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Abstract

This research work proposes a Lagrangian and Hamiltonian analysis for the unique class of
position-dependent mass oscillator characterized by a harmonic periodic solution and
parabolic potential energy and its inverted version admitting a position-dependent mass
dynamics.

1. Analysis of the class of quadratic Liénard-type harmonic nonlinear oscillator equations

This section is devoted to the analysis of a class of quadratic Liénard-type nonlinear
dissipative oscillator equations that admits exact analytical harmonic periodic solutions.
Consider the equation [1, 2]

X — 10’ ()X + 0’ xe??™) =0 @

that represents the class of equations under analysis. y and « are arbitrary parameters, and
o(x) 1s an arbitrary function of x. The dot over a symbol means differentiation with respect to
time, and prime holds for differentiation with respect to x. By restriction of ¢(x)=In f(x)

and y = —%, the equation (1),yields

(X) 2
X+ (x) X*+ f(x) =0 (2)

where f(x);t 0, is an arbitrary function of x. The equation (1) is of the general form
X+ F(X)X* +G(x)=0 (3)
for which the Lagrangian is given by [3,4]

1

L(x, x)= > x> M(x)-V(x) (4)
where
M (X) _ eZIF(x)dx (5)
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and

= I M (x)G(x)dx )

designate the position dependent mass and the potential function respectively.
The Lagrangian of the equation (1) becomes

L(X,X) = 1 X% 270 %a)zx2 (7)

Applying the Euler-Lagrange equation formula in [4]

X.+iM'(x)).(2+ 1 av(x)
2 M(x)"  M(x) ox

=0 (8)

to the equation (7), gives the equation (1) . By restricting V(x) to the harmonic potential, that
is V(x)=%m0 w”x?, with unit mass, m,=1, the equation (8) becomes identical to the

equation (2), with the position-dependent mass function M(x)=f(x). In this regard, the
equation (1) represents the unique class of position-dependent mass oscillators exhibiting not
only exact harmonic periodic solution but also a harmonic potential function.

Now, using [3]

2

H(p, X) =ﬁ(x)+v(x) )

one may deduce from (5) and (6) the Hamiltonian

2
H(p,x) = 2 2”’(X)+;a)x 10)

Let us now consider, as illustration, some specific examples of (1). Let o(x)=x. Then (2)
becomes

X — X% +w*xe?* =0 11)

The equation (10) admits the position dependent mass and the potential
—2yX 1 22
M(x)=e?*, and V(x)= SO X 12)

respectively, which provides the Lagrangian function



L(X,X) = %xze-m —%a)zxz (13)

The application of the Euler-Lagrange equation (8) to (13) gives, as expected, (11). In this
regard the Hamiltonian associated to (11) takes the form

2

H(p.x) =p7e27X +%a)zx2 (14)

So, the Hamilton equations

. oH
X = %
15
o *
OX
yield for (14)
X=pe”*
P (16)
p=—y pz o2’ _ o?x
The explicit expression for the conjugate momentum p, as a function of x and x takes then
the form
p = — (5% + w*xe?) 17)

Putting now ¢(x) = %xz , Into (1), one may obtain as equation

X — yxX2+ w’xe’* =0 (18)
The position dependent mass and the potential of (18) take then the form

M(x)=e7 jq V(x)= %a)zx2 (19)

respectively.
The associated Lagrangian becomes

L (X X) = % e —%a)zxz (20)

The application of the Euler-Lagrange equation (8)to (20) gives with satisfaction (18). So,
the associated Hamiltonian may be written as



p2 7x? 1,
H(p,x):7e +§cox (2

such that the Hamilton equations take the form

{X -’ (22)

X 2
p=—yp°xe”™ —w’x

The relation between xand p reads in this perspective
p=—xe 7" (yXP+a’e"") (23)
2. Analysis of inverted versions
Consider now the inverted version of (1)
%+ 70 (X2 + %™ =0 (24)
which gives for ¢(x) = x, the following equation
X+ 7% + o’ xe” =0 (25)
The position dependent mass and potential function of (25) may be then deduced from (4) as

2 2
@

M (x) =e? and V(x)= 2 xe” —_“_ gt 26
(%) ()= " 16,2 (26)

respectively.
Therefore, the Lagrangian for (25) may be written in the form

2 2
G _gir L yehr (27)

L(x,X) = 1 Xe + ——
2 16y 4y

In this perspective, it may be verified that the application of the Euler-Lagrange equation (8)
to (27) yields, as expected, (25). The Hamiltonian for (25) may also be computed as

2 2 2

H(p,x) :%ez’“ + 2 et -

et 28

which gives the Hamiltonian equations

{X e (29)

p =y p2 e—27x _a)2xe4yx
from which the conjugate momentum becomes



b = e (i® — wxe?) (30)

By analysis, other forms of equations are also suggested by the previous studied equations.
So, the following equations may also be considered in the perspective of this study, that is

X+ yxx% + o’xe” =0 (31
or in general

%+ 70 (X)X% + @*xe””™ =0 (32)
X — 70 (X)X + w*xe”™ =0 (33

Finally one may consider the following more generalizations

X+ 10 (X)X* + w’h(x)e’”™ =0 (34)
% — 70! (X)X + w?h(x)e”® = 0 (35)
%+ 70/ (X)X + ?h(x)e¥ "™ =0 (36)
%= 70/ ()52 + @?h(x)e7*® =0 @37)

%+ 19 (X)X* + @*h(x)e 7?™ =0 (38)

%+ 10’ (X)X + w’h(x)e 77 =0 (39)
%+ 7/ ()% + &’h(x)e 77 =0 (40)

These equations will be investigated in a subsequent work.
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