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Abstract 

The objective in this paper is to show that the generalized Duffing-van der Pol and modified Emden type 

equations consist of limiting cases of the exactly integrable Monsia et al.[2] nonlinear oscillator equation by 

expanding the exponential-type damping and restoring forces in a Taylor series.  

1. Consider the exactly solvable mixed Liénard-type nonlinear dissipative equation [1-5] 
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where prime denotes differentiation with respect to x , and dot over a symbol means 

differentiation with respect to time.  ,   and   are arbitrary parameters. )(x  is an arbitrary 

function of x . 

By expanding the exponential functions  
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as 0 , the equation (1) becomes  

0...)
!3

)(8

2

)(4
)(21(...)

!3

)(

2

)(
)(1()('

3322
2

3322
2 

xx
xx

xx
xxxxx





        (4) 

By neglecting the term 2)(' xx  , as 0 , the equation (4) takes the form 

0...)
!3

)(8

2

)(4
)(21(...)

!3

)(

2

)(
)(1(

3322
2

3322


xx

xx
xx

xxx





           (5) 

The equation (5) may give, following the number of terms to be kept in the series expansion, 

the desired generalized Duffing-van der Pol and modified Emden type equations.  
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1.1 Generalized Duffing-van der Pol type equation 

Let 2)( xx  . Then, keeping the first two terms in the series expansion of the exponential-type 

damping force and the first three terms in the series expansion of the exponential-type 

restoring force, the equation (5) immediately yields the generalized Duffing-van der Pol type 

equation under question 

0)221()1( 42222  xxxxxx              (6) 

The general exact solution of (6) is, in principle, secured by the exact analytical solution of 

(1) under 2)( xx  , as 0 .    

1.2 Generalized modified Emden type equation 

By keeping the first two terms in the series expansion of the exponential-type damping force 

and the first three terms in the series expansion of the exponential-type restoring force, the 

equation (5) gives with xx )( , the following form of the modified Emden type equation 

0)221()1( 222  xxxxxx               (7) 

The general exact solution of the equation (7) is also secured, in principle, by the exact 

solution of the equation (1) under xx )( . Other forms of generalized Duffing-van der Pol 

and modified Emden type differential equations may be obtained by keeping the subsequent 

number of terms in the Taylor expansion. 

2. In [2], it was shown that the exactly integrable mixed Liénard-type nonlinear oscillator 

equation [1]  
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may give, under the choice ))(ln()( xfx  , xxgxf  )()( , and l , the generalized modified 

Emden type nonlinear oscillator equation  
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which admits a general exact analytical solution following the general linearizing 

transformation [1] 
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 where l  is an arbitrary parameter, and )(y  satisfies the damped linear harmonic oscillator 

equation 
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and prime designates here differentiation with respect to variable  . So, the general exact 

solution of (9) may be written  
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where the function )(t   satisfies 
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The general exact analytical solution of (9) may be then written for all the three distinct 

damped dynamical regimes of  (11) , that is for the over-damped, critically damped and 

under-damped oscillations.   
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