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Abstract	
	
It	 is	demonstrated	in	the	present	work	that	the	standard	integration	of	the	proper	
time	 along	 a	 freefalling	 geodesic	 in	 Schwarzschild	 spacetime	 does	 not	 properly	
account	for	the	coordinate	curvature	in	the	vicinity	of	the	event	horizon.		It	is	shown	
that	that	the	condition	given	by	the	metric,	namely	that	the	change	in	proper	time	of	
the	 freefalling	observer	per	change	of	 coordinate	 time	goes	 to	zero	at	 the	horizon	
can	 be	maintained	while	 still	 allowing	 for	 an	 infinite	 proper	 time	 to	 the	 horizon.		
With	the	aid	of	a	transformation	of	the	radial	Schwarzschild	coordinate	and	analysis	
of	light	signals,	we	find	that	observers	at	rest	will	see	the	freefalling	observer	slow	
exponentially	 as	 she	 approaches	 the	 horizon,	 while	 the	 freefaller	 will	 see	 rest	
observers	slow	asymptotically	as	she	approaches	the	horizon.	
	
	
Freefall	in	the	Schwarzschild	Field	
	
The	well-known	Schwarzschild	metric	 is	given	in	(1)	below	(note	we	will	be	using	
units	where	the	Schwarzschild	radius	is	1	and	we	will	drop	the	angular	term	of	the	
metric	since	we	will	only	be	examining	radial	freefall):	
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These coordinates are quite useful for describing the spacetime for observers at rest in the 
gravitational field, particularly the observer at infinity in asymptotically flat spacetime.  
The r coordinate represents some notion of distance from the center of the gravitational 
source, where the units of r are in units of Schwarzschild radius of the source.  Thus, this 
radial coordinate gives circles around the source where, in a top-down view of the source, 
the circle radii increase linearly as one moves away from the center.  Let’s now consider 
the coordinate speed of a freefalling observer (who starts to fall from rest at infinity) in 
the frame of an observer at infinity in Schwarzschild coordinates [1]: 
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As can be seen in (2), for large r, the velocity is very small, converging to zero as r goes 
to infinity.  This is sensible since the gravitation field is weak at large r and therefore we 
expect that at the beginning of the fall, the velocity is slow.  What is interesting is that as 
r goes to 1, representing the observer approaching the event horizon, the velocity goes to 
zero again. 
 



Let us now substitute (2) into (1) to examine the proper time of the freefalling observer in 
the frame of the observer at infinity: 
 
  𝑑𝜏!! = 1− !

!!!
𝑑𝑡 (3) 

 
We see that as r goes to 1, (3) goes to zero.  This means that the freefalling observer’s 
velocity is approaching the speed of light in the frame of the infinite observer.  This is 
also supported by the fact that in the frame of observers at rest in the gravitational field 
(and therefore also at rest relative to the infinite observer), the relative velocity of the 
freefalling observer relative to the observer at rest at r as the freefalling observer passes 

by is given by [1]: 𝑉 = !
!
, which approaches the speed of light as r goes to 1. 

 
But it is also well known that the observer at infinity will see the freefalling observer’s 
clock slow to a stop and signals from the observer will be infinitely redshifted as she 
approaches the horizon, which is more evidence that the true relative velocity between 
the freefalling and infinite observer increases to light speed as she approaches the 
horizon.  This light speed condition combined with the coordinate velocity going to zero 
at the horizon give us the clues needed to show how the Schwarzschild coordinates are 
actually related to the curved manifold.  The relationship is shown in Figure 1 below: 
 

 
Figure 1- Relationship Between Schwarzschild Coordinates and the Curved Manifold 

 
In Figure 1, we see our intrepid explorer, Scout, freefalling along a radial geodesic in the 
Schwarzschild gravitational field in the frame of observers at rest in the field.  The 
infinite observer would be off to the right on this diagram where the geodesic (the dark 
black line) would be horizontal.  Since, in this particular depiction, the tangent to the 
manifold is horizontal at the infinite observer who is inertial in flat space, the acceleration 
needed for an observer to remain at rest at a given point is proportional to the slope of the 
tangent at that point.   
 
In the frame of the infinite observer (let’s call him Bob), Scout is accelerated along this 
geodesic and this is why she approaches the speed of light as she approaches the horizon. 
At large r, the linear spacing of the r coordinate is useful because the space there is 
approximately flat.  But if we look at the region between r = 1 and r = 2, a single unit of 
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the coordinate distance is used to label an infinite amount of coordinate time.  This is 
why the coordinate velocity goes to zero near the horizon.  One can see that as time 
increases near the horizon, Scout covers less and less coordinate distance, giving rise to 
the ‘coordinate singularity’ of the Schwarzschild coordinates.  The coordinate speed of 
light is also known to slow near the horizon, which is also explained by Figure 1.  Light 
signals travel along the geodesic at a fixed velocity, but since the geodesic is asymptotic 
to the radial coordinate near the horizon, its coordinate velocity there is decreased (to 
zero at the horizon).   
 
Nonetheless, Scout’s velocity measured by rest observers increases to the speed of light 
as she approaches the horizon, such that reaching the horizon would mean reaching 
luminal speed.  Moving at the speed of light in one frame means that you are moving at 
the speed of light in all frames, and timelike observers cannot become lightlike observers 
over a finite distance/time.  Since the Schwarzschild spacetime is static, it cannot be that 
space or time is ‘flowing’ into the horizon, such that the apparent luminal speed is caused 
by the underlying spatial dynamics.  But this is in contradiction to the common view that 
Scout passes the horizon in a finite time according to her clock without noticing that she 
has even reached the horizon.  To resolve this, we must investigate how the proper time 
of Scout’s geodesic is calculated.  
 
 
Integration over Curved Coordinates 
 
The proper time along Scout’s geodesic is found by integrating (3).  A plot of the result 
of this integral near the horizon is given in Figure 2 below. 
 

 
Figure 2 – Proper Time vs. Coordinate Time 

 
We see in Figure 2 that as coordinate time goes to infinity, the event horizon being at 
infinite coordinate time, the proper time stays constant.  This is why it appears as though 
it only takes a finite amount of proper time for Scout to reach the horizon.  But there is a 
flaw in this integration.  Note that the t and τ coordinates are evenly spaced at all times.  
This integration is applicable to flat spacetime, but is not valid for curved spacetime.  
Figure 2 shows Scout’s proper time if she were accelerating in Minkowski spacetime.  
The Schwarzschild metric does not tell us the relationship between the values of 
coordinate and proper time, it only tells us the relationship between changes in coordinate 

τ 

t 



and proper time.  With this in mind consider Figure 3, which shows τ vs. t for various 
observers at rest: 

 
Figure 3 – Time Curvature for Rest Observers 

 
On the left of Figure 3, we see the observer at infinity where changes in proper time equal 
changes in coordinate time.  The center and right diagrams show observers at rest at some 
finite distance from the horizon.  Figure 3 underscores that the time dilation is due to the 
coordinate curvature of t relative to the observer at infinity.  If you were to stretch out the 
center and right diagrams in Figure 3 such that the time coordinate is equally spaced in all 
three diagrams, the slopes of the lines relating τ and t would become shallower as a result 
of the stretching.  Now, there is no problem integrating those figures because the 
coordinate spacings are constant over the regions in question.  It is interesting to compare 

these cases to Special Relativity.  In SR, !"
!"
= 1− !"

!"

!
, so the slope of the lines in 

Figure 3 in an SR context would be shallower as relative velocity increases.  The GR 
version of this relationship is very similar in that the relationship is given by !"

!"
=

1− !
!
= 1− 𝑉(𝑟)!, where, as we have found, V(r) is the relative velocity between the 

observer falling from infinity and the observer at rest at r (where we know that this 
relative velocity is caused by coordinate curvature).  
 
An equivalent way to depict the cases in Figure 3 would be to leave the t spacing constant 
for all three cases, while increasing the τ coordinate spacing for observers closer to the 
horizon.  It is this depiction that we will use to view the correct τ vs. t plot for the 
freefalling observer in Figure 4: 
 

 
Figure 4 – Proper Time vs. t for the Freefalling Observer 
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We know that the acceleration of the freefalling observer is the result of manifold 
curvature and not because the observer is an accelerated reference frame.  Since t goes to 
infinity at the horizon, we can see that τ also goes to infinity while falling; the decrease in 
!"
!"

 in (3) over time is simply a result of the coordinate curvature (this derivative is 
maintained in Figure 4, but the line extends infinitely).  We can see in Figure 4 that if we 
were to compress the τ coordinate axis as t increases (such that the τ and t spacing is 
always the same in the vicinity of the worldline), the straight line in Figure 4 would take 
the form of the curve in Figure 2.  Again, this is simply the result of the fact that these 
accelerations in General Relativity are caused by the underlying manifold curvature and 
not the typical Newtonian changes in motion over time, and we therefore cannot naively 
integrate the differentials from the Schwarzschild metric without accounting for this 
curvature. 
 
 
Radial Coordinate Transformation 
 
It is desirable at this point to make a coordinate change for the radial coordinate such that 
it is better able to capture the curvature near the horizon similar to the way the time 
coordinate does.  We will choose coordinate R such that !"

!"
= !

!!!
.  This coordinate varies 

identically to the r coordinate for large r (this is good because r is a good physical 
coordinate at large r) and then diverges from it at the horizon.  Integrating the expression 
gives: 
  𝑅 = 𝑟 + ln 𝑟 − 1 , 𝑟 =𝑊(𝑒!!!)+ 1 (4) 
  
Where W is the product-log function.  Note that 𝑅 → ∞ as 𝑟 → ∞ and 𝑅 → −∞ as 𝑟 → 1.  
R is zero in the region of the elbow of the geodesic pictured in Figure 1.  Making this 
coordinate substitution in (2) gives: 
 

   !"
!"
= − !

! !!!! !!
= −𝑉 (5) 

 
This coordinate choice is also useful because the speed of light is 1 independent of R and 
t.  The Schwarzschild metric with the new coordinate becomes: 
 
  𝑑𝜏! = !(!!!!)

!(!!!!)!!
𝑑𝑡! − 𝑑𝑅!  (6) 

 
A portion of Scout’s worldline is plotted on the t-R plane is shown in Figure 5 below: 
 



 
Figure 5 – t vs. R 

 
The slope of the worldline is close to but less than 1 in the upper right quadrant for all 
finite R and t.  To understand how the proper time relates to the worldline, it is easiest to 
imagine a 3rd axis perpendicular to the page representing proper time.  In this dimension, 
the worldline rises to infinity as t increases (note that the spacing on that axis will be non-
linear – a consequence of the intrinsic spacetime curvature is that either the τ dimension 
or the R and t dimensions must have non-linear spacing).  Another benefit of this 
coordinate change is in its relationship to the proper time of the freefalling observer.  
Combining (3) and (5) gives: 
  𝑑𝜏 = −𝑑𝑅 !(!!!!)

! !!!! !!
 (7) 

 
Far from the black hole, the R coordinate behaves in the same way as the r coordinate in 
that !"

!"
→ !"

!"
→ ∞ as 𝑅 → 𝑟 → ∞ and it behaves like the t coordinate !"

!"
→ !"

!"
→ 0  near 

the horizon.  Figure 6 shows Scout’s worldline depicted with all relevant quantities such 
that all the Schwarzschild differential relationships are captured: 
 

 
Figure 6 – Freefalling Geodesic Plotted against Multiple Coordinates 
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Kruskal-Szekeres Coordinates 
 
Another commonly used coordinate system to analyze black hole geodesics are the 
Kruskal-Szekeres (KS) coordinates.  Outside the horizon, these are defined in terms of 
Schwarzschild coordinates as [2]: 
 

𝑋 = (𝑟 − 1)𝑒!cosh
𝑡
2  

 (8) 

𝑇 = (𝑟 − 1)𝑒!sinh
𝑡
2  

 
The differentials of these coordinates are given by: 
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𝑑𝑇 =
𝜕𝑇
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With some manipulation and substituting (2) into (9) to get the differentials of the 
freefalling worldline we get: 
 

𝑑𝑟
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 (10) 
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Where t(r) is found from integrating (2), giving: 𝑡(𝑟) = − !

!
𝑟 3+ 𝑟 + ln !!!

!!!
.  What 

we find here is that as r goes to 1, the derivatives in (10) go to zero for the freefalling 
worldline.  From this, we see that either the worldline is displaced by 𝑑𝑋 → 𝑑𝑇 → ∞ at 
the horizon, meaning that the worldline discontinuously spikes parallel to the horizon 
there, or the worldline simply terminates there.  The metric in KS coordinates is given by 

𝑑𝜏! = !
!!!

𝑑𝑇! − 𝑑𝑋! , or equivalently 𝑑𝜏! = !
!!!

!"
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!
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(10) shows is that !"
!"

!
→  "#
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!
 for the freefaller at the horizon meaning that 𝑑𝜏! there 

goes to zero.  This is what we also see in (6) and in Figure 5, namely that the freefalling 
observer approaches the speed of light on approach of the horizon.  We must therefore 
conclude that the worldline on the KS chart terminates at the horizon since a timelike 
observer cannot be moving at light speed in any frame and crossing the horizon would 
result in a discontinuity in the worldline at the horizon.   
 



Conclusion 
 
It has been shown that when accounting for curved spacetime while integrating the 
freefall geodesic, the freefaller experiences an infinite amount of proper time before 
reaching the horizon.  We also know that the freefalling observer will not receive all 
infalling signals from rest observers as her worldline will approach a final light signal 
asymptotically as can be deduced from Figure 5.  Therefore, we must conclude that in the 
frame of the freefalling observer near the horizon, when she looks out to signals coming 
from the rest observers, those observers will appear to her to be slowing down since she 
experiences infinite proper time in her frame while receiving a finite number of light 
signals from the rest observers.  What we find is that the rest observers will see the 
freefalling observer slow exponentially as their times go to infinity, while the freefaller 
will see the rest observers slow asymptotically as her time goes to infinity.  This means 
that in the rest observer frame, the freefaller will have an open future, unfolding at an 
exponentially slower rate over time, while in the freefalling frame the rest observers will 
have a closed future, where the rest observers will appear to evolve toward a finite future 
time at an asymptotically slower rate over time.  These features are shown in Figure 7 
below: 

 
Figure 7 – Light Signals on t-R Chart 

 
Figure 7 is a t-R chart that shows a single infalling signal representing the signal to which 
the freefall worldline is asymptotic.  The freefalling observer will receive this signal after 
an infinite time and will receive no signals lying above that one on the chart.  The dots 
represent intervals of equal proper time along the worldline and we can see that since the 
worldline is infinite (with tangents always below the speed of light) on this chart, there 
will be an infinite number of dots on the line spaced increasingly far apart and rest 
observers will receive an infinite number of signals from the freefalling observer. 
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