, 2012;2(3), 1001-1005. 10. Chawla, J.M. Corelations of Convective heat Transfer Coefficient for two phase liquid vapourflow. Proceedings of the IV International Conference on heat transfer, Paris. 1970.

11. Kareem, B.Load estimating for air conditioning using computer software approach. International Journal of The Computer, the Internet and Management.2008;16(2):35-43.

12. Goswami, T.K. and Chowrasia, M.K. Simulation of transport phenomena during natural convection cooling of bagged potatoes in cold storage.Bio-System Engineering.2006;94(1):31-43.

13.ASHRAE Handbook,2012;

AUTHOR'S BIOGRAPHY:

DIPANKAR MANDAL

IJESAT | Nov-Dec 2014

B.Tech(Agricultural Engineering) 4th Year Student Available online @ http: Faculty of Agricultural Engineering Bidhan Chandra KrishiViswavidyalaya Contact No. +918348801037

