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Abstract

In this paper, we give an alternate and simple proofs for Sear’s three
term 3φ2 transformation formula, Jackson’s 3φ2 transformation formula
and for a nonterminating form of the q-Saalschütz sum by using q-
exponential operator techniques. We also give an alternate proof for a
nonterminating form of the q-Vandermonde sum. We also obtain some
interesting special cases of all the three identities, some of which are
analogous to the identities stated by Ramanujan in his lost notebook.
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1 Introduction

In 1951 Sears [15] has established the following useful three term
transformation formula for 3φ2 series.

Theorem 1.1.

∞∑
n=0

(a, b, c)n

(q, e, f)n

(
ef

abc

)n

=
(b, e/a, f/a, ef/bc)∞
(e, f, b/a, ef/abc)∞

∞∑
n=0

(a, e/b, f/b)n

(q, aq/b, ef/bc)n

qn

+
(a, e/b, f/b, ef/ac)∞
(e, f, a/b, ef/abc)∞

∞∑
n=0

(b, e/a, f/a)n

(q, bq/a, ef/ac)n

qn, (1.1)
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where |q| < 1,

∣∣∣∣ efabc
∣∣∣∣ < 1 and as usual

(a)∞ := (a; q)∞ :=
∞∏

n=0

(1− aqn),

(a)n := (a; q)n :=
(a)∞

(aqn)∞
, n is an integer,

(a1, a2, a3, ..., am)n = (a1)n(a2)n(a3)n...(am)n, n is an integer or ∞.

Recently, Liu [9] has established (1.1) by parameter augmentation method.
This formula was used by Agarwal [1] to deduce an identity of Andrews [2,
Thoerem 1] which was instrumental in deriving sixteen partial theta function
identities of Ramanujan found in his lost notebook [4][11].

The main objective of this paper is to give an alternate proof for (1.1) and to
give proofs for Jackson’s 3φ2 transformation formula and for a nonterminating
form of the q-Saalschütz sum found in [5] by using q-exponential operator
techniques. And also we give a simple proof for a nonterminating form of the
q-Vandermonde sum. Also we obtain a number of interesting applications of
these formulas.

We first list some definitions and identities that we use in the remainder of
this paper. For any function f , the q-difference operator Dq,a is defined by

Dq,a{f(a)} =
f(a)− f(aq)

a
.

The q-shift operator ηa is defined by

ηa{f(a)} = f(aq)

and the operator θa is given by

θa = η−1Dq,a.

The operator identity T (bDq,a) [9] is defined by

T (bDq,a) =
∞∑

n=0

(bDq,a)
n

(q; q)n

(1.2)

and the basic identity for T (bDq,a) operator is

T (bDq,a)

{
1

(as, at; q)∞

}
=

(abst; q)∞
(as, at, bs, bt; q)∞

. (1.3)
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The Cauchy operator T (a, b;Dq,c) [6] is defined by

T (a, b;Dq,c) :=
∞∑

n=0

(a; q)n

(q; q)n

(bDq,c)
n. (1.4)

The two basic identities for the cauchy operator (1.4) are

T (a, b;Dq,c)

{
1

(ct; q)∞

}
=

(abt; q)∞
(bt, ct; q)∞

, |bt| < 1, (1.5)

T (a, b;Dq,c)

{
(cv; q)∞

(cs, ct; q)∞

}
=

(abs, cv; q)∞
(bs, cs, ct; q)∞

∞∑
n=0

(a, cs, v/t)n

(q, cv, abs)n

(bt)n. (1.6)

The q-exponential operator R(bDq,a) [7] is defined by

R(bDq,a) =
∞∑

n=0

(−1)nq(
n
2 )bn

(q; q)n

Dn
q,a. (1.7)

The two basic identities for R(bDq,a) are

R(bDq,a)

{
1

(at; q)∞

}
=

(bt; q)∞
(at; q)∞

, (1.8)

and

R(bDq,a)

{
(av; q)∞

(at, as; q)∞

}
=

(bs; q)∞
(as; q)∞

∞∑
n=0

(v/t, b/a)n

(q, bs)n

(at)n. (1.9)

q-binomial theorem [5, equation(II.3), p.354] is given by

∞∑
n=0

(a)n

(q)n

zn =
(az)∞
(z)∞

. (1.10)

Heine’s transformations for 2φ1-series [5, equation(III.1), (III.2), p.359] is given
by

∞∑
n=0

(α, β)n

(q, γ)n

zn =
(β, αz)∞
(γ, z)∞

∞∑
n=0

(γ/β, z)n

(q, αz)n

βn. (1.11)

The Rogers-Fine identity [12, equation(12), p.576] is given by

∞∑
n=0

(α)n

(β)n

zn =
∞∑

n=0

(α, αzq/β)nβ
nznqn2−n(1− αzq2n)

(β)n(z)n+1

. (1.12)
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Sears’ transformation for 3φ2-series [5, equation (III.9), p.359] is given by

∞∑
n=0

(α, β, γ)n

(q, δ, ε)n

(
δε

αβγ

)n

=
(ε/α, δε/βγ)∞
(ε, δε/αβγ)∞

∞∑
n=0

(α, δ/β, δ/γ)n

(q, δ, δε/βγ)n

( ε
α

)n

. (1.13)

Three-term 2φ1 transformation formula [5, equation (III.31), p.363] is given by

∞∑
n=0

(α, β)n

(q, γ)n

zn =
(αβz/γ, q/γ)∞
(αz/γ, q/α)∞

∞∑
n=0

(γ/α, γq/αβz)n

(q, γq/αz)n

(
βq

γ

)n

− (β, q/γ, γ/α, αz/q, q2/αz)∞
(γ/q, βq/γ, q/α, αz/γ, γq/αz)∞

∞∑
n=0

(αq/γ, βq/γ)n

(q, q2/γ)n

zn. (1.14)

Jackson’s transformation [3, p. 526] is given by

∞∑
n=0

(α, β)n

(q, γ)n

zn =
(αz)∞
(z)∞

∞∑
n=0

(α, γ/β)n(−βz)n

(γ, αz, q)n

qn(n−1)/2. (1.15)

Ramanujan’s [10, Ch. 16] definition of the theta function is

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (1.16)

The Jacobi’s triple product identity [8] is given by

∞∑
n=−∞

qn2

zn = (−qz,−q/z, q2; q2)∞, z 6= 0. (1.17)

If we set qz = a, q/z = b in (1.17), we obtain

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, (1.18)

which is the Jacobi’s triple product identity in Ramanujan’s notation [10, Ch.
16, entry 19]. It follows from (1.16) and (1.18) that [10, Ch. 16, entry 22]

ϕ(q) := f(q, q) = 1 + 2
∞∑

n=1

qn2

=
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

, (1.19)

ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (1.20)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞ (1.21)
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and
χ(q) := (−q; q2). (1.22)

Ramanujan’s functions are given by [4][11]

G6(q) := (q3; q6)2
∞(q6; q6)∞ =

∞∑
n=−∞

(−1)nq3n2

= ϕ(−q3), (1.23)

H6(q) := (q; q6)∞(q5; q6)∞(q6; q6)∞ =
∞∑

n=−∞

(−1)nq3n2−2n = f(−q,−q5)

(1.24)
and

J6(q) := (−q; q3)∞(−q2; q3)∞(q3; q3)∞) =
∞∑

n=0

qn(3n+1)/2 = f(q, q2). (1.25)

2 Main Theorems

In this section, we prove the main results.

Proof of theorem 1.1. Setting α = b, β = a/c, γ = qb/c and z = q in (1.14), we
obtain

∞∑
n=0

(b, a/c)n

(q, qb/c)n

qn =
(a, c/b)∞
(c, q/b)∞

∞∑
n=0

(q/a)n

(q)n

(a
b

)n

− (a/c, c/b, b)∞
(b/c, a/b, c)∞

∞∑
n=0

(c, a/b)n

(q, qc/b)n

qn. (2.1)

On using q-binomial theorem for the first series on the right side of (2.1), we
obtain

∞∑
n=0

(b, a/c)n

(q, qb/c)n

qn +
(a/c, c/b, b)∞
(b/c, a/b, c)∞

∞∑
n=0

(c, a/b)n

(q, qc/b)n

qn =
(a, c/b)∞
(c, a/b)∞

. (2.2)

divide the identity (2.2) throughout by (a/c, c/b, b)∞ to obtain

(a)∞
(b, c, a/b, a/c)∞

=
1

(b, c/b)∞

∞∑
n=0

(b)nq
n

(q, qb/c)n(aqn/c)∞

+
1

(c, b/c)∞

∞∑
n=0

(c)nq
n

(q, qc/b)n(aqn/b)∞
. (2.3)
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Applying T (d, e;Dq,a) to both the sides of the identity (2.3) and using (1.5)
and (1.6), we obtain

(a, de/b)∞
(b, c, a/b, a/c, e/b)∞

∞∑
n=0

(d, a/b, c)n

(q, de/b, a)n

(e
c

)n

=
1

(b, c/b)∞

∞∑
n=0

(b)n(deqn/c)∞q
n

(q, qb/c)n(aqn/c, eqn/c)∞

+
1

(c, b/c)∞

∞∑
n=0

(c)n(deqn/b)∞q
n

(q, qc/b)n(aqn/b, eqn/b)∞
. (2.4)

Multiply the identity (2.4) throughout by (b, c, a/b, a/c, e/b)∞/(a, de/b)∞ to
obtain

∞∑
n=0

(d, a/b, c)n

(q, de/b, a)n

(e
c

)n

=
(c, a/b, e/b, de/c)∞
(a, c/b, e/c, de/b)∞

∞∑
n=0

(b, a/c, e/c)n

(q, qb/c, de/c)n

qn

+
(b, a/c)∞
(a, b/c)∞

∞∑
n=0

(c, a/b, e/b)n

(q, qc/b, de/b)n

qn. (2.5)

Change a to A, b to C, c to B, d to A/D and e to E in (2.5) to obtain

∞∑
n=0

(B,A/D,A/C)n

(q, A,AE/CD)n

(
E

B

)n

=
(B,A/C,E/C,AE/BD)∞
(A,B/C,E/B,AE/CD)∞

∞∑
n=0

(C,A/B,E/B)n

(q, Cq/B,AE/BD)n

qn

+
(C,A/B)∞
(A,C/B)∞

∞∑
n=0

(B,A/C,E/C)n

(q, Bq/C,AE/CD)n

qn. (2.6)

Setting α = B, β = A/D, γ = A/C, δ = A and ε = AE/CD in (1.13),
using the resulting identity on the left side of (2.6) and then multiplying the
resulting identity throughout by (E/B,AE/CD)∞/(E,AE/BCD)∞; change
A to e, B to b, C to a, D to c and E to f in the resulting identity, we obtain
(1.1).

Remark 1. The identity (2.3) can be used to prove Lemma 2.1 of
Somashekara, Narasimha Murthy and Shalini [13], which played a key role in
giving a unified approach to the proofs of the reciprocity theorem of Ramanujan
and its generalizations.
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Remark 2.The identity (2.3) can also be used to prove Theorem 2.2 of
Somashekara, Kim, Kwon and Shalini [14], which played a key role in giving
proofs for ten identities of Ramanujan found in his lost notebook [4].

Theorem 2.1. [5, equation III.5, p. 359] We have

∞∑
n=0

(a, b)n

(q, c)n

zn =
(abz/c)∞
(bz/c)∞

∞∑
n=0

(a, c/b, 0)n

(q, c, cq/bz)n

qn

+
(a, bz, c/b)∞
(c, z, c/bz)∞

∞∑
n=0

(z, abz/c, 0)n

(q, bz, bzq/c)n

qn. (2.7)

Proof. Applying R(dDq,a) to both the sides of the identity (2.3) and using
(1.8) and (1.9), we obtain

(d/c)∞
(b, c, a/c)∞

∞∑
n=0

(b, d/a)n

(q, d/c)n

(a
b

)n

=
1

(b, c/b)∞

∞∑
n=0

(b)n(dqn/c)∞
(q, bq/c)n(aqn/c)∞

qn

+
1

(c, b/c)∞

∞∑
n=0

(c)n(dqn/b)∞
(q, cq/b)n(aqn/b)∞

qn. (2.8)

Multiply the identity (2.8) throughout by (b, c, a/c)∞/(d/c)∞ to obtain

∞∑
n=0

(b, d/a)n

(q, d/c)n

(a
b

)n

=
(c)∞

(c/b)∞

∞∑
n=0

(b, a/c, 0)n

(q, bq/c, d/c)n

qn

+
(b, a/c, d/b)∞

(a/b, b/c, d/c)∞

∞∑
n=0

(c, a/b, 0)n

(q, cq/b, d/b)n

qn. (2.9)

Change a to az, b to a, c to abz/c and d to abz in (2.9) to obtain (2.7).

Theorem 2.2. [5, equation II.23, p. 356] We have

∞∑
n=0

(a, b)n

(q, c)n

qn +
(q/c, a, b)∞

(c/q, aq/c, bq/c)∞

∞∑
n=0

(aq/c, bq/c)n

(q, q2/c)n

qn =
(q/c, abq/c)∞
(aq/c, bq/c)∞

. (2.10)

Proof. Change lower case letters to upper case letters in (2.2) and then change
B to a, A/C to b and Bq/C to c to obtain (2.10).

Theorem 2.3. [5, equation II.24, p. 356] We have

∞∑
n=0

(a, b, c)n

(q, e, f)n

qn +
(q/e, a, b, c, qf/e)∞

(e/q, aq/e, bq/e, cq/e, f)∞

∞∑
n=0

(aq/e, bq/e, cq/e)n

(q, q2/e, qf/e)n

qn

=
(q/e, f/a, f/b, f/c)∞
(aq/e, bq/e, cq/e, f)∞

, (2.11)

where ef=abcq.
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Proof. Divide (2.3) throughout by (a)∞ to obtain

1

(b, c, a/b, a/c)∞
=

1

(b, c/b)∞

∞∑
n=0

(b)nq
n

(q, qb/c)n(aqn/c, a)∞

+
1

(c, b/c)∞

∞∑
n=0

(c)nq
n

(q, qc/b)n(aqn/b, a)∞
. (2.12)

Applying T (dDq,a) to both the sides of the identity (2.12) and using (1.3), we
obtain

(ad/bc)∞
(b, c, a/b, a/c, d/b, d/c)∞

=
1

(b, c/b)∞

∞∑
n=0

(b)n(adqn/c)∞
(q, bq/c)n(aqn/c, a, dqn/c, d)∞

qn

+
1

(c, b/c)∞

∞∑
n=0

(c)n(adqn/b)∞
(q, qc/b)n(aqn/b, a, dqn/b, d)∞

qn. (2.13)

Multiply the identity (2.13) throughout by (a, b, d, a/c, c/b, d/c)∞/(ad/c)∞ to
obtain

∞∑
n=0

(b, a/c, d/c)nq
n

(q, bq/c, ad/c)n

+
(c/b, b, a/c, d/c, ad/b)∞
(b/c, c, a/b, d/b, ad/c)∞

∞∑
n=0

(c, a/b, d/b)nq
n

(q, qc/b, ad/b)n

=
(c/b, ad/bc, d, a)∞
(c, a/b, d/b, ad/c)∞

. (2.14)

Change lower case letters to upper case letters in (2.14) and then change B to
a, A/C to b, D/C to c, Bq/C to e and AD/C to f to obtain (2.11).

3 Some Applications of Main Results

In this section, we derive some interesting special cases of the main identities.
These special cases are found to be analogues to some identities of Ramanujan
found in his lost notebook [4][11].

Setting a = C, b = B/A, c = D and z = A in (2.7), we obtain

∞∑
n=0

(C,B/A)n

(q,D)n

An =
(BC/D)∞
(B/D)∞

∞∑
n=0

(C,AD/B)n

(q,D, qD/B)n

qn

+
(B,C,AD/B)∞
(A,D,D/B)∞

∞∑
n=0

(A,BC/D)n

(q, B, qB/D)n

qn. (3.1)
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Change B to β, C to τ , D to τq and then let A→ 0 in (3.1) to obtain

∞∑
n=0

(−1)nβnqn(n−1)/2

(q; q)n(1− τqn)
=

(β/q)∞
(β/τq)∞

∞∑
n=0

qn

(q; q)n(τq2/β)n(1− τqn)

+
(1− β/q)(β)∞

(τq/β)∞

∞∑
n=0

qn

(q; q)n(β/τ)n(1− βqn−1)
. (3.2)

Change q to q2 and set τ = −1 and β = −q3 in (3.2) to obtain

∞∑
n=0

qn2+2n

(q2; q2)n(1 + q2n)
=

(−q; q2)∞
(q; q2)∞

∞∑
n=0

q2n

(q; q)2n−1(1− q4n)

− (−q; q2)∞
(q; q2)∞

∞∑
n=0

q2n+1

(q; q)2n(1− q4n+2)
. (3.3)

Use (1.22) to obtain

∞∑
n=0

qn2+2n

(q2; q2)n−1(1− q4n)
=

χ(q)

χ(−q)

∞∑
n=0

q2n

(q; q)2n−1(1− q4n)

− χ(q)

χ(−q)

∞∑
n=0

q2n+1

(q; q)2n(1− q4n+2)
.

Setting α = B/A, β = C, γ = D and z = A in (1.11), we obtain
∞∑

n=0

(B/A,C)n

(q,D)n

An =
(B,C)∞
(A,D)∞

∞∑
n=0

(A,D/C)n

(q, B)n

Cn. (3.4)

Using (3.4) in (3.1) and then multiplying the resulting identity throughout by
(A,D)∞/(B,C)∞, we obtain

∞∑
n=0

(D/C,A)n

(q, B)n

Cn =
(A,D,BC/D)∞
(B,C,B/D)∞

∞∑
n=0

(C,AD/B)n

(q,D,Dq/B)n

qn

+
(AD/B)∞
(B/D)∞

∞∑
n=0

(A,BC/D)n

(q, B, qB/D)n

qn. (3.5)

Change q to q2 and set A = t, B = −aq3, C = −a and D = −aq2 in (3.5) and
then let t→ 0; divide the resulting identity throughout by (1 + aq), we obtain

∞∑
n=0

(−1)nan

(−aq; q2)n+1

=
1

(q; q2)∞

∞∑
n=0

q2n

(q; q)2n(1 + aq2n)

− 1

(q; q2)∞

∞∑
n=0

q2n+1

(q; q)2n+1(1 + aq2n+1)
. (3.6)
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In Rogers-Fine identity, change q to q2, set α = 0, β = −aq3 and z = −a;
multiply the resulting identity throughout by 1/(1 + aq) to obtain

∞∑
n=0

(−1)nan

(−aq; q2)n+1

=
∞∑

n=0

a2nq2n2+n

(−a; q2)n+1(−aq; q2)n+1

=
∞∑

n=0

a2nq2n2+n

(−a; q)2n+2

=
∞∑

n=0

a2nq2n2+n((1 + aq2n+1)− aq2n+1)

(−a; q)2n+2

=
∞∑

n=0

a2nq2n2+n

(−a; q)2n+1

−
∞∑

n=0

a2n+1q2n2+3n+1

(−a; q)2n+2

=
∞∑

n=0

(−1)nanqn(n+1)/2

(−a; q)n+1

. (3.7)

Use (3.7) in (3.6) and also use (1.21) to obtain

∞∑
n=0

(−1)nanqn(n+1)/2

(−a; q)n+1

=
f(−q2)

f(−q)

∞∑
n=0

q2n

(q; q)2n(1 + aq2n)

− f(−q2)

f(−q)

∞∑
n=0

q2n+1

(q; q)2n+1(1 + aq2n+1)
. (3.8)

Change q to q2, set A = t, B = aq3, C = −aq and D = −aq3 in (3.5); let
t → 0 in the resulting identity; multiply the resulting identity throughout by
1/(1− aq) and also use (1.21) to obtain on some simplifications

∞∑
n=0

(−1)nanqn

(aq; q2)n+1

=
f(−q2)

f(−q4)

∞∑
n=0

q2n

(q4; q4)n(1− a2q4n+2)
. (3.9)

In Rogers-Fine identity, replace q by q2, set α = 0, β = aq3 and z = −aq and
then multiply the resulting identity throughout by 1/(1− aq) to obtain

∞∑
n=0

(−1)nanqn

(aq; q2)n+1

=
∞∑

n=0

(−1)na2nq2n2+2n

(a2q2; q4)n+1

. (3.10)

Use (3.10) in (3.9) to obtain

∞∑
n=0

(−1)na2nq2n2+2n

(a2q2; q4)n+1

=
f(−q2)

f(−q4)

∞∑
n=0

q2n

(q4; q4)n(1− a2q4n+2)
. (3.11)
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Change q to q2, set A = t, B = aq3, C = −aq and D = −aq3 in (3.5);
multiply the resulting identity throughout by 1/(1− aq) to obtain

∞∑
n=0

(t; q2)n(−aq)n

(aq; q2)n+1

=
(t; q2)∞

2(−q2; q2)∞

∞∑
n=0

(−t; q2)nq
2n

(q4; q4)n(1 + aq2n+1)

+
(−t; q2)∞

2(−q2; q2)∞

∞∑
n=0

(t; q2)nq
2n

(q4; q4)n(1− aq2n+1)
. (3.12)

Set a = −1 and t = q in (3.12) to obtain

∞∑
n=0

(q; q2)nq
n

(−q; q2)n+1

=
(q; q2)∞

2(−q2; q2)∞

∞∑
n=0

(−q; q2)nq
2n

(q4; q4)n(1− q2n+1)

+
(−q; q2)∞

2(−q2; q2)∞

∞∑
n=0

(q; q2)nq
2n

(q4; q4)n(1 + q2n+1)
. (3.13)

In Rogers-Fine identity, replace q by q2, set α = z = q and β = −q3; multiply
the resulting identity throughout by 1/(1 + q) to obtain

∞∑
n=0

(q; q2)nq
n

(−q; q2)n+1

=
∞∑

n=0

(−1)nq2n(n+1). (3.14)

Use (3.14) in (3.13) and also use (1.19), (1.20) and (1.21) to obtain

2
∞∑

n=0

(−1)nq2n(n+1) =
f(−q)
f(−q4)

∞∑
n=0

(−q; q2)nq
2n

(q4; q4)n(1− q2n+1)

+
ϕ(q)

ψ(q)

∞∑
n=0

(q; q2)nq
2n

(q4; q4)n(1 + q2n+1)
. (3.15)

In (3.5), set A = q, B = −aq, C = τ and D = a2q to obtain

∞∑
n=0

(a2q/τ)n

(−aq)n

τn =
(−τ/a, q, a2q)∞
(−1/a,−aq, τ)∞

∞∑
n=0

(τ)n

(q, a2q)n

qn

+
(−aq)∞
(−1/a)∞

∞∑
n=0

(−τ/a)n

(−aq,−q/a)n

qn. (3.16)

In Rogers-Fine identity, set α = a2q/τ, β = −aq and z = τ to obtain

∞∑
n=0

(a2q/τ)n

(−aq)n

τn =
∞∑

n=0

(−1)n(a2q/τ)na
nqn2

(1− a2q2n+1)

(τ)n+1

. (3.17)
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Use (3.17) in (3.16) and then let τ → 0 in the resulting identity to obtain

∞∑
n=0

a3nqn(3n+1)/2(1− a2q2n+1) =
(a2q)∞f

2(−q)
f(aq, 1/a)

∞∑
n=0

qn

(q, a2q)n

+
(−aq)∞
(−1/a)∞

∞∑
n=0

qn

(−aq,−q/a)n

. (3.18)

Set a = 1 in (3.18) to obtain

∞∑
n=0

qn(3n+1)/2(1− q2n+1) =
f 3(−q)
f(q, 1)

∞∑
n=0

qn

(q)2
n

+
1

2

∞∑
n=0

qn

(−q)2
n

. (3.19)

In (1.11), set γ = z = q and then α = 0, β = 0 to obtain

∞∑
n=0

qn

(q)2
n

=
1

(q)2
n

∞∑
n=0

(−1)nqn(n+1)/2. (3.20)

Use (3.20) in (3.19) and also use (1.20) to obtain

∞∑
n=0

qn(3n+1)/2(1− q2n+1) =
f(−q)ψ(−q)
f(q, 1)

+
1

2

∞∑
n=0

qn

(−q)2
n

.

In (3.16), let τ → 0 to obtain

∞∑
n=0

(−1)na2nqn(n+1)/2

(−aq)n

=
(q, a2q)∞

(−1/a,−aq)∞

∞∑
n=0

qn

(q, a2q)n

+
(−aq)∞
(−1/a)∞

∞∑
n=0

qn

(−aq,−q/a)n

. (3.21)

Set a = 1 in (3.21) to obtain

∞∑
n=0

(−1)nqn(n+1)/2

(−q)n

=
f 3(−q)
f(1, q)

∞∑
n=0

qn

(q)2
+

1

2

∞∑
n=0

qn

(−q)2
n

. (3.22)

∞∑
n=0

(−1)nqn(n+1)/2

(−q)n

=
∞∑

n=0

qn(2n+1)

(−q; q)2n

−
∞∑

n=0

q(n+1)(2n+1)

(−q; q)2n+1

=
∞∑

n=0

qn(2n+1)((1 + q2n+1)− q2n+1)

(−q; q)2n+1

=
∞∑

n=0

qn(2n+1)

(−q; q)2n+1

. (3.23)
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Use (3.23) in (3.22) to obtain

∞∑
n=0

qn(2n+1)

(−q; q)2n+1

=
f 3(−q)
f(1, q)

∞∑
n=0

qn

(q)2
+

1

2

∞∑
n=0

qn

(−q)2
n

. (3.24)

Use (3.20) in (3.24) to obtain

∞∑
n=0

qn(2n+1)

(−q; q)2n+1

=
f 3(−q)
f(1, q)

∞∑
n=0

(−1)nqn(n+1)/2 +
1

2

∞∑
n=0

qn

(−q)2
n

. (3.25)

Use the definition of ψ to obtain

∞∑
n=0

qn(2n+1)

(−q; q)2n+1

=
f(−q)ψ(−q)
f(1, q)

+
1

2

∞∑
n=0

qn

(−q)2
n

.

In (3.5), replace q by q2, set A = q2, B = −aq3, C = τ and D = a2q2;
multiply the resulting identity throughout by 1/(1 + aq) to obtain to obtain

∞∑
n=0

(a2q2/τ ; q2)n

(−aq; q2)n

τn =
(q2, a2q2,−qτ/a; q2)∞
(−aq, τ,−q/a; q2)∞

∞∑
n=0

(τ ; q2)n

(q2, a2q2; q2)n

q2n

+
(−aq; q2)∞
(−q/a; q2)∞

∞∑
n=0

(−qτ/a; q2)n

(−q3/a; q2)n(−aq; q2)n+1

q2n. (3.26)

In Rogers-Fine identity, replace q by q2, set α = a2q2/τ, β = −aq3, z = τ and
then multiply the resulting identity throughout by 1/(1 + aq) to obtain

∞∑
n=0

(a2q2/τ ; q2)n

(−aq; q2)n

τn =
∞∑

n=0

(−1)n(a2q2/τ ; q2)nτ
nanq2n(n+1)(1− a2q4n+2)

(1 + aq2n+1)(τ ; q2)n+1

.

(3.27)
Use (3.27) in (3.26) and then let τ → 0 to obtain

∞∑
n=0

a3nq3n2+2n(1− aq2n+1) =
(q2, a2q2; q2)∞

(−q/a,−aq; q2)∞

∞∑
n=0

q2n

(q2, a2q2; q2)n

+
(−aq; q2)∞
(−q/a; q2)∞

∞∑
n=0

q2n

(−aq; q2)n+1(−q3/a; q2)n

. (3.28)

In (3.5), replace q to q2, set A = q2, B = −q3, D = q2 and then let C → 0;
multiply the resulting identity throughout by 1/(1 + q) to obtain

∞∑
n=0

(−1)nqn2+n

(−q; q2)n+1

=
(q2; q2)2

∞
(−q; q2)2

∞

∞∑
n=0

q2n

(q2; q2)2
n

+ (1 + q)
∞∑

n=0

q2n

(−q; q2)2
n+1

. (3.29)



14

In (2.11), replace q by q6, set a = q, b = q4, c = q2, e = q3and f = q7 to
obtain

∞∑
n=0

(q2, q4; q6)nq
6n

(q3, q6; q6)n(1− q6n+1)
− (q2, q4; q6)∞

(q, q5; q6)∞

∞∑
n=0

(q; q6)n+1(q
5; q6)nq

6n+3

(q3; q6)n+1(q6; q6)n(1− q6n+4)

= (1− q)
(q3; q6)2

∞(q6; q6)∞
(q; q6)2

∞(q4; q6)∞
. (3.30)

Use (1.21), (1.23) and (1.24) to obtain on some simplifications

∞∑
n=0

(q2, q4; q6)nq
6n

(q3, q6; q6)n(1− q6n+1)
− f(−q2)

H6(q)

∞∑
n=0

(q; q6)n+1(q
5; q6)nq

6n+3

(q3; q6)n+1(q6; q6)n(1− q6n+4)

= (1− q)
G2

6(q)H
2
6 (q)f(−q2)

(q; q6)2
∞f(−q)f 2(−q6)

(3.31)

In (2.11), replace q by q3, set a = c = −q, b = e = −q2 and f = q3 to
obtain

∞∑
n=0

(−q; q3)2
n

(q3; q3)2
n

q3n +
(−q; q3)2

∞(q2; q6)2
∞

(q; q)2
∞

∞∑
n=0

(q2; q3)2
nq

3n+1

(−q; q3)2
n+1

=
(−q; q3)2

∞(−q2; q3)2
∞(q3; q3)2

∞
(q2; q3)2

∞(q3; q3)4
∞

. (3.32)

Use (1.25) to obtain

∞∑
n=0

(−q; q3)2
n

(q3; q3)2
n

q3n +
(−q; q3)2

∞(q2; q6)2
∞

(q; q)2
∞

∞∑
n=0

(q2; q3)2
nq

3n+1

(−q; q3)2
n+1

=
J2

6 (q)(q; q3)2
∞

(q; q)2
∞(q3; q3)4

∞
.
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