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Abstract

The objective in this paper is to show that the generalized Duffing-van der Pol and modified Emden type
equations consist of limiting cases of the exactly integrable Monsia et al.[2] nonlinear oscillator equation by
expanding the exponential-type damping and restoring forces in a Taylor series.

1. Consider the exactly solvable mixed Liénard-type nonlinear dissipative equation [1-5]
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where prime denotes differentiation with respect to x, and dot over a symbol means
differentiation with respect to time. y, x« and o are arbitrary parameters. ¢(x) is an arbitrary

function of x.

By expanding the exponential functions
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as y -0, the equation (1) becomes
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By neglecting the term »p'(x)x?, as y —0, the equation (4) takes the form
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The equation (5) may give, following the number of terms to be kept in the series expansion,
the desired generalized Duffing-van der Pol and modified Emden type equations.
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1.1 Generalized Duffing-van der Pol type equation

Let o(x) =x?. Then, keeping the first two terms in the series expansion of the exponential-type

damping force and the first three terms in the series expansion of the exponential-type
restoring force, the equation (5) immediately yields the generalized Duffing-van der Pol type
equation under question

K4+ X1+ %) + 0* XA+ 2% +2y°x*) =0 (6)

The general exact solution of (6) is, in principle, secured by the exact analytical solution of
(1) under g(x)=x?,as y —0.

1.2 Generalized modified Emden type equation

By keeping the first two terms in the series expansion of the exponential-type damping force
and the first three terms in the series expansion of the exponential-type restoring force, the
equation (5) gives with ¢(x) = x, the following form of the modified Emden type equation
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The general exact solution of the equation (7) is also secured, in principle, by the exact
solution of the equation (1) under ¢(x) = x. Other forms of generalized Duffing-van der Pol
and modified Emden type differential equations may be obtained by keeping the subsequent
number of terms in the Taylor expansion.

2. In [2], it was shown that the exactly integrable mixed Liénard-type nonlinear oscillator
equation [1]
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may give, under the choice ¢(x)=In(f(x)), f(x)=g(x)=x, and 1=y, the generalized modified
Emden type nonlinear oscillator equation
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which admits a general exact analytical solution following the general linearizing
transformation [1]

y(z) L dr =t (10)
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where | is an arbitrary parameter, and y(z) satisfies the damped linear harmonic oscillator
equation
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and prime designates here differentiation with respect to variable . So, the general exact
solution of (9) may be written

1
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where the function r=g(t) satisfies
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dt

The general exact analytical solution of (9) may be then written for all the three distinct
damped dynamical regimes of (11), that is for the over-damped, critically damped and
under-damped oscillations.
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