
Kalman	Folding	1.5:	Running	
Statistics
Extracting Models from Data, One Observation at a Time

Brian	Beckman

31	August	2016

Abstract
This	paper	fills	in	some	blanks	left	between	part	1	of	this	series,	Kalman	Folding	
(http://vixra.org/abs/1606.0328),	and	the	rest	of	the	papers	in	the	series.	In	part	1,	we	present	basic	Kalman	
filtering	as	a	functional	fold,	highlighting	the	advantages	of	this	form	for	hardening	code	in	a	test	environ-
ment.	In	that	paper,	we	motivated	the	Kalman	filter	as	a	natural	extension	of	the	running	average	and	
variance,	writing	both	as	functional	folds	computed	in	constant	memory.	We	expressed	the	running	statistics	
as	recurrence	relations,	where	the	new	statistic	is	the	old	statistic	plus	a	correction.	We	write	the	correction	
as	a	gain	factor	times	some	transform	of	a	residual.	The	residual	is	the	difference	between	the	current	(old)	
statistic	and	the	incoming	(new)	observation.	In	both	expressions,	for	brevity,	we	left	derivations	to	the	
reader.	Here,	we	present	those	derivations	in	full	“school-level”	detail,	along	with	some	basic	explanation	of	
the	programming	language	that	mechanizes	the	computations.	

Preliminaries
This	is	a	PDF	print	of	interactive	document	in	the	Wolfram	language	(CDF:	https://www.wolfram.com/cdf-
player/).	We	choose	this	language	because	it	excels	at	concise	expression	of	mathematics	and	it	supports	
functional	programming	well.	The	ideas	presented	here	can	be	transcribed	into	any	modern	mainstream	
language	that	supports	closures,	even	if	only	approximately.	For	example,	it	is	easy	to	write	them	in	C++11	
and	beyond,	in	Python,	in	any	modern	Lisp	such	as	Clojure,	HyLang,	LFE,	and	Common	Lisp,	not	to	mention	in	
Haskell,	Scala,	Erlang,	and	OCaml.	Much	can	be	written	without	full	closures;	function	pointers	will	suffice,	so	
they	are	easy	to	write	in	C.	

Running	Average
Consider	a	stream	of	scalar	data	or	observations,	zs,	and	a	running	average	x,	a	variable	meant	to	suggest	a	
state	variable	as	one	might	see	in	a	Kalman	filter.	Our	job	is	to	improve	the	estimate	of	this	state	as	new	
observations	arrive,	one	observation	at	a	time.	

Our	state	is	actually	a	pair	of	the	running	average	x	and	the	running	count,	n.	We	write	this	pair,	algebraically,	
as	{x, n}.	In	Wolfram,	curly	braces	enclose	sequential	(ordered)	data,	whereas	in	ordinary	mathematical	
notation,	curly	braces	enclose	unordered	sets.

Our	state	is	actually	a	pair	of	the	running	average	x	and	the	running	count,	n.	We	write	this	pair,	algebraically,	
as	{x, n}.	In	Wolfram,	curly	braces	enclose	sequential	(ordered)	data,	whereas	in	ordinary	mathematical	
notation,	curly	braces	enclose	unordered	sets.

Fold,	called	reduce	or	aggregate	in	other	programming	languages,	always	takes	three	arguments

◼ a	binary	function,	the	accumulator	function

◼ an	initial	value	of	the	state

◼ the	sequence	of	observations

As	explained	in	part	4	of	this	series	(http://vixra.org/abs/1607.0141),	there	are	few	restrictions	on	the	
sequence	of	observations:	they	can	be	distributed	in	space	(computer	memory),	in	time	(asynchronous	
observable	streams),	or	algorithmically	in	virtual	time	(lazy	infinite	streams).	The	accumulator	function	is	
binary	---	it	takes	two	arguments.	The	first	is	the	current	(old)	value	of	the	state	{x, n}	and	the	second	is	the	
current	(new)	observation	z.	The	accumulator	function	must	return	a	new	value	of	the	state,	a	new	pair	in	our	
case.	Fold	iterates	the	accumulator	function	over	all	the	observations	in	the	sequence	and	eventually	pro-
duces	the	final	value	of	the	state.	As	stated,	obviously,	it	can	only	work	on	finite	sequences	of	observations.	
Its	sister	function,	FoldList,	also	known	as	scan	or	reductions,	produces	all	the	intermediate	states	and	is	more	
applicable	to	these	situations.	There	are	more	subtleties:	we	can	distinguish	between	left	folds	and	right	
folds,	but	these	distinctions	are	not	directly	relevant	to	our	current	exposition.	

To	derive	our	recurrence	relation,	we	write	the	old	average	as	x,	the	new	observation	as	z,	the	old	count	as	n,	
the	residual	as	the	difference	between	the	new	observation	and	the	old	average,	namely	as	z - x.	The	residual	
tells	us	how	much	the	new	observation	differs	from	the	old	average.	Because	we	are	averaging	the	observa-
tions,	we	don’t	expect	the	new	observation	to	be	very	different	from	the	average,	especially	after	we	have	
accumulated	a	lot	of	observations.	Therefore,	we	can	imagine	that	the	residual	is	proportional	to	a	correction	
to	the	old	average.	The	proportionality	constant	is	called	the	gain.	

More	precisely,	we	want	the	new	average	as	the	sum	of	the	old	average	x	plus	the	gain	K	times	the	residual:

x⟵x + K (z - x) (1)

This	is	the	specification	of	a	filter,	a	generic	name	for	almost	any	procedure	that	sequentially	transforms	data,	
but	especially	for	those	that	have	multiplicative	quantities	like	K,	identifiable	as	gains.	To	solve	for	K,	we	need	
only	know	the	definition	of	the	average,	now	written	with	subscripts	for	clarity:

xn+1 =
1

n + 1
(n xn + z) (2)

The	quantity	n xn	is	the	sum	of	all	observations	prior	to	the	current	one,	z,	so	n xn + z	is	the	sum	of	all	n + 1	
observations	seen	so	far.	This	sum,	divided	by	by	n + 1,	is	the	average	of	all	the	data	seen	so	far.	Note	that	this	
definition	works	even	before	we	have	any	observations,	that	is,	when	n = 0.	A	“divide-by-zero”	error	is	not	
possible.	Therefore,	the	filter	is	self-starting.	

Combining	1	and	2,	we	get

xn+1 = xn + K (z - xn) =
n xn + z

n + 1
=

n

n + 1
xn +

1

n + 1
z (3)

Isolating	K	on	the	left	and	rearranging:

K (z - xn) =
n

n + 1
- 1 xn +

1

n + 1
z

2 kalman-folding-008-001.5.cdf

K z - K xn =
1

n + 1
z -

1

n + 1
xn

Which	is	clearly	satisfied	if	and	only	if

K =
1

n + 1
(4)

We	can	let	Wolfram	check	our	symbolic	arithmetic:

In[2]:= Solvex + K (z - x) ⩵
n x + z

n + 1
, K

Out[2]= K →
1

1 + n

◼ Folding	It
We	mechanize	the	recurrence	relation,	equation	2,	in	Wolfram	as	a	single	function	cume,	which	we	can	test	
on	sequences	of	numbers	and	later	deploy	verbatim	on	asynchronous	data	streams.	We	present	its	definition	
then	clarify	the	notation.

In[3]:= ClearAll[cume];
cume[{x_, n_}, z_] :=

WithK =
1

n + 1
,

{x + K (z - x), n + 1};

The	notation	means	that	cume[{x_,n_},z_]	is	a	function	of	two	parameters.	It’s	a	binary	function,	as	any	
foldable	accumulator	function	must	be.	The	first	parameter	is	a	pair,	{x_,n_}	denoting	the	old	state,	and	the	
second	parameter	z_	denotes	the	new	observation.	The	underscores	emphasize	that	symbols	in	the	parame-
ter	position	are	actually	pattern	variables:	at	call	sites	of	the	function,	the	pattern	variables	must	match	
actual	arguments,	where	they	are	bound	to	the	values	of	the	actual	arguments.	Wolfram	is	explicit,	in	its	
notation,	about	the	difference	between	pattern	variables	---	with	trailing	underscores	---	and	other	kinds	of	
variables	---	without	trailing	underscores.	In	fact,	any	programming	language	that	does	pattern	matching	
must	make	this	distinction,	but	most	hide	it	from	the	user,	increasing	ambiguity.	Wolfram's	explicitness	is	
refreshing;	while	it	takes	a	little	getting-used-to,	it	deepens	understanding	and	clarity.

Wolfram	will	replace	the	pattern,	cume[{x_,n_},z_],	when	matched	to	some	actual	arguments,	by	the	
right-hand	side	of	the	assignment	operator	:=,	which	evaluates	to	the	pair	{x+K(z-x),n+1},	after	defining	
the	temporary,	local	variable	K	as	the	value	1 / (n + 1),	exactly	as	derived	above.

Let’s	test	this	on	a	couple	of	samples.	Start	with	an	initial	state	---	running	average	and	count	---	of	{0,0},	and	
accumulate	into	it	the	value	1.414.	We	expect	the	new	state	---	the	new	running	average	and	count	---	to	be	
{1.414, 1}:

In[5]:= cume[{0, 0}, 1.414]

Out[5]= {1.414, 1}

If	we	accumulate	another	observation	of	1.414,	we	expect	the	average	to	be	the	same	and	the	count	to	go	up	
by	one.	So	far,	the	only	tool	we	have	to	iterate	cume	is	direct	application:

kalman-folding-008-001.5.cdf 3

If	we	accumulate	another	observation	of	1.414,	we	expect	the	average	to	be	the	same	and	the	count	to	go	up	
by	one.	So	far,	the	only	tool	we	have	to	iterate	cume	is	direct	application:

In[6]:= cume[cume[{0, 0}, 1.414], 1.414]

Out[6]= {1.414, 2}

This	is	where	Fold	comes	in:

In[7]:= Fold[cume, {0, 0}, {1.414, 1.414}]

Out[7]= {1.414, 2}

The	last	argument	to	Fold	is	the	sequence	of	observations.	We	can	get	more	adventurous	and	compute	the	
mean	of	a	random	sequence.	First,	assign	a	random	sequence	of	ten	numbers	between	-0.5	and	+0.5,	inclu-
sive	of	both	ends,	to	a	symbol,	zs

In[8]:= zs = RandomReal[{-0.5, 0.5}, 10]

Out[8]= {-0.175225, 0.00125951, 0.183725, 0.0680458,
-0.460934, -0.186079, 0.492767, -0.404038, 0.48475, -0.354006}

We	expect	the	average	of	zs	to	be	closer	to	zero	than	most	of	the	data:

In[9]:= Fold[cume, {0, 0}, zs]

Out[9]= {-0.0349735, 10}

Finally	we	check	the	result	against	Wolfram’s	built-in:

In[10]:= Mean[zs]

Out[10]= -0.0349735

Running	Variance
Variance	is	a	measure	of	volatility	or	dispersion.	It	is	defined	as	the	sum	of	squared	residuals	of	the	observa-
tions	from	their	mean,	divided	by	the	count	less	one,	Bessel’s	correction	
(https://en.wikipedia.org/wiki/Bessel%27	s_correction).	

We	now	write	the	mean	of	the	first	n	observations	as	zn	instead	of	as	xn	because	we	want	the	symbol	x	to	
denote	the	state	of	our	filter,	which,	this	time,	will	be	the	running	variance.	

By	definition,	the	sum	of	squared	residuals,	Sn =
def

∑i=1
n zi - zn2,	is	the	variance	times	the	length	less	one.	Let's	

check	that	assertion	with	a	new	fold,	this	time,	over	an	anonymous	function.	Recall	that	the	first	argument	of	
any	fold	must	be	an	accumulator	function,	a	function	of	two	arguments:	the	current	accumulation	and	the	
new	datum.	Let's	write	an	anonymous	accumulator	function	that	computes	the	sum	of	squared	residuals.	
Wolfram	lets	us	write	anonymous	function	values	literally,	for	instance,	as	{s, z}, s + (z -Mean[zs])2.	A	literal	
function	value	like	this	is	no	different	in	kind	from	a	literal	integer	like	42	or	a	literal	sequence	like	{6, 7, 42}.	

Let's	parse	this	literal-function	syntax.	The	first	sequence,	{s, z},	to	the	left	of	the	function	arrow,	,,	is	a	
sequence	of	formal	parameters.	These	are	not	pattern	variables	in	Wolfram,	so	they	don't	have	underscores.	
Wolfram	does	not	support	pattern-matching	for	literal	functions,	therefore	the	formal	parameters	should	not	
be	pattern	variables.	The	right-hand	side	of	the	function	arrow	is	the	replacement	value	we	want,	presuming	
substitution	of	actual-argument	values	for	the	formal	parameters.	In	our	case,	the	replacement	value	is	
s + (z -Mean[zs])2,	which	clearly	accumulates	the	new	squared	residual	(z -Mean[zs])2	into	the	old	running	
sum	s,	returning	the	new	value	of	the	running	sum.

4 kalman-folding-008-001.5.cdf

Let's	parse	this	literal-function	syntax.	The	first	sequence,	{s, z},	to	the	left	of	the	function	arrow,	,,	is	a	
sequence	of	formal	parameters.	These	are	not	pattern	variables	in	Wolfram,	so	they	don't	have	underscores.	
Wolfram	does	not	support	pattern-matching	for	literal	functions,	therefore	the	formal	parameters	should	not	
be	pattern	variables.	The	right-hand	side	of	the	function	arrow	is	the	replacement	value	we	want,	presuming	
substitution	of	actual-argument	values	for	the	formal	parameters.	In	our	case,	the	replacement	value	is	
s + (z -Mean[zs])2,	which	clearly	accumulates	the	new	squared	residual	(z -Mean[zs])2	into	the	old	running	
sum	s,	returning	the	new	value	of	the	running	sum.

We	point	out	that	this	literal	function	is	a	closure	because	it	closes	over	the	variable	zs	(and,	more	pedanti-
cally,	even	over	the	functions	Mean,	+,	and	squaring,	which,	like	all	functions,	anonymous	or	not,	are	just	
values	like	numbers	in	any	functional	programming	language).	A	function	is	said	to	close	over	a	variable	if	that	
variable	does	not	appear	in	the	formal	parameter	list	of	the	function.	Such	variables	are	called	free	variables.	
That’s	pretty	much	all	there	is	to	this	fancy	lingo	about	closures.	Well,	there	is	the	somewhat	subtle	issue	of	
dynamic	versus	lexical	binding,	also	known	as	scoping	(https://goo.gl/XiOSHx).	But	this	is	not	germane	to	this	
paper	and	we	may	assume	that	all	free	variables	mean	just	what	they	appear	to	mean.

The	only	thing	left	for	us	to	do	to	verify	that	the	sum	of	squared	residuals,	Sn = ∑i=1
n zi - zn2,	is	the	variance	

times	the	length	less	one	is	to	fold	our	anonymous,	binary,	literal	function	over	our	observations	zs:

In[11]:= Fold{s, z} 2 s + (z - Mean[zs])2, 0, zs ⩵ Variance[zs] * (Length[zs] - 1)

Out[11]= True

Wolfram’s	double	equals	is	a	Boolean	operator	that	produces	True	if	its	left-	and	right-hand	sides	are	numeri-
cally	equal.

We’re	now	equipped	to	pursue	our	real	objective,	to	write	the	running	variance	as	a	recurrence	relation:	the	
old	variance	plus	a	correction	that	depends	only	on	old	values,	written	as	a	filter:	a	gain	times	some	transform	
of	the	residual	of	the	observation	from	its	mean.

Start	with	a	recurrence	for	the	sum	of	squared	residuals:	

Sn =
i=1

n

(zi - zn)2 (5)

Because	our	algorithm	must	run	in	constant	memory,	we	don’t	have	all	the	zi.	Just	as	with	the	running	mean,	
however,	where	we	implicitly	keep	the	sum	of	all	data	as	n xn,	we	can	find	ways	to	keep	the	needed	sums	for	
Sn.	Expand	the	square:

Sn =
i=1

n

zi2 - 2 zi zn + zn2

Distribute	the	summation

Sn =
i=1

n

zi2 -
i=1

n

2 zi zn +
i=1

n

zn2

Factor	out	constants	(values	that	don’t	depend	on	the	summation	index,	i):

Sn =
i=1

n

zi2 - 2 zn
i=1

n

zi + zn2
i=1

n

1

Observe	that	∑i=1
n zi = n zn,	as	before	with	the	running	mean,	and	that	∑i=1

n 1 = n.	We	get

Sn =
i=1

n

zi2 - 2 n zn2 + n zn2
i=1

n

1 =
i=1

n

zi2 - n zn2 (6)

kalman-folding-008-001.5.cdf 5

Sn =
i=1

n

zi2 - 2 n zn2 + n zn2
i=1

n

1 =
i=1

n

zi
2 - n z

_
n
2 (7)

This	is	a	great	result.	It	means	that	we	can	accumulate	the	running	sum-of-squared-residuals	just	by	accumulat-
ing	the	running	squares,	a	trivial	extension	to	accumulating	the	running	sum,	and	by	accumulating	the	
running	mean	and	count,	which	we	already	know	how	to	do.	

This	form	suffers	from	a	numerical	hazard,	however:	catastrophic	cancellation.	Squaring	first,	then	subtract-
ing,	can	lose	significant	digits.	By	writing	the	sum	of	squared	residuals	in	recurrent	form,	as	the	old	value	plus	
a	correction,	we	can	subtract	first	and	then	square,	holding	off	the	numerical	dragons	just	a	little	longer.	

We’re	looking	for	a	form	like	this

Sn+1 = Sn + K (z - zn)2

Substituting	Sn	from	equation	7	and	expanding	the	square,	we	get

Sn+1 =
i=1

n

zi2 - n zn2 + K z2 - 2 K z zn + K zn2 (8)

Invoking	equation	7	again,	this	time	for	n + 1,	here	is	the	new	sum	of	squared	residuals:

Sn+1 =
i=1

n+1

zi2 - (n + 1) zn+12 =
i=1

n

zi2 + z2 - (n + 1) zn+12 (9)

The	second	equality	holds	because	the	current	observation,	z	is	the	same	as	the	(n + 1)-st	observation,	zn+1.	
Expand	zn+12	from	its	definition	in	equation	2:

zn+12 =
1

n + 1
(n zn + z)

2
=

1

n + 1

2
(n zn + z)2 =

1

n + 1

2
n2 zn2 + 2 n zn z + z2

Substituting	this	form	into	equation	9	gives

Sn+1 =
i=1

n

zi2 + z2 -
1

n + 1
n2 zn2 + 2 n zn z + z2

=
i=1

n

zi2 + z2 -
n2 zn2

n + 1
-
2 n zn z

n + 1
-

z2

n + 1

The	easiest	way	to	spot	K	is	to	isolate	the	only	terms	that	depend	on	z2:

Sn+1 =
i=1

n

zi2 -
n2 zn2

n + 1
-
2 n zn z

n + 1
+ -

z2

n + 1
+ z2

=
i=1

n

zi2 -
n2 zn2

n + 1
-
2 n zn z

n + 1
+

n

n + 1
z2

Examining	equation	8	suggests	that	K = n
n+1

.		Does	this	hold	up?	The	second	term,	- 2 n zn z
n+1

,	is	clearly	

-2 K z zn,	so	we’re	left	only	to	check	the	terms	that	depend	on	zn2,	namely	

-n zn2 + K zn2 = -
n2 zn2

n + 1
= -n zn2 +

n

n + 1
zn2 =

-n (n + 1) + n

n + 1
zn2

and	it	checks	out.	We	conclude	that	

6 kalman-folding-008-001.5.cdf

K =
n

n + 1
(10)

◼ Folding	It
The	following	fold	recurrently	computes	mean,	count,	and	variance,	using	both	gains	from	equations	4	and	10:

In[16]:= ClearAll[cume];
cume[{var_, x_, n_}, z_] :=

WithKforMean =
1

n + 1
,

With{KforVariance = n KforMean},

Withx2 = x + KforMean (z - x),

ssr2 = (n - 1) var + KforVariance (z - x)2,

ssr2

Max[1, n]
, x2, n + 1;

Fold[cume, {0, 0, 0}, zs]

Out[18]= {0.118924, -0.0349735, 10}

We	avoid	divide-by-zero	when	there	are	no	observations	by	a	trick:	dividing	the	sum	of	squared	residuals	by	
the	max	of	1	and	n.	This	trick	makes	the	filter	self-starting	at	the	expense	of	defining	an	artificial	value	for	the	
variance	after	there	is	only	one	observation.	

Now	check	that	the	variance,	the	first	part	of	the	sequence	returned	by	the	fold	above,	equals	the	value	
returned	by	Wolfram’s	built-in	variance	function:	

In[15]:= Fold[cume, {0, 0, 0}, zs]〚1〛 === Variance[zs]

Out[15]= True

kalman-folding-008-001.5.cdf 7

