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ABSTRACT 

The discrimination of quantum measurements is an important subject of quantum in formation  

processes. In this paper we present a novel protocol for local quantum measurement discrimination 

(LQMD) with mult i-qubit entanglement systems. It is shown that, for two space-like separated parties, 

the local discrimination of two different kinds of measurement can be completed  via numerous 

eight-qubit GHZ entangled states and selective projective measurements  without help of classical 

informat ion. This means that no-signaling constraint can be violated by the LQMD.  
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1. Introduction 

 

Quantum entanglement is one of the striking features of quantum mechanics  [1]. The nonlocal 

nature of entanglement is the essential resource for many quantum informat ion tasks including 

teleportation [2] and super-dense coding [3]. However, although entanglement appears to allow 

particles which are separated in space to influence one another instantaneously [4], it has been pointed 

that this cannot be used to signal without help of classical communication [5-8], i. e . the no-signaling 

constraint [9] holds that one cannot exploit quantum entanglement to transmit classical informat ion 

across space-like intervals. 

On the other hand, it is well-known that measurement is a central tenet of quantum mechanics. The 

problem of d iscrimination between quantum measurements has been recently considered in quantum 

informat ion tasks [10-13]. Ji et al. [10] have proposed simple schemes that can perfectly identify 

projective measurement apparatuses secretly chosen from a finite s et. Entanglement is used in this 

scheme both to make possible the perfect identificat ion and to improve the efficiency significantly. 

Fiurasek and Micuda [11] have studied optimal d iscrimination between two projective quantum 

measurements on a single qubit. Ziman et al . [12] have investigated the unambiguous comparison of 

unknown quantum measurements represented by non-degenerate sharp positive operator valued 

measures (POVM). One can notice that, in above works [10-13] of d iscriminating quantum 

measurement, employ ing classical communication is necessary. 

For two space-like separated parties, existing researches [5-9] have pointed that since no-signaling 
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constraint, the local discrimination of quantum operations cannot be completed. In the last decade, the 

correctness of no-signaling constraint has been frequently discussed and proved (e. g. [14-19]). For 

example, assume that Alice and Bob share bipartite quantum system described by a known state 

 [19]. They can make local measurements, with elements  

          
†

i ii
A A I  ,  

†

j jj
B B I                                       (1) 

 on the subsystems A  and B  respectively, where 
iA  and 

jB  are the “detector operators” 

associated to the elements of a POVM for the observation of results 
A  by Alice and 

B  by Bob. If 

Bob is not informed that Alice got outcome 
A  , the mean value that he gets any observable 

B  is 

                  † †

B AB i i B A i i B Bi i
tr A A tr A Atr       

                     B A Btr tr    .                                            (2)  

Since the result of Eq . (2) does not depend on Alice ’s operators, Bob cannot decide what measurements 

Alice did without her help [19]. Obviously, in this example, A lice not only did not inform Bob of her 

measurement result, and even did not declare that whether she had measured. 

Different from above example [19], here we will discuss another case for LQMD. In  this case, Bob 

could know that Alice had completed the measurement after her operation and d id not know Alice’s 

result of measurement. By a carefu l analysis, it  may  be found that, if multip le multi -qubit entangled 

states and a kind of special measurement (called selective projective measurement) are employed, the 

local d iscrimination of quantum measurements can be realized without assistance of classical 

communicat ion. In this work, we first present a protocol for local quantum measurement discrimination 

(LQMD) via selective pro jective measurement with numerous eight-qubit GHZ states. It is shown that, 

in this protocol, if both two observers (Alice and Bob) agreed in advance that one of them (e.g. Alice) 

should measure her qubits before an appointed time (it  is equivalent that, after her measurement, Alice 

only announced publicly that she had completed the measurement, and did  not declare the result of her 

measurement), the local d iscrimination of two  different kinds  of measurement can  be realized by using 

a series of single-qubit correlative measuring basis without help of classical communication. Th is 

means that the LQMD protocol may be not restricted by the no-signaling. 

 

 

2. Two different kinds of quantum projective measurement 

 

  Suppose that an eight-qubit GHZ state is shared by Alice and Bob,  

                
1 2 3 4 5 6 7

1
00000000 11111111

2 A A A A A A A B
     ,                 (3) 

where qubits 1A , 2A , …, 7A  are in the possession of Alice and B  belongs to Bob. Assume that 

Alice and Bob agreed in advance that Alice should measure her qubits before an appointed time. Now, 

let Alice make two different kinds of measurement on the state  . In the first kind of measurement, 
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Alice makes common projective measurements (CPMs) on her qubits 
1A , 

2A , …,and 
7A  under the 

measurement basis ,  , where  
1

0 1
2

    ,  
1

0 1
2

   , successively. 

One can see that, after measurements of Alice, 128 possible final co llapsed states of the qubit B  will 

always be 
1

8 2
B

  or 
1

8 2
B

  . Now we turn to the second kind of measurement. To realize  

the LQMD, Alice will utilize a novel kind of pro jective measurements, which we refer to as selective 

projective measurements (SPMs), with a series of single-qubit correlative measuring basis, on her 

qubits. Firstly, Alice measures the qubit 
1A  in the state   under the basis  ,  

, where 

0 1x y   , 0 1y x     , x  and y  are real, 
2 2 1x y  , and let 6 / 3x  , 

3 / 3y  . If measurement outcome of Alice is
1A

 , the state of qubits 
2A , 

3A , …, 
7A  and B  

will evolve as 

                  
2 3 4 5 6 7

1

1

1
0000000 1111111

2 A A A A A A B
x y

F
   ,               (4) 

where we let 1 1F  , Alice can in turn measure the qubits 2A , 3A , …, 7A  under the 

basis ,  . After that, the qubit B  will always be in the state 
1

8 B
 

or 
1

8 B
 

 , here  

 
1

0 1
2

x y    and  
1

0 1
2

x y   . If measurement result of Alice  

is
1A

 
, the qubits 2A , 3A , …, 6A  and B  will be in the state of 

                  
2 3 4 5 6 7

1

1

1
0000000 1111111

2 A A A A A A B
y x

F
     .              (5) 

Then Alice measures the qubit 2A  under the measurement basis 1 1, 
, which is given by 

1 1

2 2

1 1
0 1 , 0 1

x y y x

F y x F x y
    

      
   

,              (6) 

where    
1/ 2

2 2

2 / /F x y y x  
 

. Corresponding to Alice’s measurement outcome 
2

1 A
  

or
2

1 A


 , the state of qubits 3A , … , 7A  and B  will evolve as 2  or 
2   , which can be 

expressed as 
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3 4 5 6 7

2

2

1
000000 111111

2 A A A A A B
x y

F
    , 

                  

3 4 5 6 7

2 2

2

2

1
000000 111111

2
A A A A A B

y x

x yF


 
   

 
.             (7) 

As described above, we can easy find that the goal of the SPMs is as much  as possible to make the 

qubit B  collapsed into the state 
1

R
 

 or 
1

R
 

 after all, where R  is a constant or a 

coefficient related to x  and y . By the formulae deducing, a detailed implementation procedure for 

the SPM has been provided and 128 possible final collapsed states of the qubit B  after Alice’s 

measurements are given in Appendix A. The relation of the results of Alice’s measurement and 128 

possible final collapsed states of the qubit B can be expressed as follows: 

      
1A

    →    
1

1

1

8B BT
                              (64 terms) 

      
2

1 A
   →    

2

2

1

4 2B BT
                           (32 terms) 

      
3

2 A
   →    3

3

1

4B BT
                              (16 terms) 

      
4

3 A
   →    4

4

1

2 2B BT
                           (8 terms) 

      
5

4 A
   →    5

5

1

2B BT
                              (4 terms) 

      
6

5 A
   →    6

6

1

2B BT
                             (2 terms) 

      
7

6 A
    →  7

7

1

B BT
                               (1 term) 

      
7

6 A


  →    7 BB
P      ,                          (1 term)  (8) 

where 1 2m mT F F F     1, 2, , 7m    ,and 

           1 1F    , 

              
1 2

2 2

2F x y y x  
 

  , 

              
1 2

4 4

3F x y y x  
 

  , 
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1 2

8 8

4F x y y x  
 

  , 

              
1 2

16 16

5F x y y x  
 

 , 

              
1 2

32 32

6F x y y x  
 

  , 

              
1 2

64 64

7F x y y x  
 

  ,                                        (9) 

and  

254 254

63 63

72

x y
P

T x y


 , 

B
  is a normalized state, which is given by 

              127 127

254 254

1
0 1

B B
y x

x y
  


 .                            (10) 

Thus much Alice’s selective measurements have been completed. From Eqs. (8) - (10), it is easy noted 

that, after Alice performing the SPMs on her all qubits, the states 
1

B
n ng T

 
 

(
 7 /2

2
n

ng


 , 1,2, ,7n   ) in all 128 collapsed states of the qubit B  accounted for 127, and the 

state 7 B
 

 for 1. On the other hand, by simple calcu lation, one can find that, after A lice’s 

measurements the probability of the qubit B  being in the state 
1

B
n ng T

 
 

(
 7 /2

2
n

ng


 , 1,2, ,7n   ) is 0.75, and in  the state 
B

  is 0.25. It  must be pointed out that it  is  

just these measured results of the SPM that led to  the realizat ion of the LQMD. Figure 1 shows the 

detailed configuration of the CPM and SPM.  

Clearly, after Alice performing the CPMs or SPMs on her qubits respectively, the final collapsed 

states of the qubit B  are obvious different. As mentioned above, if Alice makes the CPMs on her 

qubits, after her measurements, 128 possible final co llapsed states of the qubit B  will always be 

1

8 2
B

  or 
1

8 2
B

  . If A lice employs the SPMs on her qubits, after her measurements, 128 

possible final collapsed states of the qubit B can be given by Eq. (8). It must be emphasized that, 

whether Alice’s measurements are the CPMs or SPMs, since Alice and Bob agreed in advance that 

Alice should measure her qubits before an appointed time, Bob can always know that the qubit B  

must be collapsed into the state corresponded to one of Alice’s 128 results of measurement after A lice’s 

measurements.
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M
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6

7

•
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or 

or 

or 

or 

or 

(b) 

B


B


(1) (2) (3)( , ( 1,2, ,6))iM M M i Fig.1  A sketch of the CMP (a) and SPM (b). Each dot denotes a qubit.                          

denotes Alice’s single-qubit projective measurement on qubits               under measuring basis 
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1
(1term)

BT


1 2 7, , ,A A A

{ , }({ , },{ , }( 1,2, ,6)).i i i      

  

3. Local discrimination of two di fferent kinds of measurement  with numerous eight-qubit GHZ 

states 

 

The detailed procedure of our LQMD protocol can be described as follows. Suppose that two 

space-like separated observers, Alice and Bob, share N  eight-qubit GHZ states. To ensure the 

following analysis becomes exact, here we take 30N   [20]. Thus, the 30 eight-qubit GHZ states 

can be given by 

           
                   

5 71 2 3 4 6

1
00000000 11111111

2
k k k k k k k k

k

A A A A A A A B
   ,           (11) 

where 1,2, ,30k   , and the qubits 
 
1

k
A , 

 
2

k
A , …, 

 
7

k
A  are in the possession of Alice and 
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 k
B  belong to Bob. Different from previous quantum operation discrimination schemes, we assume 

that there is no classical channel between Alice and Bob. In this case, before the agreed t ime t , Alice 

should randomly make two different kinds of measurements, CPMs or SPMs, on her qubits in the 

state
 k

  ( 1,2, ,30k   ) respectively. Now we will consider the local discriminat ion of two 

different measurements.  

(s1)  If A lice performs the CPMs on her qubits, after Alice’s measurements, all qubits 
 k

B  will be 

in the states  

1

8 2
k

B
  or  

1

8 2
k

B
  . At the appointed time t , Bob measures his qubits 

 k
B  all in the basis  0 , 1 . After Bob’s measurements, by statistics theory, the probability of all 

qubits 
 k

B  in the state 0  or 1  will be in the rat io of one to one.  

(s2)  If A lice’s measurements are the SPMs, by mentioned above, after Alice’s selective measurements, 

the probability of all qubits 
 k

B  in the states 
1

B
n ng T

 
 or 

1

B
n ng T

 
  

(
 7 /2

2
n

ng


 , 1,2, ,7n   )  is  
30

0.75 0.00018 , i.e., the probability of at least one qubit 

 k
B


 in the state 

7 B
 

 is  
30

1 0.75 0.99982  . This means that, after Alice’s SPMs, at least 

one qubit 
 'k

B will be collapsed into the state 7 B
 

. Then, at the appointed time t , Bob measures 

the qubits 
 k

B  all in the basis  0 , 1 . One can find that, after Bob’s measurements, the 

probability of the qubits 
 k

B  in  the state 0  or 1  will be different from the case Alice 

employed the CPMs. To illustrate this clearly, without loss of generality, we first discuss the situation in 

which only one qubit 
 k

B


 in  the state 7 B
 

 after Alice’s measurements. From the state 7 B
 

 

in Eq. (8), it is easily found that, after measurements of Bob, the probability of the qubit 
 k

B


 in the 

state 0  or 1  will be in the ratio of one to u  (  
127 2

127 381.7 10u     ), that is, the 

qubit 
 k

B


 will be always collapsed into the state 1 . As a special case, we also assume that all the 

other 29 qubits 
 k

B  are in the states 1 B
 

 after Alice’s measurements and then all the 29 qubits 

are in the state 0  after Bob’s  measurements. In  this case, by simple calculat ion, one can  easily find 

that the probability of the 30 qubits 
 k

B  in the state 0  or 1  will be in the ratio  of 1 to 
 1

w  
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after Bob’s measurements , here 
 1

w  is given by  

        
 1

w    

2 2
127

63 63

7 1

29 1.655
2 8 2

x x

T x y T

    
     
     

                     (12) 

For general cases in which only one qubit 
 k

B


 in  the state 
7 B

 
 and other 29 qubits 

 k
B  

collapsed randomly into the states 
1

B
n ng T

 
 (

 7 /2
2

n

ng


 , n  1,2,…,7) after Alice’s 

measurements, it is easily  found that the probability  of the 30 qubits 
 k

B  in the state 0  or 1  

will be in the ratio of one to 
 1

w  (
 1

w  ＞  1.655) after Bob’s measurements.  

(s3)  Now let us discuss the situation in which there are two qubits 
 k

B


 and 
 k

B


 in the state 

7 
 after Alice’s measurements. Similar to the above mentioned, one can see that the probability of 

the 30 qubits 
 k

B  in the state 0  or 1  will be in the ratio of one to 
 2

w  (
 2

w  ≥ 3.43) after 

Bob’s measurements.  

(s4)  For the cases in which more qubits 
 1

B , 
 2

B , …, 
 l

B  ( 3,4, ,30l   ) collapsed into the 

state 
7 B

 
 after Alice’s measurements, the probability of the 30 qubits 

 k
B  in the state 0  or 

1  will be in the ratio of one to 
 l

w  (
 l

w  ＞ 
 2

w , 3,4, ,30l   ) after Bob’s measurements. 

As described above, after measurements of Alice, the probability of the 30 qubits 
 k

B  in the state 

0  or 1  will be in  the ratio  of one to W  ( 1.655W  ) (we call W  the discriminated 

parameter ) after Bob’s measurements, where   : 1,2, ,30
j

W w j   . 

(s5)  To ensure the outcome of Bob’s measurements more reliable, it can be further supposed that 

Alice and Bob share 20 entangled states groups (ESGs ), each consisting of 30 eight -qubit GHZ states 

 k
  (see Eq. (11)). If Alice’s measurements are the CPMs, it is easy  found that, after Alice’s and 

Bob’s measurements, the probability of all qubits 
 k

B  of each ESG in the state 0  or 1  will be 

still in the ratio of one to one. If Alice’s measurements are the SPMs, by statistics theory, after Alice’s 

and Bob’s measurements, in all ESGs the probability of the qubits 
 k

B  of each ESG in the state 0  

or 1  will be in the rat io of one to W  (W ≥ 1.655).  
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As mentioned above, one can see that, in this protocol, at the appointed time t , Bob should 

measure h is qubits 
 k

B  all in  the basis  0 , 1 . If A lice  performs  the CPMs on her qubits, after 

Bob’s measurements, the probability of all qubits 
 k

B  in the state 0  or 1  will be in the ratio  

of one to one. If Alice’s measurements are the SPMs, after Bob’s measurements, the probability of the 

qubits 
 k

B  of each ESG in the state 0  or 1  will be in the ratio o f one to W  ( 1.655W  ) . 

According to these results, Bob can distinguish that the measurements used by Alice are CPMs or 

SPMs. Thus, the LQMD is realized  successfully without help of classical information. This means that 

our LQMD protocol may be not restricted by the no-signaling constraint.  

 

4. Discussion and conclusion 

 

Before conclusion, we make some d iscussion. (i) It should be noted that, in the present LQMD 

protocol, Bob d id not obtain Alice’s quantum informat ion, i.e., if Alice’s measurements are SPMs, Bob 

couldn’t have learned the coefficients x  and y  in the measuring basis performed by Alice since he 

is not informed that Alice got result of measurement. In fact, Bob doesn’t need to kno w Alice’s 

quantum information (e.g. the coefficients x  and y ). As mentioned above, after his measurements, 

Bob can determine that the measurements performed by Alice are CPMs or SPMs only according to the  

probability of his qubits 
 k

B  in the state 0  or 1 . That is to say, in our LQMD protocol, the 

entanglement can be used for transmission of informat ion (e.g. the classical messages 0 and 1 can be 

represented by CPMs and SPMs respectively) without assistance of classical communication. (ii) It  

must be pointed that, in  our protocol, it  is essential that eight-particle GHZ states are applied. It  is easy 

found that if l -particle GHZ states ( l < 8 ) are employed, the LQMD will not be completed. For  

example, if 30 seven- or six-part icle GHZ states are used, from (s2) in section 4 one can see that, the 

discriminated parameter W  will be 0.83 or 0.41. In  this case, the CPMs and SPMs cannot be 

distinguished. On the other hand, to ensure the discriminated parameter 1.655W  , one can only use 

15 seven-particle o r 7 (7.5) six-particle GHZ states. However, in these cases, the exact of measurement 

results will not be guaranteed. (iii) If only a  single eight-qubit GHZ state was employed in our protocol, 

the LQMD cannot be realized, as described in Sec. 2. It  is just because of that numerous eight-qubit 

GHZ states and the SPMs have been used, our LQMD protocol can be completed successfully. (iv) We 

should emphasize that our work has been completed in the framework of standard quantum mechanics.  

In conclusion, we have proposed a theoretical protocol for local discrimination of two d ifferent 

kinds of measurement by using selective measurement and numerous eight -qubit GHZ states. To 

realize the protocol, a  series of single-qubit correlative measuring basis has been employed. It  is shown 

that, in this protocol, if both two observers agreed in advance that one of them (e.g. Alice) should 

measure her qubits before an appointed time, LQMD can be realized successfully without assistance of 

classical information. Th is means that the no-signaling constraint can be violated by the LQMD. 

Compared with prev ious LQMD scheme [19], the advantage of the present LQMD protocol is that it  

does not restricted by the no-signaling. So far there has been experiment implementing the eight-qubit 

GHZ state [21], hence, we hope our work can be experimentally realized in the near future and 

stimulate further research on quantum communication and quantum informat ion processing. 
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Appendix A 

 

   From Eqs. (6) and (7), Alice can measure her qubits according to the result of her own 

measurement. If result of Alice’s measurement is 
2

1 A
 in state (6), she should measure her qubits 

3,A  …, 
7A  in  state 2  (see Eq. (7)) under the basis  ,  , successively. After that, the 

qubit B  will always be in the state  

          2

2

1

4 2B BT
    or 2

2

1

4 2B BT
   .                       (A1) 

If Alice’s measured outcome is 
2

1 A


, she can measure her qubit 
3A  in state 

2   (see Eq. (7)) 

under the basis  2 2, 
, which is given by 

                  

2 2

2 2 2

3

1
0 1

x y

F y x


 
  

 
,  

                   

2 2

2 2 2

3

1
0 1

y x

F x y
  

  
 

,                               (A2) 

where    
1 2

4 4

3F x y y x  
 

. If Alice’s result of measurement is 
3

2 A
 , the qubits 4,A  …, 

7A  and B  will be co llapsed into the state 3 , which is given by 

             
4 5 6 7

3

3

1
00000 11111

2 A A A A B
x y

T
    ,                      (A3) 

where 3 1 2 3T F F F . Then Alice can in turn measure her qubits 4A , …, 7A  in the basis  

 ,  , and qubit B  will be collapsed into the state 

             3

3

1

4B BT
    or  3

3

1

4B BT
    .                      (A4) 

If A lice’s outcome of measurement is 
3

2 A


, the state of qubits 4A , …, 7A  and B  will evolve 

as 
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4 5 6 7

4 4

3 3 3

3

1
00000 11111

2
A A A A B

y x

x yT


 
   

 
 .                 (A5) 

Then Alice can measure her qubit 
4A  in the basis 

                

4 4

3 4 4

4

1
0 1

x y

F y x


 
  

 
 , 

                 

4 4

3 4 4

4

1
0 1

y x

F x y
  

  
 

 ,                                  (A6)  

where    
1 2

8 8

4F x y y x  
 

. If Alice’s result of measurement is 
4

3 A
 , the qubits 

5A , 
6A , 

7A  and B will be in the state of 

                
5 6 7

4

4

1
0000 1111

2 A A A B
x y

T
    ,                       (A7) 

where 4 1 2 3 4T F F F F . A lice should measure her qubits 
5A , 6A  and 7A  in  the basis  ,  , 

then qubit B  will be in the state 

             4

4

1

2 2B BT
        or    4

4

1

2 2B BT
   .           (A8) 

If Alice’s outcome of measurement is 
4

3 A


, the state of qubits 5A , 6A , 7A  and B  will be 

transferred as 

            

5 6 7

8 8

4 7 7

4

1
0000 1111

2
A A A B

y x

x yT


 
   

 
 .                      (A9) 

Alice can measure her qubit 5A  under the basis 

              

8 8

4 8 8

5

1
0 1

x y

F y x


 
  

 
 , 

              

8 8

4 8 8

5

1
0 1

y x

F x y
  

  
 

 ,                                    (A10)  

where    
1 2

16 16

5F x y y x  
 

. If Alice’s result of measurement is 
5

4 A
  , the state of 

qubits 6A , 7A  and B  will evolve as 

                
6 7

5

5

1
000 111

2 A A B
x y

T
    ,                          (A11)  
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where 
5 1 2 3 4 5T F F F F F . Then Alice measures her qubits 

6A  and 
7A  in the basis  ,  , 

and qubit B  will be co llapsed into the state 

             
5

5

1

2B BT
      or    

5

5

1

2B BT
    .                 (A12) 

If A lice’s result of measurement is 
5

4 A


, the qubits 
6A , 

7A  and B  will be in the state 

             

6 7

16 16

5 15 15

5

1
000 111

2
A A B

y x

x yT


 
   

 
.                        (A13) 

Alice can measure her qubit 
6A  under the basis  5 5, 

, which is given by 

              

16 16

5 16 16

6

1
0 1

x y

F y x


 
  

 
, 

              

16 16

5 16 16

6

1
0 1

y x

F x y
  

  
 

,                                   (A14) 

where    
1 2

32 32

6F x y y x  
 

. If Alice’s outcome of measurement is 
6

5 A
 , the qubits 7A  

and B  will be collapsed into the state 

                
7

6

6

1
00 11

2 A B
x y

T
    ,                                (A15) 

where 6 1 2 3 4 5 6T F F F F F F  . Then Alice  measures her qubit 7A  under the basis  ,  , and 

qubit B  will be in the state of  

               6

6

1

2B BT
     o r  6

6

1

2B BT
    .                (A16) 

If A lice’s measured result is 
6

5 A


, the state of the qubits 7A  and B  will evolve as 

               

7

32 32

6 31 31

6

1
00 11

2
A B

y x

x yT


 
   

 
,                           (A17) 

then she can measure the qubit 7A  in the basis  

                  

32 32

6 32 32

7

1
0 1

x y

F y x


 
  

 
, 

                   

32 32

6 32 32

7

1
0 1

y x

F x y
  

  
 

,                               (A18) 
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where    
1 2

64 64

7F x y y x  
 

. If A lice ’s outcome of measurement is 
7

6 A
 , the qubit B  

will be in the state of 

                   
7

7

1

B BT
   ,                                         (A19) 

where 
7 1 2 3 4 5 6 7T F F F F F F F . If Alice’s measured result is 

7
6 A


, the state of qubit B  will 

evolve as 

                 

64 64

7 63 63

7

1
0 1

2B
B

y x

x yT
   

  
 

  

                       
B

P    ,                                           (A20) 

where 

254 254

63 63

72

x y
P

T x y


 , and 

B
  is a normalized state, which is given by 

                    127 127

254 254

1
0 1

B B
y x

x y
  


.                    (A21) 

Thus, 128 possible final collapsed states of the qubit B  are obtained. 
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