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I can calculate the motion of heavenly bodies, but not the madness of people. 

Isaac Newton 
                                                What I cannot create, I do not understand. 

Richard Feynman. 

 
Abstract. 
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we 
understand a capability to move from disorder to order without external resources, i.e. in violation of the 
second law of thermodynamics.  The objective is to find such a mathematical object described by ODE that 
possesses such a capability. The proposed approach is based upon modification of the Madelung version of 
the Schrodinger equation by replacing the force following from quantum potential with non-conservative 
forces that link to the concept of information. A mathematical formalism suggests that a hypothetical 
intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such 
properties like self-image, self-awareness, self- supervision, etc. that are typical for Livings. However since 
this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does 
not belong to the physics matter as we know it: the modern physics should be complemented with the 
concept of the information force that represents a bridge to intelligent particle. As a follow-up of the 
proposed concept, the following question is addressed: can artificial intelligence (AI) system composed 
only of physical components compete with a human? The answer is proven to be negative if the AI system 
is based only on simulations, and positive if digital devices are included. It has been demonstrated that 
there exists such a quantum neural net that performs simulations combined with digital punctuations. The 
universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics 
by moving from disorder to order without external resources. This advanced capability is illustrated by 
examples. In conclusion, a	mathematical	machinery	of	the	perception	that	is	the	fundamental	part	of	a	
cognition	process	as	well	as	intelligence	is	introduced	and	discussed.		

The	discovery	of	isolated	dynamical	systems	that	can	decrease	entropy	in	violation	of	the	second	law	
of	 thermodynamics,	 and	 resemblances	of	 these	 systems	 to	 livings	 implies	 that	 Life	 can	 slow	down	
heat	death	of	the	Universe,	and	that	can	be	associated	with	the	purpose	of	Life.			

 

1.Introduction.                                                 
The recent statement about completeness of the physical picture of our Universe made in Geneva raised 
many questions, and one of them is the ability to create Life and Intelligence out of physical matter without 
any additional entities. The main difference between living and non-living matter is in directions of their 
evolution: it has been recently recognized that the evolution of livings is progressive in a sense that it is 
directed to the highest levels of complexity. Such a property is not consistent with the behavior of isolated 
Newtonian systems that cannot increase their complexity without external forces. That difference created 
so called Schrödinger paradox: in a world governed by the second law of thermodynamics, all isolated 
systems are expected to approach a state of maximum disorder; since life approaches and maintains a 
highly ordered state – one can argue that this violates the Second Law implicating a paradox,[1] 

But livings are not isolated due to such processes as metabolism and reproduction: the increase of order 
inside an organism is compensated by an increase in disorder outside this organism, and that removes the 
paradox. Nevertheless it is still tempting to find a mechanism that drives livings from disorder to order. The 
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purpose of this paper is to demonstrate that moving from a disorder to order is not a prerogative of open 
systems: an isolated system can do it without help from outside. However such system cannot belong to the 
world of the modern physics: it belongs to the world of living matter, and that lead us to the concept of an 
intelligent particle – the first step to physics of livings. In order to introduce such a particle, we start with 
an idealized mathematical model of livings by addressing only one aspect of Life: a biosignature, i.e. 
mechanical invariants of Life, and in particular, the geometry and kinematics of intelligent behavior 
disregarding other aspects of Life such as metabolism and reproduction. By narrowing the problem in this 
way, we are able to extend the mathematical formalism of physics’ First Principles to include description of 
intelligent behavior. At the same time, by ignoring metabolism and reproduction, we can make the system 
isolated, and it will be a challenge to show that it still can move from  disorder to order. 

2. Starting with quantum mechanics. 
 
The starting point of our approach is the Madelung equation that is a hydrodynamics version of the 
Schrödinger equation  

∂ρ
∂t
+∇•( ρ

m
∇S) = 0       (1) 

 
∂S
∂t
+ (∇S)2 + F − 

2∇2 ρ

2m ρ
= 0      (2) 

 

Here ρ and S are the components of the wave functionψ = ρeiS / , and   is the Planck constant 

divided by 2π . The last term in Eq. (2) is known as quantum potential. From the viewpoint of Newtonian 
mechanics, Eq. (1) expresses continuity of the flow of probability density, and Eq. (2) is the Hamilton-
Jacobi equation for the action S of the particle. Actually the quantum potential in Eq. (2), as a feedback 
from Eq. (1) to Eq. (2), represents the difference between the Newtonian and quantum mechanics, and 
therefore, it is solely responsible for fundamental quantum properties.  

The Madelung equations (1), and (2) can be converted to the Schrödinger equation using the ansatz 

 ρ =Ψ exp(−iS / h)         (3)  

where ρ and S being real function. 

Our approach is based upon a modification of the Madelung equation, and in particular, upon replacing the 
quantum potential with a different Liouville feedback, Fig.1 

  
Figure 1. Classic Physics, Quantum Physics and Physics of Life. 

 
In Newtonian physics, the concept of probability ρ is introduced via the Liouville equation 
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∂ρ
∂t
+∇•(ρF) = 0         (4) 

generated by the system of ODE 

dv
dt
= F[v1(t),...vn (t),t]        (5) 

where v is velocity vector. 
It describes the continuity of the probability density flow originated by the error distribution  

ρ0 =ρ(t = 0)          (6) 
 in the initial condition of ODE (6).  

Let us rewrite Eq.  (2) in the following form 

dv
dt
= F[ρ(v)]        (7) 

where v is a velocity of a hypothetical particle. 

This is a fundamental step in our approach: in Newtonian dynamics, the probability never explicitly enters 
the equation of motion. In addition to that, the Liouville equation generated by Eq. (7) is nonlinear with 
respect to the probability density ρ   

∂ρ
∂t
+∇•{ρF[ρ(V)]}= 0        (8) 

and therefore, the system (7),(8) departs from Newtonian dynamics. However although it has the same 
topology as quantum mechanics (since now the equation of motion is coupled with the equation of 
continuity of probability density), it does not belong to it either. Indeed Eq. (7) is more general than the 
Hamilton-Jacoby equation (2): it is not necessarily conservative, and F is not necessarily the quantum 
potential although further we will impose some restriction upon it that links F to the concept of 
information. The relation of the system (7), (8) to Newtonian and quantum physics is illustrated in Fig.1.  
 
Remark. Here and below we make distinction between the random variable v(t) and its values V in probability space. 
 
3. Information force instead of quantum potential. 
 
In this section we propose the structure of the force F that plays the role of a feedback from the Liouville 
equation (8) to the equation of motion (7). Turning to one-dimensional case, let us specify this feedback as 

F = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (9) 

c0 > 0, c1 > 0, c3 > 0        (10)  

Then Eq.(9) can be reduced to the following: 

v = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (11) 

and the corresponding Liouville equation will turn into the nonlinear PDE 
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∂ρ
∂t
+ (c0 + c1ρ)

∂ρ
∂V

− c2
∂2ρ

∂V 2
+ c3

∂3ρ

∂V 3
= 0       (12)  

This equation is known as the KdV-Bergers’ PDE. The mathematical theory behind the KdV equation 
became rich and interesting, and, in the broad sense, it is a topic of active mathematical research. A 
homogeneous version of this equation that illustrates its distinguished properties is nonlinear PDE of 
parabolic type. But a fundamental difference between the standard KdV-Bergers equation and Eq. (12) is 
that Eq. (12) dwells in the probability space, and therefore, it must satisfy the normalization constraint 

ρdV =1
−∞

∞

∫                     (13)  

 However as shown in [2], this constraint is satisfied: in physical space it expresses conservation of mass, 
and it can be easily scale-down to the constraint (13) in probability space. That allows one to apply all the 
known results directly to Eq. (12). However it should be noticed that all the conservation invariants have 
different physical meaning: they are not related to conservation of momentum and energy, but rather 
impose constraints upon the Shannon information. 
In physical space, Eq. (12) has many applications from shallow waves to shock waves and solitons.  
However, application of solutions of the same equations in probability space is fundamentally different. In 
the following sections we will present a phenomena that exist neither in Newtonian nor in quantum physics. 
 4. Emergence of randomness. 
In this section we discuss a fundamentally new phenomenon: transition from determinism to randomness in 
ODE that coupled with their Liouville PDE. 
 In order to complete the solution of the system (11), (12), one has to substitute the solution of Eq. (12):  
ρ =ρ(V ,t) at V = v                            (14) 

into Eq.(11).  Since the transition from determinism to randomness occurs at t→ 0 , let us turn to Eq. 
(12) with sharp initial condition 

ρ0 (V ) = δ(V ) at t = 0,       (15) 
Then applying one of the standard analytical approximations of the delta-function, one obtains the 
asymptotic solution 

ρ =
1
t π

e
−
V 2

t2 at t→ 0        (16)  

Substitution this solution into Eq. (11) shows that  

O(c0 +
1
2
c1ρ) =

1
t
, O(

c2
ρ
∂ρ
∂v
) = 1
t2
,

and O(
c3
ρ
∂2ρ

∂v2
) = 1
t4

at t→ 0, v ≠ 0
                                                   (17)   

i.e. 

c0 +
1
2
c1ρ <<

c2
ρ
∂ρ
∂v

<<
c3
ρ
∂2ρ

∂v2
at t→ 0, v ≠ 0     (18) 

  
and therefore, the first three terms in Eq. (11) can be ignored 

v = c3
ρ
∂2ρ

∂v2
at t→ 0, v ≠ 0        (19) 

or after substitution of Eq. (16) 
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v = 4c3v
2

t4
at t→ 0, v ≠ 0        (20) 

Eq. (20) has the following solution (see Fig. 2) 

v = t3

4c3 +Ct
3
at t→ 0, v ≠ 0       (21)  

where C is an arbitrary constant. 
This solution has the following property: the Lipchitz condition at t→ 0 fails 

∂ v
∂v

=
8c3v
t4

=
8c3t

3

t4 (4c3 +Ct
3)
→∞ at t→ 0, v ≠ 0     (22) 

and as a result of that, the uniqueness of the solution is lost. Indeed, as follows from Eq. (21), for any value 
of the arbitrary constant C, the solutions are different, but they satisfy the same initial condition 
v→ 0 at t→ 0         (23) 
Due to violation of the Lipchitz condition (22), the solution becomes unstable. That kind of instability 
when infinitesimal errors lead to finite deviations from basic motion (the Lipchitz instability) has been 
discussed in [3]. This instability leads to unpredictable shift of solution from one value of C to another. It 
means that appearance of any specified solution out of the whole family is random, and that randomness is 
controlled by the feedback (9) from the Liouville equation (12). Indeed if the solution (21) runs 
independently many times with the same initial conditions, and the statistics is collected, the probability 
density will satisfy the Liouville equation (12), Fig.3.   

 
Figure 2. Family of random solutions describing transition from determinism to stochastisity. 
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Figure 3. Stochastic process and probability density. 
 
 
 
5. Departure from Newtonian and quantum physics. 
 
In this section we will derive a distinguished property of the system (16),(17) that is associated with 
violation of the second law of thermodynamics i.e. with the capability of moving from disorder to order 
without help from outside. That property can be predicted qualitatively even prior to analytical proof: due 
to the nonlinear term in Eq. (17), the solution form shock waves and solitons in probability space, and that 
can be interpreted as “concentrations” of probability density, i.e. departure from disorder. In order to 
demonstrate it analytically, let us turn to Eq. (17) at 

c1 >>| c2 |,c3           (24) 

 and find the change of entropy H 

∂H
∂t

= −
∂
∂t

ρlnρdV = − !ρ(lnρ+1)dV = c1
∂
∂V−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ (ρ2 )(lnρ+1)dV

= c1[ |
−∞

∞

ρ2 (lnρ+1)− ρdV
−∞

∞

∫ ]= −c1 < 0
        (25) 

At the same time, the original system (11), (12) is isolated: it has no external interactions. Indeed the 
information force Eq. (9) is generated by the Liouville equation that, in turn, is generated by the equation of 
motion (11). In addition to that, the particle described by ODE (11) is in equilibrium v = 0 prior to 
activation of the feedback (9). Therefore the solution of Eqs. (11), and (12) can violate the second law of 
thermodynamics, and that means that this class of dynamical systems does not belong to physics as we 
know it. This conclusion triggers the following question: are there any phenomena in Nature that can be 
linked to dynamical    systems (11), (12)? The answer will be discussed bellow.  
 Thus despite the mathematical similarity between Eq.(12) and the KdV-Bergers equation, the physical 
interpretation of Eq.(12) is fundamentally different: it is a part of the dynamical system (11),(12) in which 
Eq. (12) plays the role of the Liouville equation generated by Eq. (11). As follows from Eq. (25), this 
system, being isolated and being in equilibrium, has the capability to decrease entropy, i.e. to move from 
disorder to order without external resources. In addition to that, the system displays transition from 
deterministic state to randomness (see Eq. (22)). 
 This property represents departure from classical and quantum physics, and, as shown in [2,3], provides a 
link to behavior of livings. That suggests that this kind of dynamics requires extension of modern physics 
to include physics of life.  

The process of violation of the second law of thermodynamics is illustrated in Fig. 4: the higher values of 
ρ  propagate faster than lower ones. As a result, the moving front becomes steeper and steeper, and that 
leads to formation of solitons (c3>0), or shock waves (c3=0) in probability space. This process is 
accompanied by decrease of entropy. 
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Figure 4. Formation of shock waves in probability space. 
  
 

Remark. The system (11), (12) displays transition from deterministic state to randomness (see Eq. (22)), 
and this property can be linked to the similar property of the Madelung equation, although strictly speaking,  
Eq.(1) is a “truncated” version of the Liouvile equation: it does not include the contribution of the quantum 
potential.  
 

 

6. Comparison with quantum mechanics. 

a. Mathematical Viewpoint. The model of intelligent particle is represented by a nonlinear ODE (7) and a 
nonlinear parabolic PDE (8) coupled in a master-slave fashion: Eq. (8) is to be solved independently, prior 
to solving Eq. ((7). The coupling is implemented by a feedback that includes the probability density and its 
space derivatives, and that converts the first order PDE (the Liouville equation) to the second or higher 
order nonlinear PDE. As a result of the nonlinearity, the solutions to PDE can have attractors (static, 
periodic, or chaotic) in probability space. The solution of ODE (7) represents another major departure from 
classical ODE: due to violation of Lipchitz conditions at states where the probability density has a sharp 
value, the solution loses its uniqueness and becomes random. However, this randomness is controlled by 
the PDE (8) in such a way that each random sample occurs with the corresponding probability, Fig.3.  

b. Physical Viewpoint. The model of intelligent particle represents a fundamental departure from both 
Newtonian and quantum mechanics. The fundamental departure of all the modern physics is the violation 
of the second laws of thermodynamics,(see Eq.(25), and Fig. 4). However a more detailed analysis, [3], 
shows that due to similar dynamics topology to quantum mechanics,(see Fig.1) the model preserves some 
quantum properties such as entanglement and interference of probabilities. 

c. Biological Viewpoint. The L1 model illuminates the “border line” between living and non-living systems. 
The model introduces a biological particle that, in addition to Newtonian properties, possesses the ability to 
process information. The probability density can be associated with the self-image of the biological particle 
as a member of the class to which this particle belongs, while its ability to convert the density into the 
information force - with the self-awareness (both these concepts are adopted from psychology). Continuing 
this line of associations, the equation of motion (such as Eqs (3.11)) can be identified with a motor 
dynamics, while the evolution of density (see Eqs. (3.12) –with a mental dynamics. Actually the mental 
dynamics plays the role of the Maxwell sorting demon: it rearranges the probability distribution by creating 
the information potential and converting it into a force that is applied to the particle. One should notice that 
mental dynamics describes evolution of the whole class of state variables (differed from each other only by 
initial conditions), and that can be associated with the ability to generalize it as a privilege of living 
systems. Continuing our biologically inspired interpretation, it should be recalled that the second law of 
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thermodynamics states that the entropy of an isolated system can only increase. This law has a clear 
probabilistic interpretation: increase of entropy corresponds to the passage of the system from less probable 
to more probable states, while the highest probability of the most disordered state (that is the state with the 
highest entropy) follows from a simple combinatorial analysis. However, this statement is correct only if 
there is no Maxwell’ sorting demon, i.e., nobody inside the system is rearranging the probability 
distributions. But this is precisely what the Liouville feedback is doing: it takes the probability density ρ 
from Equation (3.12), creates functionals and functions of this density, converts them into a force and 
applies this force to the equation of motion (3.11). As already mentioned above, because of that property of 
the model, the evolution of the probability density becomes nonlinear, and the entropy may decrease 
“against the second law of thermodynamics”, Fig.6. Obviously the last statement should not be taken 
literary; indeed, the proposed model captures only those aspects of the living systems that are associated 
with their behavior, and in particular, with their motor-mental dynamics, since other properties are beyond 
the dynamical formalism. Therefore, such physiological processes that are needed for the metabolism are 
not included into the model. That is why this model is in a formal disagreement with the second law of 
thermodynamics while the living systems are not. In order to further illustrate the connection between the 
life-nonlife discrimination and the second law of thermodynamics, consider a small physical particle in a 
state of random migration due to thermal energy, and compare its diffusion i.e. physical random walk, with 
a biological random walk performed by a bacterium. The fundamental difference between these two types 
of motions (that may be indistinguishable in physical space) can be detected in probability space: the 
probability density evolution of the physical particle is always linear and it has only one attractor: a 
stationary stochastic process where the motion is trapped. On the contrary, a typical probability density 
evolution of a biological particle is nonlinear: it can have many dif- ferent attractors, but eventually each 
attractor can be departed from without any “help” from outside. 

That is how H. Berg, [11], describes the random walk of an E. coli bacterium:” If a cell can diffuse this 
well by working at the limit imposed by rotational Brownian movement, why does it bother to tumble? The 
answer is that the tumble provides the cell with a mechanism for biasing its random walk. When it swims in 
a spatial gradient of a chemical attractant or repellent and it happens to run in a favorable direction, the 
probability of tumbling is reduced. As a result, favorable runs are extended, and the cell diffuses with 
drift”. Berg argues that the cell analyzes its sensory cue and generates the bias internally, by changing the 
way in which it rotates its flagella. This description demonstrates that actually a bacterium interacts with 
the medium, i.e., it is not isolated, and that reconciles its behavior with the second law of thermodynamics. 
However, since these interactions are beyond the dynamical world, they are incorporated into the proposed 
model via the self- supervised forces that result from the interactions of a biological particle with “itself,” 
and that formally “violates” the second law of thermodynamics. Thus, the L1 model offers a unified 
description of the progressive evolution of living systems. Based upon this model, one can formulate and 
implement the principle of maximum increase of complexity that governs the large-time-scale evolution of 
living systems. It should be noticed that at this stage, our interpretation is based upon logical extension of 
the proposed mathematical formalism, and is not yet corroborated by experiments. 

 7. Origin of intelligence. 
a. Relevance to model of intelligent particle. The proposed model illuminates the “border line” between 
living and non-living systems. The model introduces an intelligent particle that, in addition to Newtonian 
properties, possesses the ability to process information. The probability density can be associated with the 
self-image of the intelligent particle as a member of the class to which this particle belongs, while its ability 
to convert the density into the information force - with the self-awareness (both these concepts are adopted 
from psychology). Continuing this line of associations, the equation of motion (such as Eq (11)) can be 
identified with a motor dynamics, while the evolution of density (see Eq. (12)) –with a mental dynamics. 
Actually the mental dynamics plays the role of the Maxwell sorting demon: it rearranges the probability 
distribution by creating the information potential and converting it into a force that is applied to the 
particle. One should notice that mental dynamics describes evolution of the whole class of state variables 
(differed from each other only by initial conditions), and that can be associated with the ability to 
generalize that is a privilege of intelligent systems. Continuing our biologically inspired interpretation, it 
should be recalled that the second law of thermodynamics states that the entropy of an isolated system can 
only increase. This law has a clear probabilistic interpretation: increase of entropy corresponds to the 
passage of the system from less probable to more probable states, while the highest probability of the most 
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disordered state (that is the state with the highest entropy) follows from a simple combinatorial analysis. 
However, this statement is correct only if there is no Maxwell’ sorting demon, i.e., nobody inside the 
system is rearranging the probability distributions. But this is precisely what the Liouville feedback is 
doing: it takes the probability density ρ  from Equation (12), creates functions of this density, converts 
them into the information force and applies this force to the equation of motion (11). As already mentioned 
above, because of that property of the model, the evolution of the probability density can become nonlinear, 
and the entropy may decrease “against the second law of thermodynamics”. Actually the proposed model 
represents governing equations for interactions of intelligent agents. In order to emphasize the autonomy of 
the agents’ decision-making process, we will associate the proposed models with self-supervised (SS) 
active systems. By an active system we will understand here a set of interacting intelligent agents capable 
of processing information, while an intelligent agent is an autonomous entity, which observes and acts upon 
an environment and directs its activity towards achieving goals. The active system is not derivable from the 
Lagrange or Hamilton principles, but it is rather created for information processing. One of specific 
differences between active and physical systems is that the former are supposed to act in uncertainties 
originated from incompleteness of information. Indeed, an intelligent agent almost never has access to the 
whole truth of its environment. Uncertainty can also arise because of incompleteness and incorrectness in 
the agent’s understanding of the properties of the environment. That is why quantum-inspired SS systems 
represented by the particles under consideration are well suited for representation of active systems, and the 
hypothetical particle introduced above can be associated with the term “intelligent” particle. It is important 
to emphasize that self-supervision is implemented by the feedback from mental dynamics, i.e. by internal 
force, since the mental dynamics is generated by intelligent particle itself.  

b. Comparison with control systems. In this sub-section we will establish a link between the concepts of 
intelligent control and phenomenology of behavior of intelligent particle.  
Example. One of the limitations of classical dynamics, and in particular, neural networks, is inability to 
change their structure without an external input. As will be shown below, an intelligent particle can change 
the locations and even the type of the attractors being triggered only by information forces i.e. by an 
internal effort. We will start with a simple dynamical system 

v = 0, v = 0 at t = 0        (26)   

and than apply the following control 

 F = −kv + av −σ ∂
∂v
lnρ ,                      (27) 

where ∫∫
∞

∞−

∞

∞−

=−= VdVVdVVVV ρρ ,)( 2 ,      (28) 

and k,a,σ are constant coefficients.  

Then the controlled version of the motor dynamics (26) is changed to 

v = −kv + av −σ ∂
∂v
lnρ              (29) 

while F represents the information forces that play the role of internal actuator.  

Let us notice that the internal actuator (27) is a particular case of the information force (9) at  

c0 = −kv + av , c1 = 0, c2 = σ, c3 = 0            (30) 

For a closure, Eq. (29) is complemented by the corresponding Liouville equation    
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∂ρ
∂t
= kV ∂ρ

∂V
− aV ∂ρ

∂V
+σ

∂2ρ

∂V 2
,               (31) 

to be solved subject to sharp initial condition 

ρ0 (V ) = δ(V ) at t = 0,                 (32)      

As shown above, the solution of Eq.(29) is random, (see Eq. (21) and Fig. 2) while this randomness is 
controlled by Eq. (31). Therefore in order to describe it, we have to transfer to the mean values v and v . 
For that purpose, let us multiply Eq.(31) by V .Then integrating it with respect to V over the whole space, 
one arrives at ODE for the expectation v (t)  

v = −kv + av                 (33)             

Multiplying Eq.(31) by 2V , then integrating it with respect to V over the whole space, one arrives at ODE 
for the variance v (t)  

v = −2kv + 2av v + 2σ        (34)  

Let us find fixed points of the system (33) and (34) by solving the system of algebraic equations:  
                                

0 = −kv + av        (35) 

0 = −2kv + 2av v + 2σ       (36) 

By selecting  

σ =
k 3

2a2
        (37) 

we arrive at the following single fixed point 

v * = k
2a
, v * = k

2

2a2
       (38) 

In order to establish whether this fixed point is an attractor or a repeller, we have to analyze stability of the 
homogeneous version of the system (33), (34) linearized with respect to the fixed point (38) 

v = −kv + av           (39) 

v = −kv + k
2

a
v             (40) 

Analysis of its characteristic equation shows that it has non-positive roots: 

λ1 = 0, λ2 = −2k < 0             

and therefore, the fixed point (38) is a stochastic attractor with stationary mean and variance. However the 
higher moments of the probability density are not necessarily stationary: they can be found from the 
original PDE (31). 
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Thus as a result of a mental control, an isolated dynamical system (26) that prior to control was at rest, 
moves to the stochastic attractor (38) having the expectation v * and the variance v * .  

The distinguished property of the particle introduced above definitely fits into the concept of intelligence. 
Indeed, the evolution of intelligent living systems is directed toward the highest levels of complexity if the 
complexity is measured by an irreducible number of different parts that interact in a well-regulated fashion. 
At the same time, the solutions to the models based upon dissipative Newtonian dynamics eventually 
approach attractors where the evolution stops while these attractors dwell on the subspaces of lower 
dimensionality, and therefore, of the lower complexity (until a “master” reprograms the model). Therefore, 
such models fail to provide an autonomous progressive evolution of intelligent systems (i.e. evolution 
leading to increase of complexity). At the same time, a self-controlled particle can create its own 
complexity based only upon an internal effort. 

Thus the actual source of intelligent behavior of the particle introduced above is a new type of force - the 
information force - that contributes its work into the Law of conservation of energy. However this force is 
internal: it is generated by the particle itself with help of the Liouvile equation. The machinery of the 
intelligence is similar to that of control system with the only difference that control systems are driven by 
external actuators while the intelligent particle is driven by a feedback from the Liouvile equation without 
any external resources. New modification of intelligent particle that lead to modeling decisions based upon 
intuition and utilizing interference of probabilities are introduced in [12]. 

8. Quantum recurrent neural nets. 
a. Background. 

 In the previous sections, we presented a mathematical answer to the ancient philosophical question “How 
mind is related to matter”. We proved that in mathematical world, the bridge from matter to mind requires 
extension and modification of quantum physics. In this context, we will comment on the recent statement 
made by Stephen Hawking on December 2, 2014, in which he warns that artificial intelligence could end 
mankind. Based upon our work, part of which is presented in the previous sections, it can be stated that 
machines composed only out of physical components and without any digital devices being included, 
cannot, in principle, overperform a human in creativity, regardless of the level of technology. But what 
happens if a machine does include digital devices? The answer to this question is the subject of the 
following sections. In these sections we propose a quantum version of recurrent neural nets (QRN) that 
along with classical performance, possess the capability to move from disorder to order without external 
recourses, and that makes their intelligence comparable with that of a human. The QRN incorporate 
classical feedback loops into conventional quantum networks.  It is shown, [4], that dynamical evolution of 
such networks, which interleave quantum evolution with measurement and reset operations, exhibits novel 
dynamical properties. Moreover, decoherence in quantum recurrent networks is less problematic than in 
conventional quantum network architectures due to the modest phase coherence times needed for network 
operation. It is proven that a hypothetical quantum computer can implement an exponentially larger number 
of the degrees of freedom within the same size. 

It	should	be	emphasized	that	the	QRN	presented	below	as	an	example	of	possible	implementation	of	
ODE	model	of	intelligent	particle,	has	a	phenomenological	rather	than	physical	origin:	it	is	driven	by	
properties	 of	 recurrent	 neural	 nets	 that	 have	 quantum-like	 features,	 but	 dwell	 in	 the	 world	 of	
Newtonian	 scale.	 In	 other	 words,	 the	 QRN	model	 belongs	 to	 quantum	 technology	 rather	 than	 to	
quantum	theory,	and	the	clear	illustration	of	this	statement	is	exploitation	of	quantum	collapse	as	a	
sigmoid	function	of	QRN.	
	
b.	Quantum	model	of	evolution.	
A	 state	 of	 a	 quantum	 system	 is	 described	 by	 a	 special	 kind	 of	 time	 dependent	 vector	 ψ >	with	
complex	components	called	amplitudes:	

>=ψ|}...{ 10 naaa 	 	 	 	 	 	 	 (41)			
If	unobserved,	the	state	evolution	is	governed	by	the	Schrödinger	equation:	



	 12	

l
l

kl
k aH
dt
dai ∑=! 	 	 	 	 	 	 	 (42)	

which	is	linear	and	reversible.	
Here	 klH is	the	Hamiltonian	of	the	system,	 JSi 34100545.1,1 −×=−= ! 	.	
The	solution	of	Eq.	(42)	can	be	written	in	the	following	form:	

*)}0(),...0({)}(),...({ 00 Uaatata nn = 	 	 	 	 	 (43)	
where	U	is	a	unitary	matrix	uniquely	defined	by	the	Hamiltonian:	

IUUeU iHt == − *,/ ! 	 	 	 	 	 	 (44)	 	 	 	
After	m	equal	time	steps	Δt 	

m
nn Uaatmatma *)}0(),...0({)}(),...({ 00 =ΔΔ 	 	 	 	 															(45)	

the	 transformation	 of	 the	 amplitudes	 formally	 looks	 like	 those	 of	 the	 transition	 probabilities	 in	
Markov	chains.		However,	there	is	a	fundamental	difference	between	these	two	processes:		in	Eq.	(45)	
the	probabilities	are	represented	not	by	the	amplitudes,	but	by	squares	of	their	modules:	

}||,...|{| 22
0 naap = 	 	 	 	 	 	 	 (46)	

and	therefore,	the	unitary	matrix	U	is	not	a	transition	probability	matrix.	
It	 turns	 out	 that	 this	 difference	 is	 the	 source	 of	 so	 called	 quantum	 interference,	 which	 makes	
quantum	computing	so	attractive.		Indeed,	due	to	interference	of	quantum	probabilities:	

21
2

21 || ppaap +≠+= 	 	 	 	 	 	 	 (47)	

each	element	of	a	new	vector	 )( tmai Δ 	in	Eq.	(45)	will	appear	with	the	probability	 2|| ia 		that	includes	
all	the	combinations	of	the	amplitudes	of	the	previous	vector.	
	
c.	Quantum	Collapse	and	Sigmoid	Function.	
As	 well	 known,	 neural	 nets	 have	 two	 universal	 features:	 	 dissipativity	 and	 nonlinearity.	 	 Due	 to	
dissipativity,	a	neural	net	can	converge	to	an	attractor	and	this	convergence	is	accompanied	by	a	loss	
of	information.		But	such	a	loss	is	healthy:		because	of	it,	a	neural	net	filters	out	insignificant	features	
of	 a	 pattern	 vector	 while	 preserving	 only	 the	 invariants	 which	 characterizes	 it’s	 belonging	 to	 a	
certain	class	of	patterns.	 	These	invariants	are	stored	in	the	attractor,	and	therefore,	 the	process	of	
convergence	 performs	 generalization:	 	 two	 different	 patterns	 that	 have	 the	 same	 invariants	 will	
converge	 to	 the	 same	 attractor.	 	 Obviously,	 this	 convergence	 is	 irreversible.	 The	 nonlinearity	
increases	 the	 neural	 net	 capacity:	 	 it	 provides	many	 different	 attractors	 including	 static,	 periodic,	
chaotic	 and	 erogdic,	 and	 that	 allows	 one	 to	 store	 simultaneously	 many	 different	 patterns.	 Both	
dissipativity	and	nonlinearity	are	implemented	in	neural	nets	by	the	sigmoid	(or	squashing)	function.		
It	 is	 important	 to	emphasize	 that	 the	only	qualitative	properties	of	 the	sigmoid	 function	are	 those,	
which	are	important	for	the	neural	net	performance,	but	not	any	specific	forms	of	this	function.	 	Can	
we	find	a	qualitative	analog	of	a	sigmoid	function	in	quantum	mechanics?		Fortunately,	yes:	 	it	is	so	
called	quantum	collapse	that	occurs	as	a	result	of	quantum	measurements.		Indeed,	the	result	of	any	
quantum	 measurement	 is	 always	 one	 of	 the	 eigenvalues	 of	 the	 operator	 corresponding	 to	 the	
observable	being	measured.	 	 In	other	words,	a	measurement	maps	a	state	vector	of	the	amplitudes	
(41)	into	an	eigenstate	vector	

}00...1...00{}...{ 10 →naaa 		 	 	 	 	 	(48)	

																														 i↑ 	 	 	 	

while	the	probability	that	this	will	be	the	ith 	eigenvector	is:	
2|| ii ap = 	 	 	 	 	 	 	 									(49)	

The	 operation	 (49)	 is	 nonlinear,	 dissipative,	 and	 irreversible,	 and	 it	 can	 play	 the	 role	 of	 a	 natural	
“quantum”	sigmoid	function.	
10.	QRN	Architectures.	
Let	us	introduce	the	following	sequence	of	transformations	for	the	state	vector	(41):	

>+=>→>→ )1(||})0(|{)0(|)0(| 1 tUU ψψσψψ 	 	 	 	 	(50)				
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which	is	a	formal	representation	of	Eq.(48))	with	 1σ 	denoting	a	“quantum”	sigmoid	function.	
In	order	 to	 continue	 this	 sequence,	we	have	 to	 reset	 the	quantum	device	 considering	 the	 resulting	
eigenstate	as	a	new	input.		Then	one	arrives	at	the	following	neural	net:	

nitaUta jiji ...2.1)},({)1( 1 ==+ ∑σ 	 	 	 (	(51)	

The	curly	brackets	are	intended	to	emphasize	that	 1σ 	is	to	be	taken	as	a	measurement	operation	
with	the	effect	similar	to	those	of	a	sigmoid	function	in	classical	neural	networks	(Fig.	5).	

																				
																														Figure	5.	The	simplest	architecture	of	quantum	neural	net.	

	
However,	there	are	two	significant	differences	between	the	quantum	(51)	and	classical	neural	nets.	
Firstly,	in	Eq.	(51)	the	randomness	appears	in	the	form	of	quantum	measurements	as	a	result	of	the	
probabilistic	nature	of	the	quantum	mechanics,	while	in	neural	network	a	special	device	generating	
random	 numbers	 is	 required.	 Secondly,	 if	 the	 dimension	 of	 the	 classical	 matrix	 ijT is	 NN × ,	 then	
within	 the	 same	 space	 one	 can	 arrange	 the	 unitary	matrix	U	 (or	 the	Hamiltonian	H)	 of	 dimension	

NN 22 × 	exploiting	 the	 quantum	 entanglement	 and	 direct	 product	 decomposability	 of	 the	
Schrödinger	 equation.	 One	 should	 notice	 that	 each	 non-diagonal	 element	 of	 the	 matrix	 H	 might	
consist	 of	 two	 independent	 components:	 	 real	 and	 imaginary.	 	 The	 only	 constraint	 imposed	 upon	
these	elements	is	that	H	is	the	Hermitian	matrix,	i.e.,		

jiij HH = 	 	 	 	 	 	 	 									(52)	

and	therefore,	the	 nn× 	Hermitian	matrix	has	 2n 	independent	components.	
So	far	the	architecture	of	the	neural	net	(51)	was	based	upon	one	measurement	per	each	run	of	the	
quantum	 device.	 	 However,	 in	 general,	 one	 can	 repeat	 each	 run	 for	 l	 times	 nl ≤ 	collecting	 l	
independent	measurements.	 	 Then,	 instead	 of	 the	mapping	 (48),	 one	 arrives	 at	 the	 following	 best	
estimate	of	the	new	state	vector:	

...}1...0...1...0{}...{ 0 ll
aa n → 	 	 																																																												(53)	

																										
1i

↑ 							
li

↑ 	

while	the	probability	that	the	new	state	vector	has	non-zero	 ik
th	component	is	

2|| ikik ap = 	 	 	 	 	 	 	 													(54)	

Denoting	the	sigmoid	function	corresponding	to	the	mapping	(53)	as	 lσ ,	one	can	rewrite	Eq.	(51)	in	
the	following	form:	

nitaUta jijli ...2.1)},({)1( ==+ ∑σ 	 	 	 															(55)	
The	 next	 step	 in	 complexity	 of	 the	 ORN	 architecture	 can	 be	 obtained	 if	 one	 introduces	 several	
quantum	devices	with	synchronized	measurements	and	resets:	

1
)1()1()1( ...2.1)},({)1(

21
nitaUta jijlli ==+ ∑σ 																																																											(56)	

2
)2()2()2( ...2.1)},({)1(

12
nitaUta jijlli ≠=+ ∑σ 	 	 													(57)	
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Here	 the	 sigmoid	 functions	
21ll

σ 	and
12 ll

σ ,	 map	 the	 state	 vectors	 into	 a	 weighted	mixtures	 of	 the	
measurements:	
	

||
}...{ )2(

12
)1(

11

)2(
12

)1(
11)1()1(

1
21

21

ll

ll
n

aaaa

aaaa
aa

+

+
→ 	 			 	 	 										 (58)	 	

	

||
}...{ )2(

22
)1(

21

)2(
22

)1(
21)2()2(

1
21

21

ll

ll
n

aaaa

aaaa
aa

+

+
→ 	 	 	 	 													(59)	

where	 )1(
1l
a and	 )2(

2l
a are	 the	 result	 of	 measurements	 presented	 in	 the	 form	 (53),	 and	

211211 ,, aaa and	 22a 			are	constants.	
Thus,	 Eqs.	 (56)	 and	 (57)	 evolve	 independently	 during	 the	 quantum	 regime,	 i.e.,	 in	 between	 two	
consequtive	measurements;	however,	during	the	measurements	and	resets	they	are	coupled	via	the	
Eqs.	(58)	and	(59).	It	is	easy	to	calculate	that	the	neural	nets	(51),	(55)	and	(56),	(57)	operate	with	
patterns	whose	dimensions	are	 ))(1(),)(1(),)(1(, 222111 lnnnlnnnlnnnn −−−−−− ,	respectively.	
						In	a	more	general	architecture,	one	can	have	K-parallel	quantum	devices	 iU with	 il 	consequtive	
measurements	 iM for	each	of	them	(i=1,2...k),	see	Fig.	6.	
	

	
																												Figure	6.		The	k-Parallel	Quantum	Neural	Network	Architecture	

	
Recall	that	one	is	free	to	record,	duplicate	or	even	monitor	the	sequence	of	measurement	outcomes,	
as	they	are	all	merely	bits	and	hence	constitute	classical	information.	Moreover,	one	is	free	to	choose	
the	 function	 used	 during	 the	 reset	 phase,	 including	 the	 possibility	 of	 adding	 no	 offset	 state	
whatsoever.	Such	flexibility	makes	the	QRN	architecture	remarkably	versatile.	To	simulate	a	Markov	
process,	it	is	sufficient	to	return	just	the	last	output	state	to	the	next	input	at	each	iteration.	
	
11.	Evolution	of	probabilities.	
	 Let	us	 take	another	 look	at	Eq.	 (51).	 	Actually	 it	performs	a	mapping	of	 an	 thi 	eigenvector	
into	an	 thj 		eigenvector:	
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}0...010...00{}0...010...00{ → 	 	 	 	 	 	 									 (60)	

												 i↑ 																											 j↑ 	

The	probability	of	the	transition	(60)	is	uniquely	defined	by	the	unitary	matrix	U:	

1,||
1

2 == ∑
=

n

i
ijjiij pUp 	 	 	 	 	 	 														(61)	

and	therefore	the	matrix	 |||| ijp 	plays	the	role	of	the	transition	matrix	in	a	generalized	random	walk	

which	is	represented	by	the	chain	of	mapping	(60).	
					Thus,	the	probabilistic	performance	of	Eq.	(51)	has	remarkable	features:		it	is	quantum	(in	a	sense	
of	the	interference	of	probabilities)	in	between	two	consecutive	measurements,	and	it	is	classical	in	
description	 of	 the	 sequence	 of	 mapping	 (1).	 Applying	 the	 transition	 probability	 matrix	 (61)	 and	
starting,	for	example,	with	eigenstate	 }0...10{ ,	one	obtains	the	following	sequence	of	the	probability	
vectors:	

etc
pp

pp

n

nnn

};...{
...
............

...
}0...10{};0...10{ 11

1

1

1111

10 ππππ =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

== 														(62)	

An	 	 thi 	component	of	 the	vector	 i
mm ei ππ ., 	expresses	the	probability	 that	 the	system	is	 in	 the	 ith		

eigenstate	after	m	steps.	As	follows	from	Eqs.	(62),	the	evolution	of	probabilities	is	a	linear	stochastic	
process,	although	each	particular	realization	of	the	solution	to	Eq.	(51)	evolves	nonlinearly,	and	one	
of	such	realization	 is	 the	maximum	likelihood	solution.	 	 In	this	context,	 the	probability	distribution	
over	different	particular	realizations	can	be	taken	as	a	measure	of	possible	deviations	from	the	best	
estimate	solution.	However,	the	stochastic	process	(62)	as	an	ensemble	of	particular	realizations,	has	
its	own	invariant	characteristics	which	can	be	expressed	independently	on	these	realizations.		One	of	
such	characteristics	is	the	probability	 )(m

ijf 	that	the	transition	from	the	eigenstate	i	to	the	eigenstate	

j	is	performed	in	m	steps.	 	This	characteristic	is	expressed	via	the	following	recursive	relationships,	
[5]:	
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	 																															(63)	

If	

1
1

)( <∑
∞

=m

m
ijf 	 	 	 	 	 	 	 																			(64)	

then	the	process	initially	in	the	eigenstate	i	may	never	reach	the	eigenstate	j.	

If		 1
1

)( =∑
∞

=m

m
ijf 	 	 	 	 	 	 	 																						(65)	

then	the	 thi 			eigenstate	is	a	recurrent	state,	i.e.,	it	can	be	visited	more	than	once.		In	partiicular,	if	
	
	 	 1=iip 	 	 																																																																									 									(66)	
this	recurrent	state	is	an	absorbing	one:		the	process	will	never	leave	it	once	it	enters.	
From	the	viewpoint	of	neural	net	performance,	any	absorbing	state	represents	a	deterministic	static	
attractor	without	a	possibility	of	“leaks.”		In	this	context,	a	recurrent,	but	not	absorbing	state	can	be	
associated	with	a	periodic	or	an	aperiodic	(chaotic)	attractor.		To	be	more	precise,	an	eigenstate	I	has	
a	 period	 	 0)1( )( => m

iipifττ 	 whenever	 m	 is	 not	 divisible	 byτ ,	 and	τ 		 	 is	 the	
largest	integer	with	this	property.		The	eigenstate	is	aperiodic	
	 if	 τ =1	 	 	 	 	 	 		 																												(67)																																																											



	 16	

Another	 invariant	 characteristic	 which	 can	 be	 exploited	 for	 categorization	 and	 generalization	 is	
reducibility,	 i.e.,	 partitioning	 of	 the	 states	 of	 a	Markov	 chain	 into	 several	 disjoint	 classes	 in	which	
motion	 is	 trapped.	 	 Indeed,	each	hierarchy	of	such	classes	can	be	used	as	a	set	of	 filters,	which	are	
passed	by	a	pattern	before	it	arrives	at	the	smallest	irreducible	class	whose	all	states	are	recurrent.	
For	the	purpose	of	evaluation	of	deviations	(or	“leaks”)	from	the	maximum	likelihood	solution,	long-
run	 properties	 of	 the	 evolution	 of	 probabilities	 (62)	 are	 important.	 	 Some	 of	 these	 properties	 are	
known	from	theory	of	Markov	chains,	namely:	 	 for	any	 irreducible	erogodic	Markov	chain	the	 limit	

)(m
ijp 		exists	and	it	is	independent	of	I,	.e.,		

∞→= matp i
m

ij π)(lim 		 	 																			 (68)	

while	

ii
j

k

j
jij

k

i
ijj kjp

µ
πππππ

1,1,,...1,0,,0
0

====> ∑∑
==

	 	 (69)				

Here	 iiµ is	the	expected	recurrence	time	

∞<+= ∑
≠

li
jl
ijii p µµ 1 	 	 	 	 	 	 	 															(70)	

The	definition	of	ergodicity	of	a	Markov	chain	is	based	upon	the	conditions	for	aperiodicity	(67)	and	
positive	recurrence	(68),	while	the	condition	for	irreducibility	requires	existence	of	a	value	of	m	not	
dependent	 upon	 i	 and	 j	 for	which	 )(m

ijp >0	 for	 i	 and	 j.	 The	 convergence	 of	 the	 evolution	 (62)	 to	 a	
stationary	 stochastic	 process	 suggests	 additional	 tools	 for	 information	 processing.	 	 Indeed,	 such	 a	
process	 for	 n-dimensional	 eigenstates	 can	 be	 uniquely	 defined	 by	 n	 statistical	 invariants	 (for	
instance,	 by	 first	n	moments)	which	 are	 calculated	by	 summations	 over	 time	 rather	 than	over	 the	
ensemble,	and	for	that	a	single	run	of	the	quantum	net	(51)	is	sufficient.		Hence,	triggered	by	a	simple	
eigenstate,	 a	 prescribed	 by	n-invariants	 stochastic	 process	 can	 be	 retrieved	 and	 displayed	 for	 the	
purposes	 of	 Monte-Carlo	 computations,	 for	 modelling	 and	 prediction	 of	 behavior	 of	 stochastic	
systems,	etc.	
Continuing	analysis	of	evolution	of	probability,	let	us	introduce	the	following	difference	equation	

niptt i

n

i
iij

n

j
ji ,...2,1,0,1,)()(

11

=≥==+ ∑∑
==

πππτπ 																		 							(71)	

It	should	be	noticed	that	the	vector	 ),...( 1 nπππ = as	well	as	the	stochastic	matrix	 ijp 	exist	only	in	an	
abstract	Euclidean	space:		they	never	appear	explicitly	in	physical	space.	 	The	evolution	(71)	is	also	
irreversible,	but	it	is	linear	and	deterministic.			
	 The	only	way	to	reconstruct	the	probability	vector	 )(tπ 	is	to	utilize	the	measurement	results	
for	 the	 vector	 a(t).	 	 In	 general	 case,	 many	 different	 realizations	 of	 Eq.	 (60)	 are	 required	 for	 that	
purpose.	 	However,	 if	 the	condition	(64)	holds,	 the	ergodic	attractor	 ∞=ππ 	can	be	found	from	the	
only	one	realization	due	to	the	ergodicity	of	the	stochastic	process.		The	ergodic	attractor	 ∞π 	can	be	
found	analytically	from	the	steady-state	equations:	

0,1,1,1,
111

===== ∑∑∑
==

∞∞

=

∞
iji

n

j
ij

n

i
ij

n

j
iji ppp ππππ 																											(72)	

This	system	of	n+1	equations	with	respect	to	n	unknowns	πi
∞ =1,2,...n 	has	a	unique	solution.	

	 As	an	example,	consider	a	two-state	case	(n=2):	
∞∞∞∞∞∞ =+=+ 22221121221111 , ππππππ pppp 																																																														(73)	

Utilizing	the	constraints	in	Eqs.	(72)	one	obtains:	
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= ∞∞ ππ 	 	 	 																												(74)	

			 Hence	on	 the	 first	 sight,	 there	 are	 infinite	numbers	of	unitary	matrices	 iju ,	which	provide	
the	same	ergodic	attractor.		However,	such	a	redundancy	is	illusive	since	the	fact	that	the	stochastic	
matrix	 ijp 	has	been	derived	from	the	unitary	matrix	 iju 	imposes	a	very	severe	restriction	upon	 ijp :		
not	only	the	sum	of	each	row,	but	also	the	sum	of	each	column	is	equal	to	one,	i.e.,	now	in	addition	to	
the	constrain	in		Eqs.	(72),	an	additional	constraint	

1
1

=∑
=

n

i
ijp 							 	 	 	 	 	 	 	 	 (75)					 																																																																																																							

is	 imposed	 upon	 the	 stochastic	 matrix.	 This	 makes	 the	 matrix	 pij 	doubly	 stochastic	 that	 always	
leads	 to	an	ergodic	attractor	with	uniform	distribution	of	probabilities.	 	Obviously	such	a	property	
significantly	reduces	the	usefulness	of	the	Quantum	recurrent	net	(QRN).		However,	as	will	be	shown	
below,	by	slight	change	of	the	QRN	architecture,	the	restriction	(75)	can	be	removed.	
12.	Multivariate	ONR.	
In	 the	 previous	 section	 we	 have	 analyzed	 the	 simplest	 quantum	 neural	 net	 whose	 probabilistic	
performance	 was	 represented	 by	 a	 single-variable	 stochastic	 process	 equivalent	 to	 generalized	
random	walk.		In	this	section	we	will	turn	to	multi-variable	stochastic	process	and	start	with	the	two-
measurement	architecture.		Instead	of	Eq.(60)	now	we	have	the	following	mapping:	

}0...01...01...00{
2
1}0...01...01...00{

2
1

2121 jjii → 	 	 	 (76)	 																		

i.e.,																								 2121 JJII +→+ 	 	 	 	 (77)	 																			 	 	

where	 121 ,, JII 		 and	 2J 		 are	 the	eigenstates	where	 the	unit	1	 is	at	 the	 ththth jii 121 ,, 	and	 thj2 		 	places,	
respectively.		Then	the	transitional	probability	of	the	mappings:	
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2
221 ||

2
1)(

2111
2

21 ijij
j

ii UUJIIp +=→+ 		 	 	 	 (79)	 																																																																																																				

Since	 these	mapping	result	 from	 two	 independent	measurements,	 the	 joint	 transitional	probability	
for	the	mapping	(76)	is	

22
2121 ||||

2
1)(

22122111
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21 ijijijij
jj

ii UUUUJJIIp ++=+→+ 	 	 (80)	 																						

One	can	verify	that	
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iip 	 	 	 	 (81)	 	 									 	

It	 should	 be	 emphasized	 that	 the	 input	 patterns	 I	 interfere,	 i.e.,	 their	 probabilities	 are	 added	
according	to	the	quantum	laws	since	they	are	subjected	to	a	unitary	transformation	in	the	quantum	
device.		On	the	contrary,	the	output	patterns	J	do	not	interfere	because	they	are	obtained	as	a	result	
of	 two	 independent	 measurements.	 As	 mentioned	 above,	 Eq.	 (80)	 expresses	 the	 joint	 transition	
probabilities	for	two	stochastic	processes		

11 JI → 		and		 22 JI → 	 	 	 	 	 	 (82)	 																										
which	are	coupled	via	the	quantum	interference.	At	the	same	time,	each	of	the	stochastic	processes	
(80)	considered	separately	has	the	transition	probabilities	following	from	Eq.	(61),	and	by	comparing	
Eqs.	(61)	and	Eq.	(80),	one	can	see	the	effect	of	quantum	interference	for	input	patterns.	
It	is	interesting	to	notice	that	although	the	probabilities	in	Eqs.	(80)	have	a	tensor	structure,	strictly	
speaking	 they	 are	 not	 tensors.	 	 Indeed,	 if	 one	 refers	 the	Hamiltonian	H,	 and	 therefore	 the	 unitary	
matrix	 U	 to	 a	 different	 coordinate	 system,	 the	 transformations	 of	 the	 probabilities	 (80)	 will	 be	



	 18	

different	from	those	required	for	tensors.		Nevertheless,	one	can	still	formally	apply	the	chain	rule	for	
evolution	of	transitional	probabilities,	for	instance:	

etcppQQJJIIp qqjjjjiiqqii 212121212121
)( 212121 =+→+→+ 	 	 	 (83)																													

Eqs.	(80)	is	easily	generalized	to	the	case	of	l	measurements	 nl ≤ 				:	
etcppp

llllll qqjjjjiiqqii .................. 111111
= 	 	 	 	 	 (84)	 																	

2

1 1
...... ||1
11 ∏ ∑

= =

=
l l

ijljjii U
l

p
ll

α β
βα

	 	 	 	 	 	 (85)	 																	

Now	the	evolution	in	physical	space,	instead	of	Eq.	(51)),	is	described	by	the	following:	
nitaUta jijli ...2.1)},({)( ==+ ∑στ 																																																												(86)																																	

where	 lσ 	is	the	l-measurements	operator.	

		Obviously,	 the	 evolution	 of	 the	 state	 vector	 ia 	is	more	 “random”	 than	 those	 of	 Eq.	 (51)	 since	 the	
corresponding	probability	distribution	depends	upon	l	variables.	
	Eq.	 (86)	 can	 be	 included	 in	 a	 system	 with	 interference	 inputs	 and	 independent	 outputs	 as	 a	
generalization	of	the	system	(56),(57).	
13.	QRN	with	input	interference.	
In	order	 to	remove	 the	restriction	(75),	 let	us	 turn	 to	 the	architecture	shown	 in	Fig.	5	and	assume	
that	 the	 result	 of	 the	 measurement,	 i.e.,	 a	 unit	 vector	 }0...010...00{)( =tam 	 is	 combined	 with	 an	
arbitrary	complex	(interference)	vector,	Fig.	7.	
	

	
Figure	7.	QRN	with	input	interference.	

	
},...{ 1 nmmm = 	 	 	 	 	 	 	 (87)	 	

such	that	

a(t) = [am(t)+m]c, c =
1

m1
2 + ...(mi +1)

2...mn
2
	 	 (88)	 	

Then	the	transition	probability	matrix	becomes	

pij =
|U j1m1 + ...U ji (mi +1)...U jnmn |

2

|m1
2 + ...(mi +1)

2 + ...mn
2 |

	 	 	 (89)	 																

Thus,	now	the	structure	of	the	transition	probability	matrix	 ijp 	can	be	controlled	by	the	interference	
vector	m.	
							Eq.	 (89)	 is	 derived	 for	 a	 one-dimensional	 stochastic	 process,	 but	 its	 generalization	 to	 l-
dimensional	case	is	straightforward.	
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This	 architecture	 produces	 several	 interesting	 algorithms,	 and	 one	 of	 them	 is	 quantum	 model	 of	
emerging	 grammar,	 [6].	 But	 in	 this	 paper	 our	 goal	 is	 different:	we	wish	 to	 demonstrate	 that	 QRN	
possesses	a	distinguished	property	to	violate	the	second	law	of	thermodynamics	and	to	move	from	
disorder	 to	 order	without	 external	 recourses.	 That	would	make	 the	 QRN	 universal	 in	 terms	 of	 its	
intelligence	capability.	In	other	words,	we	expect	that	QRN	would	implement	the	model	described	by	
Eqs	(11)	and	(12)	introduced	and	analyzed	in	sections	3,4,5,6,	and		7.	
	

	

	

14.	QRN	with	nonlinear	evolution	of	probabilities.	
So	far	we	were	dealing	with	linear	evolution	of	probabilities	(see	Eqs.	(62)	and	(71)	while	evolution	
of	the	state	vector	was	always	nonlinear(see	Eqs.	(51),(56)	and	(57)).	Now	let	us	assume	that	along	
with	 the	 Eq.	 (51)	 that	 is	 implemented	 by	 quantum	 device,	 we	 implement	 (in	 a	 classical	 way)	 the	
associated	probability	 equation	 (71).	 	At	 this	point	 these	 two	equations	 are	not	 coupled	yet.	 	Now	
turning	to	Eqs.	(87),	(88),	and	(89),	assume	that	the	role	of	the	interference	vector	m	is	played	by	the	
probability	vector	π .		Then	Eqs.	(51)	and	(71)	take	the	form:	

nitaUta jiji ...2.1)},({)1( 1 ==+ ∑σ 	 	 	 (90)	 	 	

)()( tpt jiji πτπ ∑=+ ,					i=1,2,…n	 	 	 	 (91)	 	 	 	

where	 Cta ni }]...{}0...010...00[{)( 21 πππ+= 																																																			(92)	 	

C = 1
π1
2 + ...πi

2 + ...+πn
2
	 	 	 	 	 (93)	 																

pij =
|U j1π1 + ...U jiπi + ...U jnπn |

2

|π1
2 + ...πi

2 + ...+πn
2 |

	 	 	 	 (94)	 																		

and	they	are	coupled.		Moreover,	the	probability	evolution	(91)	becomes	nonlinear	since	the	matrix	

ijp 	depends	upon	the	probability	vectorπ .		
		
15.	Comparison	QNR	and	intelligent	particle.	
One	can	associate	Eq.	(90)	with	the	equation	of	motion	in	physical	space,(see	Eq.	(11))	and	Eq.	(91)	–	
with	the	Liouville	equation	describing	the	evolution	of	an	initial	randomness	in	a	probability	(virtual)	
space,	 (see	Eq.	 (12)).	 In	QNR	architecture,	Eq.	 (90)	 is	always	nonlinear	 (due	 to	quantum	collapse),	
while	Eq.	(91)	is	linear	unless	it	is	coupled	with	Eq.	(90)	via	the	feedback	(92).	Therefore,	one	arrives	
at	 two	 fundamentally	 different	 dynamical	 topologies	 of	 QRN:	 the	 first	 one	 is	 linked	 to	 Newtonian	
physics	where	equation	of	motion	is	never	coupled	with	the	corresponding	Liouvil(95)	
then	 the	 evolution	 (73)	 becomes	 nonlinear,	 and	 it	 may	 have	 many	 different	 le	 equation,	 and	 the	
second	one	can	be	linked	to	quantum	physics	(in	the	Madelung	version	of	the	Schrödinger	equation)	
where	 the	 Hamilton-Jacobi	 equation	 is	 coupled	 with	 the	 corresponding	 Liouville	 equation	 by	 the	
quantum	potential.	It	is	interesting	to	note	that	the	randomness	in	Eqs.	(11)	and	(12)	is	caused	by	the	
failure	 of	 the	 Lipchitz	 conditions	 accompanied	 by	 the	 blow-up	 type	 of	 instability,	 (see	 section	 4),	
while	the	randomness	in	QNR	is	a	fundamental	quantum	phenomenon	associated	with	the	quantum	
collapse	as	a	result	of	measurement.	
Now	 the	 following	 question	 could	 be	 asked:	 why	 Eqs.(11)	 and	 (12)	 that	 describe	 performance	 of	
intelligent	 particle	 cannot	 be	 simulated	 directly,	 and	 instead,	 they	 have	 to	 be	 implemented	 in	 the	
form	of	QRN	prior	to	simulation?	The	answer	to	this	question	is	similar	to	that	given	by	R.	Feynman	
who	 explained	 why	 quantum	 phenomena	 couldn’t	 be	 simulated	 with	 only	 Newtonian	 recourses:	
these	phenomena	do	not	belong	to	the	Newtonian	world.	At	the	same	time,	the	Schrödinger	equation	
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can	 be	 computed	 using	 a	 classical	 computer,	 and	 therefore	 the	 restriction	 is	 imposed	 only	 upon	
simulations,	but	not	upon	computations.	For	a	similar	reason,	Eqs.	(11)	and	(12)	cannot	be	simulated		
by	 physical	 resources	 without	 biological	 parts	 included	 since	 phenomena	 described	 by	 these	
equations	belong	neither	 to	Newtonian	nor	 to	quantum	world:	 they	belong	 to	 the	world	of	 livings	
since	they	violate	the	second	law	of	thermodynamics.	In	this	context,	it	is	interesting	to	take	a	closer	
look	into	the	architecture	of	QRN:	an	initial	state,	 >)0(|ψ ,	is	fed	into	the	network,	transformed	under	
the	 action	 of	 a	 unitary	 operator,	 U,	 subjected	 to	 a	 measurement	 indicated	 by	 the	 measurement	
operator	M{	},	and	the	result	of	the	measurement	is	used	to	control	the	new	state	fed	back	into	the	
network	 at	 the	 next	 iteration.	 One	 is	 free	 to	 record,	 duplicate	 or	 even	 monitor	 the	 sequence	 of	
measurement	 outcomes,	 as	 they	 are	 all	 merely	 bits	 and	 hence	 constitute	 classical	 information.	
Moreover,	one	is	free	to	choose	the	function	used	during	the	reset	phase,	including	the	possibility	of	
adding	no	offset	state	whatsoever.		
As	follows	from	this	description,	QRN	is	a	hybrid	of	simulation	and	computation:	the	period	of	action	
of	 the	 unitary	 operator	 obviously	 belongs	 to	 quantum	 simulation.	 However	 building	 a	 probability	
vector	and	feeding	it	into	the	net	is	the	element	of	digital	computing.	Therefore	the	hybrid	nature	of	
QRN	is	the	reason	why	QRN	could	become	a	universal	tool	for	modeling	intelligence.	As	the	last	step,	
we	 have	 to	 prove	 that	 QRN	 can	 violate	 the	 second	 law	 of	 thermodynamics,	 and	 that	 will	 be	 the	
subject	of	the	next	section.			
16.	Spontaneous	self-organization.	 	

In	this	section	we	will	demonstrate	a	relation	of	non-linear	QRN	considered	above	to	a	concept	of	a	
spontaneous	 self-organization	 as	 a	 component	 of	 life	 and	 intelligence.	 As	 shown	 in	 section	 11,	 a	
linear	QRN	eventually	approaches	an	attractor	 in	probability	space	(see	Eq.	(74))	that	represents	a	
stationary	stochastic	process,	and	this	attractor	does	not	depends	upon	initial	conditions.	Therefore,	
from	 the	viewpoint	of	 information	processing,	 this	 attractor	performs	generalization	by	placing	all	
possible	entry	patterns	in	the	same	class.	Let	us	ask	now	the	following	question:		can	the	system	(73)	
change	 its	 evolution,	 and	 consequently,	 its	 limit	 distribution,	 without	 any	 external	 “help”?	 	 The	
formal	 answer	 is	 definitely	 positive.	 	 Indeed,	 if	 the	 transition	 matrix	 depends	 upon	 the	 current	
probability	distribution	
																																								 )(πpp = 	 	 	 	 	 	 	

scenarios	depending	upon	the	initial	state 0π .	 In	particular	case	(71),	 it	can	“overcome”	the	second	
law	of	thermodynamics	decreasing	its	final	entropy	by	using	only	the	“internal”	resources.		The	last	
conclusion	 illuminates	 the	 Schrödinger’s	 statement	 that	 ‘life	 is	 to	 create	 order	 in	 the	 disordered	
environment	against	the	second	law	of	thermodynamics”.		Indeed,	suppose	that	the	selected	unitary	
matrix	is	

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

11
11

2
1U 	 	 	 	 	 	 	 (96)	 	

Then	 the	 corresponding	 transition	 probability	 matrix	 in	 Eq.	 (71),	 according	 to	 Eq.	 (61)	 will	 be	
doubly-stochastic:	

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2/12/1
2/12/1

p 	 	 	 	 	 	 	 (97)	 	

and	the	stochastic	process	(71)	is	already	in	its	thermodynamics	limit	(97),	i.e.,					
2/121 ==ππ 	 	 	 	 	 	 	 	 (98)	 	

Let	us	assume	that	the	objective	of	the	system	is	to	approach	the	deterministic	state	
0,1 21 == ππ 	 	 	 	 	 	 	 	 (99)	 	

without	help	from	outside.		In	order	to	do	that,	the	system	should	adapt	a	feedback	(95)	in	the	form:	
1,2),,( 21121 =−== aaaaa π 	 	 	 	 	 (100)		 	

Then,	according	to	Eqs.	(61	89),	the	new	transition	probability	matrix	 pij 	will	be:	
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πp 	 	 	 	 (101)	 																

Hence,	the	evolution	of	the	probability	 1π now	can	be	presented	as:	

21
)(

11
)(

1
)1(

1 )1( pp nnn πππ −+=+ 	 	 	 	 	 (102)	 	

	in	which	 11p and	 22p 	are	substituted	from	Eqs.	(101).	
				It	is	easily	verifiable	that	

0,1 21 == ∞∞ ππ 	 	 	 	 	 	 (103)	 	 	
i.e.,	the	objective	is	achieved	due	to	the	“internal”	feedback	(100).	
The	application	of	QRN-based	self-organization	model	to	common	sense	decision-making	process	has	
been	introduced	in	[7].	
As	 follows	 from	 Eqs.(99)	 and	 (103),	 due	 to	 the	 built-in	 feedback	 (100)	 and	 without	 any	 external	
effort,	the	system	moved	from	the	state	of	maximum	entropy	to	the	state	of	minimum	entropy,	and	
that	violates	the	second	law	of	thermodynamics.	This	means	that	such	a	system	does	not	belong	to	
physical	world:	it	is	neither	a	Newtonian	nor	a	quantum	one.	But	to	what	world	does	it	belong?	Let	us	
recall	again	the	Schrödinger	statement	(Schrödinger.	1945):	“life	is	to	create	order	in	the	disordered	
environment	against	the	second	law	of	thermodynamics”.	That	gives	a	hint	for	exploiting	the	effect	of	
self-organization	 for	modeling	some	aspects	of	 life,	and	 that	makes	QRN	a	universal	 tool	of	AI	 that	
can	compete	with	human	intelligence.		
17. Mathematical machinery of perception. 
In this section, we connect the concept of intelligent particle and the phenomenon of perception, i.e. 
representation and understanding the environment. It should be noticed that our model is not necessarily 
associated with a violation of the second law of thermodynamics. Indeed, these violations occur only if  

c1 > 0 , (this case corresponds to formation of a shock wave in probability space, Fig. 4), or c2 < 0 , 
(this case that leads to negative diffusion has been analyzed in [10]). Therefore the second law of 
thermodynamics does not bind study of the perception phenomena. 
a. System of intelligent particles. Since perception is a collective phenomenon, as a first step, we have to 
move from one- to n-dimensional case. For illustration, we confine ourselves with a particular case  

c2 ≠ 0, c0 = c1 = c3 = 0        (104)  
   
Then as a direct generalization of Eqs. (11) and (12), one obtains 

vi = −ξ αij
j=1

n

∑ ∂
∂v j
lnρ(v1,...vn ,t), i =1,2,...n    (105)  

where αij are function of the correlation moments Dks 

αij = αij (D11,...Dks ,...Dnn )       (106)  

and 

Dks = (vk
−∞

∞

∫
−∞

∞

∫ − vk )(vs − vs )ρdvkdvs , v j = v j
−∞

∞

∫ ρdv j   (107)      

Eqs. (105) have to be complemented by the corresponding Liouville equation 
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∂ρ
∂t
= ξ αij

j=1

n

∑ ∂2ρ

∂Vj
2

       (108)              

Here ξ  is a positive constant that relates Newtonian and information forces. It is introduces in order to 
keep the functions αij dimensionless. 

The solution of Eqs. (105) and (108)  

vi = vi (t), ρ =ρ(V1,...Vn ,t), i =1,2,...n    (109)               

 must satisfy the constraint that is an n-dimensional generalization of the constraint D ≥ 0, namely, a non-
negativity of the matrix |Dij|, i.e. a non-negativity of all the left-corner determinants 

Det |Dij |≥ 0, i =1,2,...n       (110) 

 b. Entanglement. In this sub-section, we will show that the system (105) is isolated and entangled. Both 
of these properties follow from the fact that Eqs.(105) are coupled by information forces derived from the 
joint probability. The entanglement can be illustrated for two dimensional case: 

v1 = −a11
∂
∂v1
lnρ− a12

∂
∂v2
lnρ,      (111)  

v2 = −a21
∂
∂v1
lnρ− a22

∂
∂v2
lnρ,     (112)  

∂ρ
∂t
= a11

∂2ρ

∂V1
2
+ (a12 + a21)

∂2ρ
∂V1∂V2

+ a22
∂2ρ

∂V2
2
,   (113)       

As in the one- dimensional case, this system describes diffusion without a drift 
The solution to Eq. (113) has a closed form 

ρ =
1

2πdet[âij ]t
exp(− 1

4t
$bijViVj ), i =1,2.   (114)            

Here 

][ ijbʹ = 1]ˆ[ −
ija  , â11 = a11, â22 = a 22 , â12 = â21 = a12 + a21 , ,,ˆˆ jiijjiij bbaa ʹ=ʹ=  (115)                 

Substituting the solution (114) into Eqs. (111) and (112), one obtains 

v1 =
b11v1 +b12v2

2t
  v2 =

b21v1 +b22v2
2t

, bij = !bijâij   (116)     

Eliminating t from these equations, one arrives at an ODE in the configuration space 

dv2
dv1

=
b21v1 +b22v2
b11v1 +b12v2

, v2 → 0 at v1→ 0,            (117) 

This is a classical singular point treated in textbooks on ODE.  
Its solution depends upon the roots of the characteristic equation 

λ2 − 2b12λ+b
2
12 −b11b22 = 0                           (118) 
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Since both the roots are real in our case, let us assume for concreteness that they are of the same sign, for 
instance, 1,1 21 == λλ . Then the solution of Eq. (3.44) is represented by the family of straight lines 

v2 = Cv1, C = const.       (119)  
     
Substituting this solution into Eq. (3.42)) yields  

v1 =Ct
1
2
(b11+ Cb12 )

  v2 = CCt
1
2
(b11+ Cb12 )

   (120)                 
Thus, the solutions of Eqs. (111) and (112) are represented by two-parametrical families of random 

samples, as expected, while the randomness enters through the time-independent parameters C and C that 
can take any real numbers. Let us now find such a combination of the variables that is deterministic. 
Obviously, such a combination should not include the random parameters C orC~ . It easily verifiable that  

d
dt
(ln v1) =

d
dt
(ln v2 ) =

b11 + Cb12
2t

     (121)   

 
and therefore, 

( d
dt
ln v1) / (

d
dt
ln v2 ) ≡1      (122)   

Thus, the ratio (122) is deterministic although both the numerator and denominator are random,(see 
Eq.(121). This is a fundamental non-classical effect representing a global constraint. Indeed, in theory of 
stochastic processes, two random functions are considered statistically equal if they have the same 
statistical invariants, but their point-to-point equalities are not required (although it can happen with a 
vanishingly small probability). As demonstrated above, the diversion of determinism into randomness via 
instability (due to a Liouville feedback), and then conversion of randomness to partial determinism (or 
coordinated randomness) via entanglement is the fundamental non-classical paradigm that may lead to 
instantaneous transmission of conditional information on remote distance. 
c. Measure of survivability. Since we are dealing with physical systems that are supposed to simulate 
behavior of livings, we adopt the principle of survivability of livings to create incentive for complexity of 
perceptions in artificial systems. We will introduce, as a measure of survivability, the strength of the 
random force that, being applied to a particle, nullifies the decrease of entropy 

∂H
∂t

< 0         (123)  

 For better physical interpretation, it will be more convenient to present this inequality in terms of the 
variance D  
D < 0          (124)  

 remembering that for normal probability density distribution 

H = log2 2πeD2                                  
while the normal density is the first term in the Gram-Charlier series for representation of an arbitrary 
probability distribution.  
       Thus, the ability to survive (in terms of preserving the property (123)) under action of a random force) 
can be achieved only with help of increased complexity. However, physical complexity is irrelevant: no 
matter how complex is Newtonian or Langevin dynamics, the second law of thermodynamics will convert 
the inequality (123) into the opposite one. The only complexity that counts is that associated with mental 
dynamics. Consequently, increase of complexity of mental dynamics, and therefore, complexity of the 
information, is the only way to maximize the survivability of Livings. This conclusion will be reinforced by 
further evidence to be discussed in the following sub-section. 

g. Chain of abstractions. In view of importance of mental complexity for survival of Livings, we will take 
a closer look into cognitive aspects of information forces. It should be recalled that classical methods of 
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information processing are effective in a deterministic and repetative world, but faced with the uncertainties 
and unpredictabilities, they fail. At the same time, many natural and social phenomena exhibit some degree 
of regularity only on a higher level of abstraction, i.e.in terms of some invariants. Indeed, it is easier to 
predict the state of the solar system in a billion years ahead than to predict a price of a stock of a single 
company tomorrow. In this sub-section we will discuss a new type of attractors and associated with them a 
new chain of abstraction that is provided by complexity of mental dynamics.  

α . Attractors in mental dynamics. Significant expansion of the concept of an attractor as well as 
associated with it generalization via abstraction is provided by mental dynamics. We will start with the 
model (105-108) being discussed in the previous sub- section  

Let us express Eq. (108) in terms of the correlation moments: multiplying it by
2
iV , then using partial 

integration, one arrives at an n-dimensional analog of Eq. (108) 

Dii = 2ζαii (D11,...Dnn ), n =1,2,...n,         (125) 

The next step is to choose such a structure of the functions (106) that would enforce the constraints (110), 
i.e.  

Dii ≥ 0, i =1,2,...n,              (126) 

The simplest (but still sufficiently general) form of the functions (106) is a neural network with terminal 
attractors, [3],  

αii =
1
2
(wij tanh Djj − ci Dii ), i =1,2,...n, Dii =

Dii
D0

  (127) 

  that reduces Eqs.(125) to the following system  

Dii = ζ(wij tanh Djj − ci Dii ), i =1,2,...n,        (128) 

Here 0D  is a constant scaling coefficient of the same dimensionality as the correlation coefficients iiD , 

and ijw are dimensionless constants representing the identity of the system.  

Let us now analyze the effect of terminal attractor and, turning to Eq.(128), starting with the matrix 

||
ii

ii

D
D
∂
∂ !

. Its diagonal elements, i.e. eigenvalues, become infinitely negative when the variances vanish 

since  

∂ Dii
∂Dii

=
1

2 Dii
→∞ when Dii → 0       (129) 

while the rest terms are bounded. Therefore, due to the terminal attractor, Eq. (128) linearized with respect 
to zero variances has infinitely negative characteristic roots, i.e. it is infinitely stable regardless of the 
parameters ijw . Hence the principal variances cannot overcome zero if their initial values are positive. This 

provides the well-posedness of the initial value problem. 

Now we can present Eq. (105) in the form 
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vi = (−vii
1/2 +wij tanh v jj )

∂
∂v j
lnρ(v1,...vn )    (130)     

Here, for further convenience, we have introduced new compressed notations 

Vi = Vi
−∞

∞

∫ ρdVi , Vii = Dii = (Vi
−∞

∞

∫ −Vi )
2ρdVi ,

Viiii = (Vii
−∞

∞

∫ −Vii )
2ρdVii ...etc

        (3.131)       

The corresponding mental dynamics in the new notations follows from Eq. (128) 

∂ρ
∂t
= (Vii

1/2 −wij tanhVjj )
∂2ρ

∂V 2
j

     (132)  

In the same way, the mental neural nets can be obtained from Eqs. (105) and (127)  

   vii = (−vii
1/2 +wij tanh v jj )       (133)     

where the state variables vii  represent variances of ρ .  
  
β . Hierarchy of higher order mental abstractions. Following the same pattern as those discussed in the 
previous sub-section, and keeping the same notations, one can introduce the next generation of mental 
neural nets starting with the motor dynamics 

vi = [(−v
1/2
iiii +wij tanh v jjjj )

∂
∂vii
ln #ρ (v11,...vnn )]

∂
∂vi
lnρ(v1,...vn )       

Here, in addition to the original random state variables vi , new random variables vii are included into the 
structure of information forces. They represent invariants (variances) of the original variables that are 
assumed to be random too, while their randomness is described by the secondary joint probability 

density !ρ (v11,...vnn ) . The corresponding Fokker-Planck equation governing the mental part of the 
neural net is 

∂ρ
∂t
= [(v jjjj

1/2 −wij tanh v jjjj )
∂
∂vii
ln $ρ (V11,...Vnn )]

∂2ρ

∂Vjj
2

                

Then, following the same pattern as in Eqs. (130), (132), and (133), one obtains 

vii = (−v jjjj
1/2 +wij tanh v jjjj )

∂
∂vii
ln #ρ (v11,...vnn )    (136) 

∂ "ρ
∂t

= [(Vjjjj
1/2 −wij tanhVjjjj )

∂2 "ρ

∂Vjj
2

                ( 137)    

viiii = (−v jjjj
1/2 +wij tanh v jjjj ).                              (138)    

Here Eqs. (136) and (138) describe dynamics of the variances vii and variances of variances viiii  
respectively, while Eq. (137) governs the evolution of the secondary joint probability 

density !ρ (V11,..Vnn ) . As follows from Eqs. (134)- (138), the only variables that have attractors are the 
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variances of variances; these attractors are controlled by Eq. (138) that has the same structure as Eq. (133). 
The stationary values of these variables do not depend upon the initial conditions: they depend only upon 
the basins where the initial conditions belong, and that specifies a particular attractor out of the whole set of 
possible attractors. On the contrary, no other variables have attractors, and their values depend upon the 

initial conditions. Thus, the attractors have broad membership in terms of the variablesviiii , and that 

represents a high level of generalization. At the same time, such “details” as values of vi  and vii at the 
attractors are not defined being omitted as insignificant, and that represent a high level of abstraction.  
          It should be noticed that the chain of abstractions was built upon only principal variances, while co-
variances were not included. There are no obstacles to such an inclusion; however, the conditions for 

preserving the positivity of the tensors vij andvijkq are too cumbersome while they do not bring any 

significant novelty into cognitive aspects of the problem other than increase of the number of attractors.  
       
δ . Activation of new levels of abstractions. A slight modification of the model of motor-mental dynamics 
discussed above leads to a new phenomenon: the capability to activate new levels of abstraction needed to 
preserve the inequality (123). The activation is triggered by the growth of variance caused by applied 
random force.  In order to demonstrate this, let us turn to a one-dimensional version of Eqs. (134)- (138) in 
which the neural net structure is replaced by a linear term and to which noise of the strength q2 is added      

v = qΓ(t)+λ α
ρ
∂ρ
∂v

      where α = q2 exp D               (139) 

Then the equations of the mental dynamics are modified to 

∂ρ
∂t
= [q2 (−λexp D )] ∂

2ρ

∂V 2
                (140) 

D = [2q2 (−λexp D )]                 (141)   
respectively. Here λ  is a new variable defined by the following differential equation 

λ = λ(1−λ ) D                     (142) 
One can verify that Eq. (142) implements the following logic: 

λ = 0 if D ≤ 0,and λ =1 if D > 0,                    (143) 

Indeed, Eq. (142) has two static attractors:λ =1 and λ = 0 ; when D > 0 , the first attractor is 
stable; when 0<D!  , it becomes unstable, and the solution switches to the second one that becomes stable. 
The transition time is finite since the Lipchitz condition at the attractors does not hold, and therefore, the 
attractors are terminal, [3]. Hence, when there is no random force applied, i.e. q=0, the first level of 
abstraction does not need to be activated, since then 0=D! , and therefore.λ is zero. However, when 
random force is applied, i.e. ,0≠q  the variance D starts growing, i.e. .0>D!  Then the first level of 
abstraction becomes activated, λ  switches to 1, and, according to Eq. (141),  the growth of the entropy is 
eliminated. If the first level of abstraction is not sufficient, the next levels of abstractions can be activated 
in a similar way. 

δ . Measure of complexity. Let us turn to the system of Eqs. (130) and (132). Its solution is represented by 

n random functions vi (t) , i=1,2…n and a deterministic function ρ({V},t}representing the density of 
their joint probability distribution. As a measure of complexity of this system, one can choose a maximum 

number of independent coefficients of the linear regression ikβ that express each variable vi (t) via the rest 
n-1 variables while 
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βik = −
Λik

Λii

, Λ = λ
−1

      (144)      

where λ is the matrix of variances. 

The system (130), (132) that has one mental layer of complexity requires 2n coefficients (144), and that 

number characterizes its complexity, i.e. N1 = n
2  

The system (136)-(143) has two mental layers of complexity, and its solution is represented by the 

functions vi (t) and vij (t) . It is easy to calculate that the number of the coefficients of linear regression 

in this case, and therefore, the complexity, will be N2 = n
2 + n4 . Now it is clear that complexity of a 

system with m mental layers is 

Nm = n2k
k=1

m

∑        (145)       

In this connection, it is interesting to pose the following problem. What is a more effective way for Livings 
to promote Life: through a simple multiplication, i.e. through increase of the number of “primitives” n, or 
through individual self-perfection, i.e. through increase of the number m of the levels of abstractions 
(“What do you think I think you think. . . ”)? The solution of this problem may have fundamental social, 
economical and geo-political interpretations. But the answer immediately follows from Eq. (145) 
demonstrating that the complexity grows exponentially with the number of the levels of abstractions m, but 
it grows only linearly with the dimensionality n of the original system. Thus, in contradistinction to 
Darwinism, a more effective way for Livings to promote Life is through higher individual complexity (due 
to mutually beneficial interactions) rather than trough a simple multiplication of “primitives”. This 
statement can be associated with recent consensus among biologists that the symbiosis, or collaboration of 
Livings, is even more powerful factor in their progressive evolution than a natural selection	
	
18.	Discussion	and	conclusion.	
The objective of this paper is to relate the concept of intelligence to the first principles of physics, and, in 
particular, to answer the following question: can AI system composed only of physical components 
compete with a human? The first part of the answer has been addressed in the sections 2 trough 7, the 
second part – in the sections 8 through 16.  
 
  The first seven sections introduce and discuss the concept of an intelligent particle. One	 of	 many	
obstacles	 to	 developing	 a	mathematical	 theory	 of	 AI	 is	 absence	 of	 a	 definition	 of	 intelligence	 that	
would	fit	into	mathematical	formalism	in	the	form	of	a	state	variable.	Such	definition	was	proposed	
in	 the	 first	 section:	 intelligence	of	an	 isolated	dynamical	 system	 is	defined	as	a	 capability	 to	move	
from	 disorder	 to	 order	 in	 violation	 of	 the	 second	 law	 of	 thermodynamics.	 Then,	 as	 a	 result,	
intelligence	 is	measured	by	 the	absolute	value	of	negative	 time	derivative	of	 the	 system’s	entropy.	 
This concept was inspired by the discovery of the Higgs boson and the following from it claim of 
completeness of the physical picture of our Universe. However the ability to create Life and Mind out of 
physical matter without any additional entities is still a mystery. The primary objective of this paper is to 
presents a mathematical answer to the ancient philosophical question, “How mind is related to matter” in 
connection with this outstanding accomplishment in physics. The paper is inspired by analysis of the 
Madelung equation and discovery of the origin of randomness in quantum mechanics, [8]. It turns out that 
replacement of the quantum potential by the information force, while preserving some quantum properties, 
introduces fundamental changes in the first and the second laws of thermodynamics, and that leads to a 
mathematical model that captures behavior of livings. The idea of an intelligent particle has been 
introduced as a first step of physics of life since it does not include such properties as metabolism and 
reproduction. Instead it concentrates attention to intelligent behavior. At the same time, by ignoring 



	 28	

metabolism and reproduction, we can make the system isolated, and it will be a challenge to show that it 
still can move from a disorder to the order. It	 has	 been	 demonstrated	 that	 the	 model	 of	 intelligent	
particle	 belongs	 neither	 to	 Newtonian,	 nor	 to	 quantum	mechanics.	 Its	 departure	 from	 Newtonian	
mechanics	 is	 due	 to	 a	 feedback	 from	 the	underlying	 Liouville	 equation	 to	 the	 equations	 of	motion	
that	 represents	 an	 additional	 (internal)	 information	 force.	 Topologically	 this	 feedback	 shifts	
intelligent	 particles	 towards	 quantum	mechanics.	However	 since	 the	 information	 force	 is	 different	
from	 forces	 produced	 by	 quantum	 potential,	 the	 intelligent	 particle	 is	 not	 quantum,	 and	 it	 can	 be	
identified	 as	 quantum-classical	 hybrid.	 Therefore	 intelligent	 particle	 dwells	 in	 an	 abstract	
mathematical	world	 rather	 than	 in	 the	 physical	world,	 as	we	 know	 it.	 This	means	 that	 intelligent	
particles,	in	principle,	cannot	be	composed	out	of	physical	particles.	It	also	means	that	it’s	behavior	
can	be	computed,	but	not	simulated	using	Newtonian	or	quantum	resources.		
    The next nine sections introduce a model of quantum recurrent nets for implementation of intelligent 
particles as a challenge to human intelligence. 	 	
There	are	several	advantages	that	can	be	expected	from	quantum	implementation	of	recurrent	nets.		
Firstly,	since	the	dimension	of	the	unitary	matrix	n	can	be	exponentially	larger	within	the	same	space	
had	it	been	implemented	by	a	quantum	device,	the	capacity	of	quantum	neural	nets	in	terms	of	the	
number	of	patterns	stored	as	well	as	their	dimensions	can	be	exponentially	larger	too.	
				Secondly,	QRN	have	a	new	class	of	attractors	representing	different	stochastic	processes,	which	in	
terms	of	associated	memory,	can	store	complex	behaviors	of	biological	and	engineering	systems,	or	
in	terms	of	optimization,	to	minimize	a	functional	whose	formulation	includes	statistical	invariants.	
			The	 details	 of	 ORN	 performance	 in	 learning,	 optimization,	 associative	 memory,	 as	 well	 as	 in	
generation	 of	 stochastic	 processes	 can	 be	 found	 in	 [6],[7]	 and	 [9].	 However	 in	 this	 paper,	 the	
attention	 is	 focused	on	the	most	remarkable	property	of	nonlinear	QRN	that	 is	associated	with	 the	
spontaneous	self-organization	as	a	possible	bridge	 to	model	 intelligent	behavior.	 It	 is	 important	 to	
emphasize	 that	 the	 architecture	 of	 that	 ORN	 includes	 a	 built-in	 feedback	 from	 the	 probability	
evolution	 to	 the	evolution	of	 the	 state	vector,	 and	 that	 leads	 to	 such	a	non-Newtonian	property	as	
transition	from	a	disorder	to	the	order	without	any	external	interference.	And	this	property	provides	
the	capability	of	QRN	to	compete	with	human	intelligence.		
		The	 last	 section	 introduces	and	discusses	a	mathematical	machinery	of	 the	perception	 that	 is	 the	
fundamental	 part	 of	 a	 cognition	process	 as	well	 as	 intelligence.	 It	 should	 be	 recalled	 that	 classical	
methods	of	 information	processing	are	 effective	 in	 a	deterministic	 and	 repetative	world,	 but	 faced	
with	 the	 uncertainties	 and	 unpredictabilities,	 they	 fail.	 At	 the	 same	 time,	many	 natural	 and	 social	
phenomena	 exhibit	 some	 degree	 of	 regularity	 only	 on	 a	 higher	 level	 of	 abstraction,	 i.e.in	 terms	 of	
some	 invariants.	 In	 this	 section,	 a	new	 type	of	 attractors	and	associated	with	 them	a	new	chain	of	
abstraction	that	is	provided	by	complexity	of	mental	dynamics	of	the	proposed	model	is	addresssed.	
It	demonstrates	that	the	capability	of	the	proposed	model	is	not	limited	by	violations	of		the	second	
law	of	thermodynamics:	it	is	much	broader	since	the	model	handles	many	aspect	of	cognition	specific	
for	 livings	 that	 do	 not	 violate	 this	 law.	 In	 this	 context,	 it	 should	 be	 emphasized	 that	 the	 proposed	
approach	 to	 perception	 is	 fundamentally	 different	 from	 the	 idea	 of	 quantum	 collapse	 after	
reformulation	 the	 Schrödinger equation, [11]: the proposed model is based upon reformulation of the 
Madelung version of the Schrödinger equation, and after that there is no way back to the Schrödinger 
equation.   
This work has interesting philosophical implications associated with the theory of heat death. The theory of 
heat death stems from the second law of thermodynamics, of which one version states that entropy tends to 
increase in an isolated system. From this, the theory infers that if the universe lasts for a sufficient time, it 
will asymptotically approach a state where all energy is evenly distributed. In other words, according to this 
theory, in nature there is a tendency to the dissipation (energy loss) of mechanical energy (motion); hence, 
by extrapolation, there exists the view that the mechanical movement of the universe will run down, as 
work is converted to heat, in time because of the second law of thermodynamics. The	 discovery	 of	
isolated	 dynamical	 systems	 that	 can	 decrease	 entropy	 in	 violation	 of	 the	 second	 law	 of	
thermodynamics,	and	resemblances	of	these	systems	to	livings	implies	that	Life	can	slow	down	heat	
death	of	the	Universe,	and	that	can	be	associated	with	the	purpose	of	Life.			
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