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Abstract 
Realistic and real-time computational simulation of biological organs (e.g., human 
kidneys, human liver) is a necessity when one tries to build a quality surgical 
simulator that can simulate surgical procedures involving these organs. Currently 
deformable models, spring-mass models, or finite element models are widely used to 
achieve the realistic simulations and/or the real-time performance. It is widely agreed 
that continuum mechanics based numerical techniques are preferred over deformable 
models or spring-mass models, but those techniques are computationally expensive 
and hence the higher accuracy offered by those numerical techniques come at the 
expense of speed. Hence there is a need to study the speed of different numerical 
techniques, while keeping an eye on the accuracy offered by those numerical 
techniques. Such studies are available for the Finite Element Method (FEM) but 
rarely available for the Boundary Element Method (BEM). Hence the present work 
aims to conduct a study on the viability of BEM for the real-time simulation of 
biological organs, and the present study is justified by the fact that BEM is considered 
to be inherently efficient when compared to mesh based techniques like FEM. A 
significant portion of literature on the real-time simulation of biological organs 
suggests the use of BEM to achieve better simulations.  

When one talks about the simulation of biological organs, one needs to have the 
geometry of a biological organ in hand. Geometry of biological organs of interest is 
not readily available many a times, and hence there is a need to extract the three 
dimensional (3D) geometry of biological organs from a stack of two dimensional (2D) 
scanned images. Software packages that can readily reconstruct 3D geometry of 
biological organs from 2D images are expensive. Hence, a novel procedure that 
requires only a few free software packages to obtain the geometry of biological 
organs from 2D image sequences is presented. The geometry of a pig liver is 
extracted from CT scan images for illustration purpose. Next, the three dimensional 
geometry of human kidney (left and right kidneys of male, and left and right kidneys 
of female) is obtained from the Visible Human Dataset (VHD). The novel procedure 
presented in this work can be used to obtain patient specific organ geometry from 
patient specific images, without requiring any of the many commercial software 
packages that can readily do the job. 
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To carry out studies on the speed and accuracy of BEM, a source code for BEM is 
needed. Since the BEM code for 3D elasticity is not readily available, a BEM code 
that can solve 3D linear elastostatic problems without accounting for body forces is 
developed from scratch. The code comes in three varieties: a MATLAB version, a 
Fortran version (sequential version), and a Fortran version (parallelized version). This 
is the first free and open source BEM code for 3D elasticity. The developed code is 
used to carry out studies on the viability of BEM for the real-time simulation of 
biological organs, and a few representative problems involving kidneys and liver are 
found to give accurate solutions. The present work demonstrates that it is possible to 
simulate linear elastostatic behaviour in real-time using BEM without resorting to any 
type of precomputations, on a computer cluster by fully parallelizing the simulations 
and by performing simulations on different number of processors and for different 
block sizes. Since it is possible to get a complete solution in real-time, there is no 
need to separately prove that every type of cutting, suturing etc. can be simulated in 
real-time. 

Future work could involve incorporating nonlinearities into the simulations. Finally, a 
BEM based simulator may be built, after taking into account details like rendering. 
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Chapter 1: Introduction 
1.1 Motivation 
A surgical simulator is very useful for training surgeons in difficult surgical 
procedures like laparoscopic surgery, brain surgery etc. Real-time simulation of 
biological organs is a necessity while building realistic surgical simulators (real-time 
performance greatly enhances realism). Currently, real-time simulation in most cases 
is achieved using deformable models, spring-mass models, or models based on the 
Finite Element Method (FEM). There is a large amount of literature on the use of each 
of these approaches for the real-time simulation of biological tissues and organs, 
including soft tissues (and organs that contain soft tissues, like liver). For example, 
[U. Meier, et al., 2005] presents a classification of the different deformable models 
available in literature, makes a comparison of the different deformable models, 
performs an evaluation of the state of the art, and discusses the future of deformable 
models. The reference [Herve Delingette, 1998] surveys existing models of 
deformation in medical simulation and analyzes the impediments to combining 
computer-graphics representations with biomechanical models. In this reference, 
different geometric representations of deformable tissue are compared in relation to 
the tasks of real-time deformation, tissue cutting, and force-feedback interaction. The 
reference [Herve Delingette and Nicholas Ayache, n.d.] gives some interesting facts 
about surgical simulators in the beginning. For example, the reference notes that the 
concept of surgery simulation, in the beginning, was in large part advocated by the 
American Department of Defense, as a key part of their vision of the future of 
emergency medicine; the reference notes that the development of commercial 
simulators has proved that there is a demand for products that help to optimize the 
learning curve of surgeons; the reference mentions that the emergence of medical 
robotics and more precisely of minimally invasive surgery robots, has reinforced the 
need for simulating surgical procedures, since these robots require a very specific 
hand-eye coordination; the reference also mentions that the modeling of living tissue, 
and their ability to deform under the contact of an instrument is one of the important 
aspect of simulators that should be improved. Next, the reference presents different 
algorithms for modeling soft tissue deformation in the context of surgery simulation. 
The reference [A. C. M. Dumay and G. J. Jense, 1995] discusses on the topic of 
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endoscopic surgery simulation in a virtual environment. The paper tries to answer the 
question: “Can virtual environment technology assist surgeons in training and 
maintaining endoscopic surgery skills?” The paper opines that virtual environment 
technology has great potential for surgical training purposes. The reference [Jay T. 
Bishoff and Louis R. Kavoussi, n.d.] mentions that laparoscopic surgery is often a 
substitute for traditional open surgery because choosing laparoscopic surgery over an 
open surgery reduces trauma and shortens the recovery time for the patient, while 
[Issenberg SB, et al., 1999] mentions that since laparoscopic surgery needs highly 
skilled surgeons, it is preferable to use a surgical simulator for training and evaluating 
surgeons. 

Sources in the literature (e.g., [U. Meier, et al., 2005]) widely agree on the fact that 
continuum mechanics based models are desirable if one is interested to achieve highly 
accurate simulations of biological organs. FEM is the most widely used numerical 
technique employed for the continuum mechanics based simulation of biological 
organs. One can note that real-time simulation of three dimensional nonlinear solids is 
a necessity for the continuum mechanics based real-time computational simulation of 
biological organs. One can also note that real-time graphics needs about 30 
computations per second whereas real-time haptics needs about 1000 computations 
per second [SensAble technologies, 2005].  

However, no one has been able to achieve real-time performance with realistic 
material behaviour using just nonlinear FEM in a straight forward way [Firat Dogan 
and M. Serdar Celebi, 2011]. Many have used just linear FEM with highly simplified 
material behaviour to achieve real-time performance, while some others have not 
bothered about real-time performance (they worry about the accuracy of the results 
only). Some have applied specialized techniques like static condensation [Olek C 
Zienkiewicz, et al., 2013] to solve only a specialized problem in hand. Many 
references have used specialized techniques like precomputations and static 
condensation even while using a linear elastostatic material behaviour. Still, research 
groups are hopeful that, with the ready availability of high performance computing 
(clusters, supercomputers, GPUs), it could be possible to achieve real-time 
performance, for a reasonably accurate material behaviour (e.g., [Salisbury, n.d.; 
Stephane Bordas, 2008]). The current status of these projects is not known. Hence 
how far these projects have been able to achieve the desired goals is not known. Just 
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like these researchers are trying to use/evaluate FEM for surgical simulations, one can 
use/evaluate the Boundary Element Method (BEM) for the simulations; BEM too is a 
continuum mechanics based numerical technique, just like FEM.  

The Boundary Element Method (BEM) is considered to be inherently efficient and 
hence there is a need to study the performance of the technique in the context of the 
real-time simulation of biological organs; but studies in this direction are rare, 
although review papers that deal with the topic of the real-time simulation of 
biological organs often mention that BEM could be better for the real-time 
simulations when compared to FEM.  

The work presented in this thesis is motivated by the need to find answers to the 
following questions. The goal is to answer questions such as a) Is it possible to 
achieve realistic and real-time simulation of biological organs using the Boundary 
Element Method (BEM)?, b) What is the performance (speed and accuracy) of BEM 
in the context of the realistic and real-time simulation of biological organs?, c) Is 
BEM viable (and desirable) for the real-time simulation of biological organs?  

The present work aims towards evaluating the suitability of BEM for the real-time 
and realistic simulation of biological organs by measuring speed and accuracy. A 
systematic study of this kind for BEM is not available in the literature. Speed is rarely 
mentioned in any publication (BEM or otherwise). Although speed depends on 
hardware, software, and expertise of the programmer too, reporting speed can at least 
give some indication on the usefulness of a computational technique for real-time 
applications. Although some researchers work on using continuum mechanics based 
models for the realistic and real-time simulation of biological organs, publications or 
theses that provide elaborate and quantitative discussion on the performance (speed, 
accuracy) of different numerical techniques (especially BEM) are rare (if not 
nonexistent). 

1.2 Literature Review 
There is a large amount of literature on the use of the Finite Element Method (FEM) 
for the real-time simulations; this literature is not discussed here. Although rare when 
compared to FEM, other continuum mechanics based numerical techniques like 
meshfree methods and the Boundary Element Method (BEM) have been tried out in 
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the literature for the real-time simulations. For example, author’s work [Kirana 
Kumara P and Ashitava Ghosal, 2012] uses the Finite Point Method (FPM) and 
precomputations to obtain real-time performance, whereas [Suvranu De, et al., 2005] 
uses the Method of Finite Spheres (MFS); both of these numerical techniques are 
meshfree methods. The reference [Suvranu De, et al., 2005] uses the point 
collocation-based method of finite spheres (PCMFS) for real time simulation of soft 
tissues during minimally invasive surgery (MIS). The reference also discusses the 
integration of the methodologies into a practical surgical simulation system. The 
reference [S. De, et al., 2003] reports the new developments and new applications of 
the method of finite spheres. In particular, it uses the method of finite spheres in a 
surgical simulator; the commercial finite element program ‘ADINA’ is also used in 
the work.  

The review paper [U. Meier, et al., 2005] identifies BEM as a candidate which could 
be better than FEM when it comes to the realistic and real-time simulation of 
biological organs for surgical simulations. References [Ullrich Meier, et al., 2001; C. 
Monserrat, et al., 2001; P. Wang, et al., 2007] use BEM for simulations. Reference 
[Ullrich Meier, et al., 2001] uses linear elastostatic boundary elements together with 
Woodbury formula [Max A. Woodbury, 1950]; Woodbury formula is used to modify 
the characteristic matrix after the geometry is changed because of cutting. This 
reference simulates incisions on an organ in real-time. Reference [C. Monserrat, et al., 
2001] uses linear elastostatic boundary elements together with precomputations to 
achieve real-time simulations. It also suggests parallel computing to obtain real-time 
performance but does not implement it. The reference tells that establishing 
deformable models with BEM is a reliable method to model objects in virtual reality 
environments for surgical simulations. In addition, the elasticity parameters are 
obtained experimentally through the use of a pig’s liver. Reference [P. Wang, et al., 
2007] precomputes linear elastostatic boundary element solutions to obtain real-time 
performance. To simulate cutting, [P. Wang, et al., 2007] uses interpolated pre-
solutions which may not provide accurate solutions every time because cutting 
changes geometry and hence the solutions obtained from interpolated pre-solutions 
could be far from accurate at times. Reference [P. Wang, et al., 2007] also suggests 
parallel computing to obtain real-time performance but does not implement it. A few 
more references that use BEM for simulations are mentioned next. 
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Reference [Foster, et al., 2013] achieves real-time performance by using linear 
elastostatics and updating only part of the boundary element mesh where there is a 
change in the mesh, and updating the boundary element system of equations for that 
part of the geometry only. This method may not be suitable every time especially 
when there is considerable difference between the original mesh and the modified 
mesh. Reference [Robert G Aykroyd, et al., n.d.] deals with real-time boundary 
elements, but it is neither related to 3D linear elastostatics nor related to the 
simulation of biological organs. Reference [P Wang, et al., 2009] also uses linear 
elastostatics together with precomputations and interpolating precomputed solutions 
to achieve real-time performance. In that work, upon cutting, boundary element mesh 
is updated only where there is a change in the mesh, and the boundary element system 
of equations is updated for that part of geometry only. A look-up table is created in 
the precomputation step by applying unit displacement in three mutually 
perpendicular directions, on all the nodes in turn, and storing the solutions. Since the 
principle of superposition holds good for linear elastostatic problems, the solutions 
stored in the look-up table may be suitably superimposed to obtain the solutions 
during real-time simulations. In the concerned simulation, since a tumour is located 
completely within a soft tissue, [P Wang, et al., 2009] is an example where the 
boundary element has been used to solve a problem where a homogeneous and 
isotropic domain is enclosed within another homogeneous and isotropic region (i.e., a 
problem dealing with multiple regions or two regions). Mesh that represents the 
tumour and the mesh that represents the soft tissue together form nested surfaces here. 
Reference [P Wang, et al., 2009] also serves as an example where biological organs 
(soft tissue in particular) are modeled with the linear elastostatic constitutive law. 
Reference [Bo Zhu and Lixu Gu, 2012] deals with a hybrid deformable model and 
uses BEM together with a mass-spring model to simulate biological organs. 

One can note that BEM is an established numerical technique that has already been 
used to solve a wide variety of problems including nonlinear problems. In the 
literature, one can find the application of BEM to problems which are more or less 
similar to the simulation of biological organs (e.g., [Martin Bayliss, 2003]). One can 
also note that those applications do not bother about real-time performance, and some 
of those bother about two dimensional (2D) applications only. 
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Studies on the applicability of FEM (not BEM) for the real-time simulation of 
biological organs are already available [e.g., Alex Rhomberg, 2001]. Such studies are 
not available for BEM. Since BEM has been identified in the literature as a good 
candidate for the simulation of biological organs, further studies on the usefulness of 
BEM for the simulation of biological organs is a necessity, and the present work is a 
small step towards fulfilling that necessity.  

One can observe that reference [M. Kreienmeyer and E. Stein, 1995] deals with the 
parallel implementation of the boundary element method for linear elastic problems 
on a MIMD parallel computer, but it deals with two dimensional (2D) problems only. 
In addition, their work does not deal with real-time simulations, and it does not worry 
about the applicability of BEM to the simulation of biological organs. 

One can note that nobody has tried to perform nonlinear simulations in real-time 
using boundary elements so far, may be because on the one hand codes for nonlinear 
boundary element analysis are not readily available and on the other hand ‘common 
sense’ may be telling that it would not be possible to get real-time performance with 
nonlinear boundary elements because of inherent limitations and delays that may exist 
in computer systems. It is important to note that when BEM is to be used to solve 
nonlinear problems, not only the boundary of the solution domain but also the volume 
of the solution domain needs to be discretized which means that one of the main 
advantages of using BEM over FEM is lost as soon as one tries to solve a nonlinear 
problem using BEM, and this may also be a reason why there has been no attempt to 
achieve the real-time performance while using nonlinear boundary elements. 

1.3 Problem Definition 
By carefully looking at the literature that deals with the application of BEM to the 
real-time simulation, one can observe that all of the works achieve the real-time 
performance either by following one of the following approaches or by following a 
combination of the following approaches: (i) Calculate the characteristic matrix for 
the system offline, and also take the inverse of the characteristic matrix offline (useful 
only in case of 3D linear elastostatics and also where the characteristic matrix does 
not change) (ii) Compiling a look-up table during the precomputation step by 
applying unit displacement in three mutually perpendicular directions, on all the 
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nodes in turn, and storing the solutions; since the principle of superposition holds 
good for linear elastostatic problems, the solutions stored in the look-up table may be 
suitably superimposed to obtain the solutions during real-time simulations by 
interpolating the solutions from the look-up table (iii) Using Woodbury formula [Max 
A. Woodbury, 1950] to modify the characteristic matrix after the geometry is changed 
(because of cutting, say) (iv) Using a fine mesh only near the points where there is an 
interaction between the biological organs and the surgical tools (and also using a fine 
mesh where there is a contact, e.g., contact with the surrounding organs), and using a 
coarse mesh for the rest of the regions (v) Whenever there is a change in the 
geometry, boundary element mesh is updated only where there is a change in the 
mesh, and the boundary element system of equations are updated for that part of 
geometry only, and (vi) Using hybrid models, e.g., using BEM together with a spring-
mass model. 

One can note that the approaches (i) to (iii) explicitly require precomputations. As 
mentioned above, the approach (iv) requires a fine mesh only near the points where 
there is an interaction between a biological organ and a surgical tool and where there 
is contact, e.g., contact with the surrounding organs. Since one cannot know 
beforehand which part of the biological organ would be in contact with the surgical 
tool and which part of the biological organ would be in contact with the surrounding 
organs (since the boundary conditions can change during the simulations), the 
approach is not of general use. While following the approach (v), whenever there is a 
change in the geometry, boundary element mesh is updated only where there is a 
change in the mesh and the boundary element system of equations are updated for that 
part of geometry only. Since it is not possible to know beforehand where there is 
going be be a change in the geometry during the simulations, this approach would not 
be of general use either. The approach (vi) uses not just BEM but a hybrid model 
where BEM together with a spring-mass model is employed. In this case, one also 
needs to calculate the parameters for the spring-mass model beforehand. Hence the 
approaches (iv) to (vi), although may not require precomputations explicitly, may be 
thought to require some form/type/kind of precomputations. Since the approaches (i) 
to (iii) require precomputations explicitly, one can say that all of the references in the 
literature that make use of BEM for the real-time simulation of biological organs use 
some form/type/kind of precomputations. 
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One can see that solving a BEM problem in real-time without following any of the 
approaches (i) to (vi) above definitely has advantages. For example, simulating 
cutting reduces to solving the BEM problem for the changed geometry. Simulating 
prodding, suturing, dealing with multiple regions etc. do not require any special 
techniques or any special approaches. They always reduce to just solving a linear 
elastostatic problem with different loads and boundary conditions and for different 
meshes. Since the time required to solve a linear elastostatic problem can be estimated 
beforehand for a given number of total degrees of freedom and a given element type, 
one can always be sure that the computations are performed within the allowed time 
limit (i.e., in real-time). One can also note that many of the sources in literature 
recommend parallelization, but they mention it as ‘future work’. This author has not 
come across any source in the literature that reports the parallelization without 
following any of the approaches (i) to (vi) above of a BEM solution with the intention 
of obtaining real-time performance, although this approach has been recommended in 
many places. 

Hence this work aims to achieve the real-time performance by parallelizing the BEM 
but without following any of the approaches (i) to (vi) above. In this work, whole of 
the BEM model is parallelized, not just a part of the BEM model is parallelized. The 
parallelization is not limited to the part of the BEM model corresponding to the 
locations close to the points where loads and boundary conditions are applied. 
Further, whole of the BEM code that is used for the simulations is parallelized, not 
just some parts of the code are parallelized, e.g., the goal is not to parallelize just the 
part of the code that solves the system of simultaneous equations, but the part of the 
code that calculates the elements of the characteristic matrix needs to be parallelized 
also. As already indicated in the last paragraph, one of the natural advantages of the 
present approach is that there is no need to calculate the modified ‘stiffness’ matrix 
from the original ‘stiffness’ matrix when there is a change in the geometry because of 
a surgical cut. Hence one is guaranteed to get the real-time performance irrespective 
of whether there is a change in the geometry (because of cutting, say) and irrespective 
of whether the change in the geometry is small or large, once it is found that the 
simulation is real-time for a given problem (or a given problem size). It is important 
to note that this is not the case if one follows any of the approaches that are followed 
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in any of the references in the literature that use BEM to achieve the real-time 
simulation of biological organs. 

In the present work, simulations are carried out on a desktop computer equipped with 
a Graphics Processing Unit (GPU), and on a computer cluster (up to 256 processors). 
This work is a systematic study which demonstrates the applicability of BEM as 
applied to the real-time simulation of biological organs. 

It is also worthwhile to mention that if it is found that only real-time graphics (about 
30 computations per second) can be achieved but not real-time haptics (about 1000 
computations per second), the simulation is useful still, since it can simulate surgical 
procedures like laparoscopic surgery where surgeons get little force feedback. If it is 
found that real-time haptics is also achieved, even open surgeries can be simulated 
effectively. 

Of course, simulations may not need to be strictly real-time sometimes (i.e., a ‘hard’ 
real-time system may not be needed, but ‘firm’ or ‘soft’ real-time systems may also 
be suitable). For example, [P. Wang, et al., 2007] mentions that a neurosurgeon takes 
about 0.25 second to perform each incremental stage of surgical cutting in practice; 
hence it may be all right for the simulations to take 0.25 second to complete in this 
case. The reference [Valerie E. Taylor, et al., 1996] mentions that the allowable lag 
time is 0.1 seconds for inexperienced users and it is 1 second for experienced users; 
hence the simulations can take 0.1 or 1 second in this case. References [Sonya Allin, 
et al., 2002; H. Pongrac, et al., 2006; Hong Z. Tan, et al., 1994] mention that the just 
noticeable difference of the human sensory system for force perception at human 
fingertips is about 10%. The reference [Ottensmeyer M and Salisbury K, 2001] 
mentions that humans cannot sense very small errors in real-time responses of solids. 
However, these references cannot serve as excuses for not obtaining real-time 
performance, since there would not have been a need for the various attempts in the 
literature to obtain a strictly real-time performance if one could always justify that a 
real-time performance is not a necessity when it comes to the realistic simulation of 
biological organs. 

All the studies considered in the present work assume linear elastostatic behaviour 
first. The idea is to go for nonlinear behaviour only if it is possible to achieve the real-
time performance (at least real-time graphics) with the linear elastostatic material 
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model. Employing just the 3D linear elastostatic model (since it is continuum 
mechanics based) can provide better realism when compared to a model which is not 
physically based. The realism that may be lost because of the simplicity of the 3D 
linear elastostatic model may (at least partially) be compensated by the real-time 
performance that may be achievable by using the model. One can also note that many 
previous works reported in the literature are happy with the 3D linear elastostatics. 

In the present work, biological organs are assumed to be isotropic and homogeneous. 
One can note that many biological organs (including soft biological organs like liver 
and kidney) are considered homogeneous and isotropic by researchers [Ullrich Meier, 
et al., 2001; C. Monserrat, et al., 2001; P. Wang, et al., 2007; Foster, et al., 2013], 
including many who are into realistic simulations of biological organs [Ullrich Meier, 
et al., 2001; C. Monserrat, et al., 2001; P. Wang, et al., 2007]. 

Rendering and the time needed for rendering is not considered in the present work. 
One can note that one can ignore the time needed for rendering since the time is likely 
to be small; one can also note that [Taylor V.E., et al., 1996] informs that out of 
simulation, tracking, rendering, network, and synchronization components of lag time, 
simulation time is the main cause for the lag when a simulation cannot be 
accomplished in real-time. 

Approaches like “running simulation in hardware”, embedded systems, building and 
using custom hardware, custom-built processors, digital signal processors (DSPs), 
neurocomputers, analogue computers, real-time operating systems, custom operating 
systems with in-built simulation software etc. have not been tried out in the present 
thesis. New techniques which are not yet mature or practical like quantum computing, 
DNA computing etc. are also not considered in the present work. 

This study uses only the standard comtemporary hardware (e.g., a desktop computer, 
a GPU, a computer cluster) together with the standard contemporary software (e.g., 
MATLAB, MATLAB Parallel Computing Toolbox, Fortran, MPI, BLACS, 
LAPACK, ScaLAPACK). No custom methods and communication protocols are 
used. 

When one talks about the simulation of biological organs, one should have the 
geometry of some biological organ in hand. It is found that the geometry of biological 
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organs of interest is not readily available many a times, and hence there is a need to 
extract the 3D geometry of biological organs from a stack of 2D scanned images in 
those cases. It is also found that the software packages that can readily reconstruct 3D 
geometry of biological organs from 2D images are expensive. Hence the need to 
obtain the geometry of biological organs from 2D scanned images by making use of 
only free and open source software packages is felt. Therefore, the present work also 
gives a novel procedure to reconstruct the 3D geometry of biological organs from 2D 
scanned images first, while making use of free software packages only. It is 
noteworthy to mention here that 2D scanned images for the entire representative 
human body is available for download without any cost from the dataset called 
Visible Human Dataset (VHD). Coming to the related literature, references [Dong 
Sun Shin, et al., 2011; Amy Elizabeth Kerdok, 2006; Li Lou, et al., 2009; Chen G, et 
al., 2010] have used images from sources other than VHD and have used commercial 
software packages to perform 3D reconstruction of biological organs, while the 
reference [Aimee Sergovich, et al., 2010] uses VHD together with commercial 
software packages. There are also authors who have used free software packages to 
extract geometry of biological organs [Hong-jian Gao, 2007].  

In summary, this thesis tried to test the hypothesis: “Is the boundary element method 
viable as far as the real-time simulation of biological organs is concerned?” During 
the course of trying to answer the above question, a need to obtain the geometry of 
biological organs without making use of any paid software was felt, and hence some 
attempt was made in that direction too.  

1.4 Contributions from the Present Work 
The following are the main contributions of this work: 

1. A novel procedure to obtain the geometry of biological organs, that uses only free 
and open source software packages, is presented. A pig liver is reconstructed from CT 
scan images that were available in the internet, by using the novel procedure. Human 
kidney (both left and right kidney, for both male and female) is reconstructed by using 
images from the Visible Human Dataset, by following the novel procedure. The novel 
procedure can also be employed to obtain patient specific geometry of biological 
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organs from patient specific CT scan images. The potential of a Linux flavor called 
CAELinux is recognized in the context of 3D reconstructions. 

2. A BEM code that can solve 3D linear elastostatic problems is developed from 
scratch. The code is the first free and open source BEM code for 3D elasticity, in any 
of the programming languages. The code is available in three versions: MATLAB 
version, Fortran version (sequential version), Fortran version (parallelized version). 
The code can be of use to others who need an open access BEM source code for 3D 
linear elasticity especially because the present author could not find any suitable BEM 
source code for 3D linear elastostatics, either as free and open source software or as 
paid software.     

3. This work is the first one to demonstrate that it is possible to simulate linear 
elastostatic behaviour in real-time using BEM, without resorting to any type of 
precomputations; all the earlier works use some or the other forms/types/kinds of 
precomputations to achieve the real-time performance, although some of the earlier 
works recommend the present approach as their future work. Since all computations 
can be performed in real-time in the present work, there is no need to separately prove 
that any type of cutting, suturing etc. can be simulated in real-time (this is 
automatically proved since it is possible to get a complete solution in real-time in the 
present approach).    

4. This work is the first one to use a GPU for simulating biological organs while using 
BEM. In the present work, up to 14 times speed up has been achieved using a 
Graphics Processing Unit (GPU).  

1.5 Overview of the Thesis 
The present chapter (Chapter 1) has explained the motivation for undertaking the 
present research, carried out the literature review, defined the research problem, and 
listed out the contributions from the present work. Chapter 2 presents a novel 
procedure to extract three dimensional geometry of biological organs from two 
dimensional CT scan images. Chapter 3 first mentions about the development of the 
Boundary Element codes that are developed from scratch by the present author, and a 
study on the real-time simulation of biological organs using the Boundary Element 
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Method is presented afterwards. Chapter 4 is about conclusions, and mentioning about 
the scope for future work.  
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Chapter 2: Obtaining the Geometry of Biological 
Organs of Interest  

To carry out any simulation on a biological organ (e.g., surgery planning, surgery 
simulation), the geometry of the biological organ is needed first. For example, a three 
dimensional digital model of the actual (or representative) human kidney is needed for 
a surgical simulator that is capable of simulating a laparoscopic surgery involving 
kidney. However, anatomical dimensions and geometry of body organs differ from 
patient to patient due to various factors such as age, body size, and weight and due to 
the presence of pathologies such as cysts and cancer. Using scanning procedures like 
Computed Tomography (CT), one can get patient specific 2D image sequences 
corresponding to different organs, and one can reconstruct 3D models of the patient 
specific biological organs from the corresponding 2D image sequences. In the same 
way, if one is happy with just a representative biological organ (not the patient 
specific biological organ), one can reconstruct the geometry by making use of the 
already available 2D images corresponding to the representative biological organ.   

Currently, mainly two approaches are being practiced to obtain the geometry of a 
biological organ. The first approach is to buy a readily available 3D model of a 
representative biological organ from an online store (e.g., [TurboSquid, n.d.]). The 
second approach is to use commercial software packages (such as [3D-DOCTOR, 
n.d.; Mimics, n.d.; Amira, n.d.]) to reconstruct a 3D geometry of biological organs 
from a two dimensional (2D) image sequence. One can see that both of these 
approaches cost (sometimes significant amount of) money.  

Hence in this chapter, a procedure is presented for the reconstruction of biological 
organs from image sequences obtained through CT-scan. Although commercial 
software packages which can accomplish this task are readily available, the procedure 
presented here needs only free and open source software packages. The user is able 
to control the detail or the level of complexity of the solid constructed. The free 
software packages used are: ImageJ, ITK-SNAP, and MeshLab. The procedure is 
presented through the illustration of the reconstruction of a pig liver from the scan 
data available in the literature. Next, a three dimensional surface model of human 
kidney is sucessfully reconstructed by making use of images from the Visible Human 
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Data Set (VHD); the images from the Visible Human Data Set do not cost anything. 
The 3D biological organs obtained this way can be used in the finite element analysis 
and this has been demonstrated by carrying out FE analyses on the reconstructed 
liver; the commercial software packages Rhinoceros [Rhinoceros, n.d.] and ANSYS 
[ANSYS, n.d.] are used for this purpose. Finally, it is noted that a Linux flavor called 
CAELinux has all the necessary software packages (that can do 3D reconstruction of 
biological organs) in-built; hence using this operating system can avoid the necessity 
of having to install all the necessary software one-by-one.  

2.1 The 3D Reconstruction of a Pig Liver 
2.1.1 Software Packages used 

The software packages that are needed to carry out the procedure are: ImageJ, ITK-
SNAP, MeshLab. Very concise information on these software packages is given 
below and the features that are most useful for the present work are presented. 

ImageJ 

ImageJ [ImageJ, n.d.; Rasband W.S., n.d.; Abramoff M.D., et al., 2004] is a free and 
open source software package used for image processing. The software package is in 
the public domain. The software is written in Java, and hence it can run on any 
computer with Java installed. 

Present work uses ImageJ 1.42q (together with Java 1.6.0). Its role is to import an 
image stack from the file, getting image information, selecting the image portions 
with a rectangle and processing the selected portion only, removing selected portion 
of the image, subtracting a particular intensity value from each pixel in the image, 
multiplying each pixel intensity value by a particular number, applying the image 
processing procedures to a single image or to the whole image stack, reversing the 
order of images in an image stack, concatenating image stacks, saving the processed 
image stack in different file formats etc. 

ITK-SNAP 

ITK-SNAP [ITK-SNAP, n.d.; Paul A. Yushkevich, et al., 2006] is a free and open 
source software package that may be used to carry out the segmentation (According to 
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a popular definition, “Image segmentation is the process of assigning a label to every 
pixel in an image in such a way that pixels with the same label share certain 
characteristics”) for structures in 3D images. The software supports image navigation, 
semi-automatic segmentation, and manual segmentation, and it can also export a 
segmented image sequence (or segmented volume) as a 3D surface mesh. ITK-SNAP 
is a free and open source software package that is made available under the General 
Public License [GNU, n.d.]. ITK-SNAP 2.0.0 is used in the present work for 3D 
automatic (also called semi-automatic) segmentation. 

Selecting the region of interest is the first step in the automatic segmentation. The 
same region of interest applies to all the images in the image stack. The next step is 
‘snake initialization’. The term ‘snake’ here refers to a closed curve (or a collection of 
closed curves) in 2D, or a closed surface (or a collection of closed surfaces) in 3D. 
‘Snake’ is initialized as a circular bubble. In fact, the ‘snake’ is intended to be an 
approximation of the final segmented volume. In the next step, the ‘snake’ evolves, or 
the initial ‘snake’ represented by the spherical bubble changes its shape towards the 
shape of the final segmented volume that represents the surface of the biological 
organ to be extracted from the image stack. The final step in using ITK-SNAP is to 
export the (3D) segmented volume as a (3D) surface. 

MeshLab 

MeshLab [MeshLab, n.d.] is a free and open source software package that can process 
unstructured 3D triangular meshes. The software can edit, clean, heal, inspect, render 
and convert models made up of 3D triangular meshes (meshes describing the surfaces 
of the 3D models). The software package is licensed under the GNU General Public 
License. MeshLab v1.2.2 has been used in the present work. Some of the numerous 
useful features available in the software are explained next. 

Fill Hole is used to check whether the 3D surface has any holes (the mesh to be edited 
should not have any holes). 

Quadric Edge Collapse Decimation filter is used to convert the geometry described 
by very large number of triangle faces that is usually the case, to a geometry that is a 
very good approximation to the original one but described with lesser number of 
faces. 
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Triangle Quality filter can display the quality measures for each of the triangular 
faces of the 3D mesh. 

MLS Projection filter is used to improve the quality of the triangular faces that 
describe the 3D mesh. The filter achieves the goal by projecting the whole mesh onto 
the MLS surface defined by it, as explained in the reference [Oztireli, et al., 2009]. 

Laplacian Smooth filter is another filter that may be used for improving the triangle 
quality. The smoothing is achieved here by calculating the average position for each 
vertex with its nearest vertex. 

Taubin Smooth filter is also found to be very useful for improving the triangle quality. 
For each iteration, it makes two steps of smoothing, forth and back. 

2.1.2 A Note about the Operating Systems 

A point to be noted is that it is better to run image processing software packages like 
ImageJ, ITK-SNAP and MeshLab under Linux because of its stability while running 
memory intensive tasks. Both Linux and Windows versions of all the three free and 
open source software packages explained above are available for download, and the 
present author has tried running these software packages under both Linux (Fedora 9, 
64 bit) and Windows XP Professional SP2 (32 bit). This author has found that, 
although installation might be somewhat tedious sometimes because of the need for 
manual compilation of the source code and/or the need to resolve and install for 
dependencies, it is worth spending some time installing these software packages under 
Linux, since it was found to make a robust environment for processing large image 
sequences. However, because of ease of installation, Windows versions can be used 
and they work fine as long as the problem size is not too large or the processing task 
does not require too much memory. As far as the present work is concerned, both 
ImageJ and MeshLab could be used both under Linux and Windows without any 
observable difference in the performance. The tasks requiring ITK-SNAP could be 
completed only under Linux. 

The hardware configuration of the computer used for this work is: AMD Athlon 64 
X2 Dual Core Processor 5200+, 2.61 GHz, 8 GB RAM. However, although Linux 
could use the entire available RAM, Windows could detect only 2.75 GB of RAM. 
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This might be the reason why ITK-SNAP had trouble while executing a memory 
intensive task like semi-automatic segmentation under Windows. 

2.1.3 General Procedure for Extracting 3D Organs from 2D Image Slices 

The following three steps make up the procedure to obtain 3D organs from 2D image 
sequences. These steps make use of the software packages (all free) explained in the 
previous subsection. 

1. Open ImageJ, import the image file (e.g., *.tif), process the image stack with 
the goal of brightening the pixels which belong to the organ of interest but 
with the goal of making the intensity of the pixels which do not belong to the 
organ of interest zero. This makes the next step (segmentation) much easier. 
Many a times, to reduce size, image files give only the half of the information 
(the other half of the organ may be considered to be symmetric to the first 
half). In that case, one can reverse the order of images in the image stack and 
then concatenate this image stack with the original image stack to get the full 
image stack. One should save the processed image stack in a file format that 
can be read by ITK-SNAP (e.g., *.raw). 

2. Open ITK-SNAP and open the file saved in the previous step. If the image file 
format does not include the image header information (like the total number of 
pixels in each direction, absolute distance between pixels in both the 
directions, total number of such images in the image stack considered, 
distance between the consecutive images in the stack, voxel representation 
scheme etc.), ITK-SNAP requests the user to enter this information. In this 
case, the information has to be obtained from the source that supplied the 
image file. Then, ITK-SNAP displays the image stack. Next, one has to 
complete segmentation (manual or automatic). Then, the segmented volume 
has to be exported as a 3D surface mesh using the menu item Save as Mesh… 
in a file format supported by MeshLab (e.g., *.stl). 

3. Open MeshLab and open the file saved in the previous step. Next, Quadric 
Edge Collapse Decimation filter is used to reduce the number of triangle faces 
to the target number of faces. Triangle Quality is used to colour code the 
triangles to identify ill shaped triangles and the filters MLS projection, 
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Laplacian Smooth and Taubin Smooth are used to make those triangles well 
shaped. Finally, the processed mesh is saved. This mesh represents the 3D 
organ of interest. 

2.1.4 An Illustration of the 3D Reconstruction of a Pig Liver 

Obtaining the Image File and its Details 

The image file is obtained from the website of the Harvard Biorobotics Laboratory 
[Biorobotics, n.d.]. The image file is a zipped .tif image stack which contains a pig 
liver volume in the undeformed state and it contains 147 image slices. The image 
stack has the name: ‘LiverNoDeformation.tif’ and has a size of around 37 MB. The 
image stack was obtained using CT-scan and one can refer to [Amy Elizabeth Kerdok, 
2006] for the details on the procurement and processing of the liver used for the scan, 
the scanning equipments used, scanning procedure employed, and further details on 
the image stack compiled etc. The details which are of interest to us are: 512 X 512 
pixels make up each image in the stack, the distance between pixels (in both 
directions) = 0.29 mm, distance between consecutive images in the stack = 1 mm, 
each pixel needs 8 bits of memory to describe it and each pixel is described by an 8 
bit unsigned integer, the images are gray scale images, since the images are gray scale 
images and since each pixel is represented by an 8 bit unsigned integer each pixel can 
have an intensity between 0 to 255 (totally 256 intensity levels). 

Use ImageJ 

Use File → Import → Raw…, enter image information, and the image stack 
‘LiverNoDeformation.tif’ will be displayed. The 50th and the 100th image are shown 
in Figure 2.1 and Figure 2.2 respectively. 
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Figure 2.1 The 50th Image 

 

 

Figure 2.2 The 100th Image 

 

It can be observed that the liver is located around the center of the images and the 
bottom portion of the images shows the part of the experimental set up supporting the 
liver. Our goal here is to make the pixels belonging to the liver very bright and 
making the intensity values of other pixels (which do not belong to liver) zero; we 
should do this for all the images in the image stack. This makes the next step 
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(segmentation) that uses ITK-SNAP very trivial, since only the pixels that belong to 
the liver volume have some positive intensity values. This is accomplished as follows. 

Use Process → Math → Subtract…, enter Value = 200, select Yes to accept the 
processing of all 147 images. Select the bottom portion which does not belong to the 
liver in a yellow rectangular box and use Process → Math → Multiply…, then enter 
Value = 0, and process all 147 images. This will set the intensity values of the pixels 
selected in the rectangular box to zero. Follow the same procedure to eliminate the 
left side portion of the image stack that does not belong to the liver. Only those pixels 
that belong to the liver volume have some positive intensity value now. Use Process 
→ Math → Multiply…, then enter Value = 3 to multiply these intensity values by a 
factor of three. This brightens up the image of the liver. The 50th and 100th image, 
after undergoing processing with ImageJ are shown in Figure 2.3 and Figure 2.4. 

 

 

Figure 2.3 The 50th Image (After using ImageJ) 
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Figure 2.4 The 100th Image (After using ImageJ) 

 

Now, File → Save As → Raw Data… has been used to save the image as a.raw. The 
original image stack represents only half of the complete image stack. Hence, use 
Stack Reverser to reverse the order of images in the image stack, save this new stack 
as b.raw, Concatenate a.raw and b.raw to get the full stack (with 294 images) 
‘LiverNoDeformation.raw’. 

Use ITK-SNAP 

Use File → Open Grayscale Image… to browse to the location of 
‘LiverNoDeformation.raw’. Raw Binary File should be selected as the image file 
format. Supply the image details (from 4.1) when asked. Image stack will be 
displayed. Select SNAP Tool in the IRIS Toolbox now. Make sure that the region 
selected for segmentation (through red dotted lines) includes the whole liver, and then 
press Segment 3D. Select the Intensity Regions radio button now, and press 
Preprocess Image and Intensity Region Filter window pops up. Select the proper 
settings here, proceed to the next step and Add Bubble, and Iterate Continuously. We 
can see now how bubble slowly changes its shape to the shape of the image on the 
screen. When shape of the bubble assumes the shape of the image on the screen (in all 
the windows), segmentation is complete and we should press Finish. All the images in 
the image stack have been segmented by now. Use Segmentation → Save As Mesh… 
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to save the segmented volume that represents the liver as a surface mesh made of 
triangle faces. The surface mesh file is named as ‘liver.stl’. Size of the file is 86.0 
MB. 

Use MeshLab 

Open ‘liver.stl’ in MeshLab. The liver as seen in MeshLab is shown in Figure 2.5. 
The liver is represented here by 288190 vertices or 576376 triangle faces. We use 
Quadric Edge Collapse Decimation filter to reduce the total number of faces 
representing the organ. The same liver represented by 1002 vertices (2000 faces) now 
is shown in Figure 2.6 and represented by 102 vertices (200 faces) is shown in Figure 
2.7. We use MLS Projection, Laplacian Smooth and Taubin Smooth filters to improve 
triangle quality. The liver represented by 102 vertices (or 200 faces) only but with 
well-shaped triangles is shown in Figure 2.8. We will save this model (liver 
represented by 102 vertices or 200 faces, all triangles being well shaped) as 
‘liver102vprocessed.stl’. The size of the file is around 60 KB. 

Now we have obtained the 3D model of the liver (shown in Figure 2.5 to Figure 2.8). 

 

 

Figure 2.5 The Liver Displayed in MeshLab (288190 Vertices or 576376 Faces) 
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Figure 2.6 The Liver Displayed in MeshLab (1002 Vertices or 2000 Faces) 

 

 

 

 

Figure 2.7 The Liver Displayed in MeshLab (102 Vertices or 200 Faces) 
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Figure 2.8 The Liver Displayed in MeshLab (Well Shaped 200 Faces) 

 

2.2 The 3D Reconstruction of Human Kidney using Images 
from the Visible Human Dataset 
This section follows similar procedure as the previous section to obtain the geometry 
of human kidney, but instead of using a readily available image stack (patient specific 
or representative) present section utilizes the Visible Human Dataset (VHD) [VHD, 
n.d.] to obtain the geometry of human kidney. Visible Human Data Set (also known 
as The Visible Human Project Image Data Set or The Visible Human Project Data 
Sets) is an anatomical data set developed under a contract from the National Library 
of Medicine (NLM) [NLM, n.d.] by the Departments of Cellular and Structural 
Biology, and Radiology, University of Colorado School of Medicine. One can note 
that images from VHD may be downloaded for free, after obtaining a free license 
from the National Library of Medicine (NLM) which is a part of the National 
Institutes of Health (NIH) [NIH, n.d.]; VHD is a part of the more ambitious Visible 
Human Project (VHP) [VHP, n.d.]. 

VHD contains CT, MRI and cryosection images. In the present section, only normal 
CT-scan images of visible human male and female are used. Images in the ‘png’ 
format are used since this is the format recommended by VHP. File size of CT-scan 
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images is small, and the images are good enough for reconstructing a 3D model of 
whole kidney (i.e., inner (or finer) details of kidney are not present; reconstructed 3D 
model represents just the outer surface of kidney). One can also easily identify human 
kidney in the CT-scan images of VHD. 

The next three subsections illustrate the process of obtaining the geometry of human 
kidney using VHD and some free software packages (same as the ones used in the 
previous section). 

2.2.1 Using ImageJ to Form an Image Stack  

CT-scan images for visible human male and female are available from head to toe. 
Out of these images, one has to identify the images which belong to kidney. Upon 
viewing individual images in ImageJ, and upon consulting references like [VOXEL-
MAN, n.d.; Henry Gray, 1918], one can conclude that for visible human male, both 
left are right kidneys are contained between the images ‘cvm1551f.png’ and 
‘cvm1692f.png’ (47 images in total). Similarly, for visible human female, both left 
and right kidneys are contained between the images ‘cvf1564f.png’ and 
‘cvf1693f.png’ (130 images in total). These 47 images for male, and 130 images for 
female, have to be copied into two separate empty folders. To form an image stack for 
male, select the menu item ‘File -> Import -> Image Sequence…’, browse to the 
location of the folder containing 47 images and select the first image in the folder and 
follow the prompts (with default options); all 47 images are now displayed in ImageJ 
as an image stack; now, select the menu item ‘File -> Save As -> Raw Data…’ to save 
the image stack in the ‘*.raw’ format (where * is the name given). Similar procedure 
may be followed to obtain an image stack for the female. 

2.2.2 Using ITK-SNAP to Perform Segmentation and 3D Reconstruction 

ITK-SNAP does the segmentation and 3D reconstruction to the correct scale. Hence 
header information for the images in the image stack is essential. VHD contains 
header information for each of the images in its database. Upon going through the 
header files of each of the 47 images of male, one can note that the following header 
information is identical for all the 47 images: Image matrix size – X = 512, Image 
matrix size – Y = 512, Image dimension – X = 460 mm, Image dimension –Y = 460 
mm, Image pixel size – X = 0.898438, Image pixel size – Y = 0.898438, Screen 
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Format = 16 bit, Spacing between scans = 3 mm. Similarly, the following header 
information is identical for all the 130 female images: Image matrix size – X = 512, 
Image matrix size – Y = 512, Image dimension – X = 480 mm, Image dimension –Y 
= 480 mm, Image pixel size – X = 0.9375, Image pixel size – Y = 0.9375, Screen 
Format = 16 bit, Spacing between scans = 1 mm. 

Now, the method of reconstructing the left kidney of the male is explained in detail, 
with illustrations. The same method may be employed to reconstruct the right kidney 
of the male, and the left and right kidneys of the female. 

Select the menu item ‘File -> Open Greyscale Image…’, browse to the location of the 
image stack for male, follow the prompts and supply the header information. As noted 
in the first paragraph of this subsection, the ‘missing header information’ to be 
supplied for the image stack (for male) is: Image dimensions: X: 512, Y: 512, Z: 47, 
Voxel spacing: X = 0.898438, Y = 0.898438, Z = 3, Voxel representation: 16 bit, 
unsigned. Once the header information is supplied, image stack is displayed in ITK-
SNAP. One can browse through all the 47 images in the image stack. For illustration 
purposes, 17th image and 33rd image in the image stack (i.e., ‘cvm1602f.png’ and 
‘cvm1650f.png’ in the VHD) are shown in Figure 2.9 and Figure 2.10 respectively; 
also, the left and right kidneys are identified in Figure 2.9 and Figure 2.10, by making 
use of illustrations from [VOXEL-MAN, n.d.; Henry Gray, 1918]. 

 

 

 

 

 

 

 

 

Figure 2.9 The 17th Image in the Image Stack 

Left Kidney 
 Right Kidney 
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Figure 2.10 The 33rd Image in the Image Stack 

 

Now the task is to do the segmentation. Select ‘Polygon tool’ from the ‘IRIS 
Toolbox’, for slice-by-slice manual segmentation. Select ‘continuous’ radio button 
under ‘Polygon Tool’. Click and drag the mouse cursor along the edge of the left 
kidney (as seen in the axial view (window)), carefully. This draws the contour of the 
edge of the left kidney. Right click on the image, and select the ‘accept’ button to 
create the segmentation for the image on display. This process has to be repeated for 
all images in the image stack, which contain pixels that belong to the left kidney. For 
illustration purposes, 17th image and 33rd image in the image stack, after 
segmentation, are shown in Figure 2.11 and Figure 2.12 respectively. 

 

 

 

 

 Right Kidney Left Kidney 
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Figure 2.11 The 17th Image in the Image Stack (After Segmentation) 

 
 

 

 

 

 

 

 

Figure 2.12 The 33rd Image in the Image Stack (After Segmentation) 

 

Once the segmentation is over, 3D reconstruction is to be carried out. This is 
accomplished by the menu item ‘Segmentation -> Save As Mesh…’, following 
prompts, browsing to the location where the reconstructed model is to be stored, and 
giving a name in the format ‘path\*.stl’ for the file that represents the reconstructed 

Segmented  

Left Kidney 

Segmented  

Left Kidney 
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3D model (where ‘path’ is the complete path, e.g., C:\Users\PC\Desktop\*.stl, and * is 
any file name). 

Now, a 3D reconstruction of the left kidney for the visible human male is over. 
Similar process may be followed to reconstruct the right kidney of the visible human 
male, and the left and right kidneys of the visible human female. 

2.2.3 Using MeshLab to Reduce the Total Number of Faces Describing the 3D 
Model 

The 3D model of kidney obtained through the use of ITK-SNAP typically is of very 
large size and typically is described by a very large number of surface triangles. 
MeshLab could be very helpful in reducing the total number of surface triangles that 
are needed to describe the 3D model satisfactorily. It also serves as a tool to smoothen 
the reconstructed 3D geometry; after using smoothing features provided by MeshLab, 
it may be necessary to scale the reconstructed 3D models to the correct dimensions, if 
the original dimensions are to be strictly retained. MeshLab can also improve the 
triangle quality of surface triangles of the 3D model. It can also reduce the file size.  

The 3D models of kidney, after undergoing processing with MeshLab, are shown in 
the next subsection. 

2.2.4 Reconstructed Geometry 

Reconstructed left kidney of the male, after undergoing processing through MeshLab, 
is shown in Figure 2.13. Similarly, reconstructed right kidney of the male, after 
undergoing processing through MeshLab, is shown in Figure 2.14. Reconstructed left 
kidney of the female is shown in Figure 2.15. Reconstructed right kidney of the 
female is shown in Figure 2.16. All the four 3D models are made up of 1000 surface 
triangles. While obtaining these four models, job of MeshLab is to smoothen the 3D 
models reconstructed through ITK-SNAP and to reduce the total number of surface 
triangles to 1000. 
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Figure 2.13 Reconstructed Left Kidney of Male 

 

 

 

Figure 2.14 Reconstructed Right Kidney of Male 
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Figure 2.15 Reconstructed Left Kidney of Female 

 

 

 

Figure 2.16 Reconstructed Right Kidney of Female 

 

2.2.5 Discussion 

In this subsection, 3D model of human kidney is extracted from CT-scan images from 
the VHD, using free software packages. The free software packages used are: 1) 
ImageJ 2) ITK-SNAP 3) MeshLab. The organs reconstructed are: 1) left kidney of 
visible human male 2) right kidney of visible human male 3) left kidney of visible 
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human female 4) right kidney of visible human female. All the four models are in ‘stl’ 
format. 

Use of free software packages together with images that may be obtained for free, as 
has been done in the present work, makes it possible to obtain the geometry of a 
representative human kidney, completely for free. Buying a 3D model of a human 
kidney, or using a commercial software package to extract 3D models from image 
sequences, cost (sometimes significant amount of) money. In the present approach, 
user can control how finely the geometry should be described (using the free software 
package MeshLab). Since MeshLab can improve the quality of the surface mesh that 
describes a reconstructed 3D model, the reconstructed 3D model that has undergone 
processing with MeshLab can be used in a finite element analysis after converting the 
surface model to a solid model using software packages like Rhinoceros. The method 
used to extract the geometry of a kidney, as illustrated in the present work, may be 
used to extract other whole biological organs from VHD. 

It may be noted that the method given here to obtain the 3D models of human kidney 
need not be followed rigidly. It is good to read the documentation for the software 
packages used here, and one can experiment with the various options provided by the 
software packages instead of rigidly following the method illustrated in this work. For 
example, instead of tracing the boundary of the kidney in each of the images through 
the mouse pointer, the ‘Paintbrush tool’ provided by ITK-SNAP can be tried out to 
carry out the segmentation; ITK-SNAP also provides a tool that can do semi-
automatic segmentation. 

As to the limitations, present work uses only CT-scan images. Although these are 
found to be sufficient to obtain the geometry of a whole kidney, whenever the 
reconstructed geometry should include the finer details of the kidney, or whenever 
some other organ is to be extracted from VHD, there is a possibility that other types 
of images (e.g., MRI images, cryosection images) are more suited in some cases. One 
more limitation with the present work is that multiple software packages need to be 
downloaded, installed and used here. 
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2.3 Making use of CAELinux 
The previous two subsections (i.e., section 2.1 and section 2.2) use the free software 
packages ImageJ, ITK-SNAP, and MeshLab to obtain the geometry of biological 
organs. To avoid installing these three software packages one-by-one, instead of 
Windows or the normal variety of Linux, one can use an operating system called 
CAELinux [CAELinux, n.d.] which includes the three software packages. 

CAELinux is a Linux distribution which is bundled with free software packages 
related to Computer Aided Engineering (CAE). The free software packages include 
software that can build a three dimensional solid model, programs that can mesh a 
geometry, software for carrying out Finite Element Analysis (FEA), programs that 
can carry out image processing etc. One can also note that CAELinux is a free and 
open source operating system and all software packages that are included in the 
operating system are also free. Hence one can see that CAELinux could be a very 
useful tool in application areas like surgical simulation which require three 
dimensional reconstructions of biological organs (since CAELinux includes software 
packages required for these tasks). 

2.4 Using the Reconstructed Geometry in Finite Element 
Analyses 
This section performs two FE analyses on the liver constructed in the section 2.1. 
While the analyses do not represent typical biomedical engineering analyses, they 
clearly show that the surface mesh (which represents the reconstructed liver) obtained 
by following the procedure presented in the section 2.1 is of good quality. The 
software packages Rhinoceros [Rhinoceros, n.d.] and ANSYS [ANSYS, n.d.] are used 
in the present section. Two analyses are carried out in the present section: one linear 
analysis, and one nonlinear analysis. 

3D models of biological organs obtained in the previous sections are surface meshes 
made up of triangles. Hence, in this section, the commercial software Rhinoceros is 
used to convert the 3D surface (surface model of the liver obtained in section 2.1) into 
a 3D solid so that the 3D solid model can be used in the FE analyses. This conversion 
from the 3D surface to 3D solid may be achieved as follows: Open 
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‘liver102vprocessed.stl’ in Rhinoceros. Use the command MeshToNurb, and the 
resulting solid may be saved in ACIS (.sat) format using Save As…. The file is named 
as ‘liver102vprocessed.sat’. Size of the file is around 500 KB. 

2.4.1 Linear Analysis 

The 3D model of the liver ‘liver102vprocessed.sat’ is imported into ANSYS and used 
in a finite element analysis. The purpose of carrying out the FE analysis is just to 
show that 3D models of the organs obtained through the procedure presented in this 
paper do not pose serious problems during meshing. A test load, boundary condition 
and material are assumed. Figure 2.17 shows the deformed shape of the liver 
superimposed over the undeformed liver, as seen in ANSYS.  

 

Figure 2.17 The Liver (Deformed + Undeformed) 

 

2.4.2 Nonlinear Analysis 

The 3D model of the liver (the 3D solid ‘liver102vprocessed.sat’) is imported into 
ANSYS and used in a finite element analysis. This is a dummy analysis which 
demonstrates that the geometry obtained by following the procedure illustrated in the 
previous sections could be used in a nonlinear finite element analysis. A box shaped 
imaginary cyst is created inside the liver. Cyst is placed approximately at the center of 
the liver. Figure 2.18 shows the liver and the cyst. 
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Figure 2.18 The Liver and the Cyst Displayed in ANSYS 

 

Both liver and cyst are assumed linear elastic but they both can undergo large 
deformation, hence making the analysis nonlinear. The Young’s modulus for the liver 
is taken as 200000 N/mm2 and its Poisson’s ratio is taken as 0.33 (this is equivalent to 
assuming that liver is made out of steel!). For the cyst, Young’s modulus is taken as 
100000 N/mm2 and Poisson’s ratio is taken as 0.30. Of course, these values are no 
way near to the real values. Next, one of the triangles forming the bottom surface of 
the liver is ‘fixed’ or it is assumed that the displacements in any direction over all of 
this triangle surface is zero. A 3 mm displacement is applied at a vertex located on the 
top surface. The displacement is applied in the Y-direction which is roughly along the 
thickness of the liver. The element used is: Solid Tet 10node 187. The element is 
capable of handling large deformation. Element shape is Tetrahedron and Free 
meshing has been used; this is to ensure that the complex geometry is properly 
meshed. Solution → Analysis Type → Sol’n Controls → Basic → Analysis Options 
is set to Large Displacement Static. Analysis is carried out and the displacement 
along Y-direction, at a vertex which is close to the vertex where the point load is 
applied, is found to be 0.19387 mm. Next, the same analysis is carried out but without 
any cyst inside the liver and the displacement at the same vertex along Y-direction is 
noted down again. It is found to be 0.18848 mm. One can clearly see that the 
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difference in the displacements obtained at the same point for the two cases is the 
result of the presence or the absence of the cyst inside the liver.  

2.5 Summary 
A procedure for obtaining models of biological organs from image sequences that are 
obtained through CT-scanning has been presented in this chapter. The procedure uses 
free software packages only; the free software packages needed are: ImageJ, ITK-
SNAP, and MeshLab. While using this procedure, user can control how fine the organ 
description should be. The procedure has been illustrated by successfully 
reconstructing a pig liver. The same procedure has been used to obtain the 3D surface 
model of a representative human kidney from CT-scan images from the Visible 
Human Dataset (VHD). The practice of extracting the geometry of biological organs 
completely for free, as illustrated in the present work, could be a free alternative to the 
use of expensive commercial software packages or to the purchase of a digital model. 
The procedure can be of use to obtain patient specific organ geometry, or to obtain 
representative organ geometry. It is also demonstrated that finite element simulations 
can be performed on geometry obtained using the procedure illustrated in the present 
chapter; hence the procedure could be of use in surgery planning and surgery 
simulation since both of these extensively use finite elements for numerical 
simulations. 
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Chapter 3: Real-time Simulation of Biological 
Organs using the Boundary Element Method 

In this chapter, the possibility of simulating biological organs in real-time using the 
Boundary Element Method (BEM) is investigated. Liver and kidney are the biological 
organs considered. A Graphics Processing Unit (GPU), and a computer cluster are 
employed to speed up the computations. 

This chapter utilizes constant boundary elements of triangular shape. Next three 
paragraphs mention the advantages of using BEM, advantages of using (boundary) 
elements of triangular shape, and advantages of using constant (boundary) elements 
respectively. 

The BEM needs a meshing of only the boundary of any geometry (at least for linear 
elastostatic problems). Hence lesser number of elements can describe geometry. 
Literature mentions that BEM shows very good scalability when parallelized to 
execute on a computer containing multiple processors; parallelizing the BEM would 
help in reducing solution times. BEM is generally thought to be an efficient numerical 
technique. In BEM, some of the unknowns can be displacements while at the same 
time the remaining unknowns can be tractions; hence computation of tractions from 
displacements is not needed (during postprocessing); during surgical simulations, 
often the goal is to obtain reaction forces corresponding to prescribed values of 
displacements (i.e., goal is not to obtain displacements that correspond to known 
values of forces), and one can observe that BEM could be better than FEM for such 
problems. Often, one needs to know the solutions only on the boundary of an organ 
(or only at the nodes of boundary elements), and with BEM, there is no need to 
calculate solutions at internal points to get the solutions at the boundary, while FEM 
unnecessarily calculates solutions at internal nodes also. It is widely mentioned in the 
literature that collision detection and rendering are easy with the type of object 
representation used in BEM. The system of equations resulting from BEM is dense 
while FEM produces sparse ‘characteristic’ matrices. Since the algorithms and 
routines that take advantage of the sparseness of characteristic matrices are rare, BEM 
has an upper hand in this case (also since BEM needs meshing of only the boundary 
of the geometry and hence lesser number of elements can describe a geometry). 
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There are advantages in using boundary elements of triangular shape. Any 
complicated geometry can easily be represented by surface triangles. One can 
construct a geometry using any standard CAD software package and then use the ‘stl 
export’ option available in the package to obtain the surface mesh as an STL file 
(exporting a mesh as a VRML file may also serve the purpose). Mesh processing tools 
and remeshing tools (e.g., MeshLab [MeshLab, n.d.], ReMESH [ReMESH, n.d.]) are 
widely available for surface meshes made up of triangles. Tools that can modify, edit, 
heal, and improve the quality of surface meshes that are made up of triangles (i.e., 
tools that can convert a mesh made up of ill shaped triangles to a mesh made up of 
well shaped triangles) are also widely available. One can note that it is easy to obtain 
3D models described by surface triangles from 3D scan. One can also note that many 
of the software packages that can do 3D reconstruction of biological organs from 2D 
image sequences have the ‘stl export’ option. Literature tells that it is easier to 
perform rendering and collision detection with meshes made up of surface triangles. 

Now, advantages of using constant boundary elements are explained. Constant 
boundary elements are fast in the sense that they do not need complicated shape 
functions that are computationally expensive. Constant elements are easy to use and 
program. No connectivity information is needed if constant elements are used. This 
makes it easy to parallelize the code, and the resulting code is highly scalable. 
Constant elements are suitable for handling multiple regions since nodes are located 
completely within the elements (not on the edges or corners). Of course, accuracy 
may be poor for a given number of elements when compared to linear and quadratic 
elements. For applications like the real-time simulation of biological organs, accuracy 
may not be too important when compared to speed. 

To use BEM for the real-time simulation of biological organs, one needs a source 
code for BEM. Although many BEM libraries are available, present author could not 
find any suitable library that is of help for solving the problem in hand. For example, 
Helsinki BEM Library [Helsinki BEM, n.d.] is a MATLAB source code library for 
solving problems that obey the Laplace or Poisson equation. The web source 
[http://www.boundary-element-method.com/, n.d.] contains codes that are specifically 
useful for solving acoustics problems. The source also contains codes for solving 
Laplace problems and Helmholtz problems. Book [Ang W.T., 2007] gives 
FORTRAN codes for Laplace’s equation and Helmholtz equation, in two and three 
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dimensions. The codes can be freely downloaded from the website for the book. A 
BEM code for two dimensional (2D) pulsating cylinders is available from the 
MATLAB Central (from MathWorks) [MATLAB Central, n.d.]. One can note that 
none of the above sources provide source codes for 3D elasticity. Fast Multipole 
Boundary Element Method (FastBEM) software is available from [Yijun Liu, n.d.]; it 
provides software for 3D elasticity also; source codes are not available still. The 
website for the book [Beer G., et al., 2008] contains many programs in Fortran. It 
contains programs for 3D elasticity also. Author has downloaded the programs, but 
has found that the program that solves the 3D elasticity problem does not give 
accurate solutions (the program gives the same output for different inputs); the 
concerned authors do not provide any support for the programs. Hence the present 
author had to write his own BEM codes, from scratch. 

3.1 Description of the BEM Code Developed 
Since it was inevitable to develop one’s own code for BEM, present author first wrote 
a MATLAB code that can be used to solve any three dimensional linear elastostatic 
problem (without considering body forces) using constant boundary elements. Next, a 
Fortran translation of the MATLAB code was developed. Finally, a parallelized 
version of the Fortran code was developed. All these codes are available for download 
as free and open source software from the source [Kirana Kumara P, 2014a], under 
the very permissive MIT License. 

All theory behind the code, including many of the formulae, is taken from [Beer G., et 
al., 2008; Ang W.T., 2007; C.A. Brebbia and J. Dominguez, n.d.; Brebbia CA, 1978; 
Youssef F. Rashed, n.d.]. Author also used many other resources while writing the 
code. A few of the many noteworthy ones are [Alastair McKinstry, et al., n.d.; Blaise 
Barney, n.d.; “Intel Math Kernel Library Reference Manual”, n.d.; “ScaLAPACK 
Example Programs”, n.d.; “ScaLAPACK - Scalable Linear Algebra PACKage”, n.d.; 
“Parallel ESSL Guide and Reference”, n.d.]. This author used the information 
contained in many of the online forums also, especially while 
running/compiling/developing the code. 
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3.1.1 Theory behind the Code 

From the Appendix of [Beer G., et al., 2008], for static elasticity, in indicial notation, 
the displacement iu at an internal point P, in the absence of initial stresses and strains, 
is given by 

∫ ∫−=

S S
jijjiji dSQuQPTdSQtQPUpu )(),()(),()(                                             (3.1) 

            where ii tu , (or jj tu , ) are the displacements and tractions 

                      ),(),,( QPTQPU ijij are called the fundamental solutions 

                      P is called the source point and Q is called the field point 

                      S is the surface (for 3D problems) which represents the geometry 

For 3D problems, the fundamental solutions are given by 
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In (3.2) and (3.3), r is the distance between P andQ , and in and jn are the outward 
normals. The derivative of r with respect to the Cartesian axis i is denoted as ir, and 
the derivative of r with respect to the Cartesian axis j is denoted as jr, . The term 
θcos is given by  
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The values of the constants are given by 
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where ν is the Poisson’s ratio. 

The shear modulus G is given by 

( )ν+=
12
EG                                                    (3.7) 

where E is the modulus of elasticity. 

One may note that the equations (3.1) to (3.7) above have been copied from the book 
[Beer G., et al., 2008]. 

In the present work, a 3D solid is represented by 3D boundary triangles, i.e., 3D 
triangular surface mesh. T is the total number of triangles which together represent 
the 3D solid; hence, the total number of elements is equal to T . Let mS be the surface 
of the element with element numberm . Since constant elements are used, over each 
of the elements, displacements and tractions are assumed constant. For each of the 
elements, either displacement or traction is known, the other being an unknown that 
has to be calculated. In this work, solution is sought only on the boundary. For a point 
P  on the boundary of a solid, if P  is located inside a smooth region of the boundary, 
(3.1) can be reduced to the following three equations, i.e., (3.8), (3.9) and (3.10). 

( ) [ ]∑
=

−−−++=
T

m
ex BBBAAAPu

1
321321

2
1                             (3.8) 

[ ]∑
=

−−−++=
T

m
ey BBBAAAPu

1
654654)(2

1                            (3.9)   

[ ]∑
=

−−−++=
T

m
ez BBBAAAPu

1
987987)(2

1                         (3.10) 

where ( ) ( ) m

S
mexxmx dSQPUQtA

m

∫= ,1        ( ) ( ) m

S
mexymy dSQPUQtA

m

∫= ,2  
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( ) ( ) m

S
mexzmz dSQPUQtA

m

∫= ,3  

( ) ( ) m

S
mexxmx dSQPTQuB

m

∫= ,1       ( ) ( ) m

S
mexymy dSQPTQuB

m

∫= ,2  

( ) ( ) m

S
mexzmz dSQPTQuB

m

∫= ,3  

( ) ( ) m

S
meyxmx dSQPUQtA

m

∫= ,4       ( ) ( ) m

S
meyymy dSQPUQtA

m

∫= ,5  

( ) ( ) m

S
meyzmz dSQPUQtA

m

∫= ,6  

( ) ( ) m

S
meyxmx dSQPTQuB

m

∫= ,4       ( ) ( ) m

S
meyymy dSQPTQuB

m

∫= ,5  

( ) ( ) m

S
meyzmz dSQPTQuB

m

∫= ,6  

( ) ( ) m

S
mezxmx dSQPUQtA

m

∫= ,7       ( ) ( ) m

S
mezymy dSQPUQtA

m

∫= ,8  

( ) ( ) m

S
mezzmz dSQPUQtA

m

∫= ,9  

( ) ( ) m

S
mezxmx dSQPTQuB

m

∫= ,7       ( ) ( ) m

S
mezymy dSQPTQuB

m

∫= ,8  

( ) ( ) m

S
mezzmz dSQPTQuB

m

∫= ,9  

Equations (3.8) - (3.10) may also be written in the expanded form given by the 
following three equations, i.e., (3.11), (3.12) and (3.13). 

 

 

 

 



  Chapter 3 
 

44 
 

[ ]312111312111)(2
1 BBBAAAPu ex −−−++=   

 

 

                                                                                                       

 

(3.11) 

[ ]615141615141)(2
1 BBBAAAPu ey −−−++=  

 

 

 

                                                                                                                                                                             

 (3.12) 

[ ]918171918171)(2
1 BBBAAAPu ez −−−++=  

 

 

 

 

                                                                                           (3.13) 

where  ( ) ( )∫=
mS

m
mexxmx dSQPUQtmA ,1         ( ) ( ) m

S
mexymy dSQPUQtmA

m

∫= ,2  

( ) ( ) m

S
mexzmz dSQPUQtmA

m

∫= ,3  

[ ]TBTBTBTATATA 321321 −−−+++K

[ ] K+−−−+++ 322212322212 BBBAAA

[ ] K+−−−+++ 625242625242 BBBAAA

[ ]TBTBTBTATATA 654654 −−−+++K

[ ] K+−−−+++ 928272928272 BBBAAA

[ ]TBTBTBTATATA 987987 −−−+++K

[ ] KK +−−−+++ mBmBmBmAmAmA 321321

[ ] KK +−−−+++ mBmBmBmAmAmA 654654

[ ] KK +−−−+++ mBmBmBmAmAmA 987987
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( ) ( ) m

S
mexxmx dSQPTQumB

m

∫= ,1           ( ) ( ) m

S
mexymy dSQPTQumB

m

∫= ,2  

( ) ( ) m

S
mexzmz dSQPTQumB

m

∫= ,3  

( ) ( ) m

S
meyxmx dSQPUQtmA

m

∫= ,4           ( ) ( ) m

S
meyymy dSQPUQtmA

m

∫= ,5  

( ) ( ) m

S
meyzmz dSQPUQtmA

m

∫= ,6  

( ) ( ) m

S
meyxmx dSQPTQumB

m

∫= ,4          ( ) ( ) m

S
meyymy dSQPTQumB

m

∫= ,5  

( ) ( ) m

S
meyzmz dSQPTQumB

m

∫= ,6  

( ) ( ) m

S
mezxmx dSQPUQtmA

m

∫= ,7           ( ) ( ) m

S
mezymy dSQPUQtmA

m

∫= ,8  

( ) ( ) m

S
mezzmz dSQPUQtmA

m

∫= ,9  

( ) ( ) m

S
mezxmx dSQPTQumB

m

∫= ,7           ( ) ( ) m

S
mezymy dSQPTQumB

m

∫= ,8  

( ) ( ) m

S
mezzmz dSQPTQumB

m

∫= ,9  

where m  takes values from 1 to T  .  

Equations (3.8) - (3.10) (or equations (3.11) - (3.13)) are the basic equations upon 
which the present code is developed. Since displacements and tractions are constants 
over each of the elements, for each of the elements, displacements and tractions are 
considered only for just one chosen point inside each element. eP   and mQ refer to 
these points; here, the subscripts e or m in eP or mQ refer to the element number. The 
subscript e in eP varies from 1 to T which is the total number of elements. Further, 
m = e implies that eP = mQ . Hence, if a solid is discretized by T boundary elements, 
equation (3.8) - (3.10) (or equation (3.11)-(3.13)) give rise to a set of coupled T3  
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linear algebraic equations in T3 unknowns. Unknowns are either displacements 
( xu , yu  or zu at eP or mQ ) or tractions ( xt , yt or zt at mQ (or eP when e =m )). For 
elements with prescribed displacements ( xu , yu  and zu ), the tractions ( xt , yt and zt ) 
are the unknowns. On the other hand, for elements with prescribed tractions ( xt , 
yt and zt ), the displacements ( xu , yu  and zu ) are the unknowns. The set of 
T3 algebraic equations may be written in the form 

[ ] { } { } 131333 ××× = TTTT FUK                                       (3.14) 

where { }U  denotes the vector of unknowns, which consists of unknown 
displacements and unknown tractions. The matrix [ ]K  is fully populated, in general. 
Solving (3.14) for { }U , one can straight away obtain the values of the unknowns, be it 
unknown displacements or unknown tractions.  

Now, the method used to find the integrals of the fundamental solutions over the 
elements is explained, i.e., the goal now is to evaluate the integrals  

∫
mS

m
mexx dSQPU ),( , ∫

mS

m
mexx dSQPT ),( , ∫

mS

m
mexy dSQPU ),( , ∫

mS

m
mexy dSQPT ),( , 

∫
mS

m
mexz dSQPU ),( , ∫

mS

m
mexz dSQPT ),( , ∫

mS

m
meyx dSQPU ),( , ∫

mS

m
meyx dSQPT ),( , 

∫
mS

m
meyy dSQPU ),( , ∫

mS

m
meyy dSQPT ),( , ∫

mS

m
meyz dSQPU ),( , ∫

mS

m
meyz dSQPT ),( , 

∫
mS

m
mezx dSQPU ),( , ∫

mS

m
mezx dSQPT ),( , ∫

mS

m
mezy dSQPU ),( , ∫

mS

m
mezy dSQPT ),( , 

∫
mS

m
mezz dSQPU ),( , ∫

mS

m
mezz dSQPT ),(  

These integrals are evaluated by following the procedure explained in Chapter 6 of 
the book [Ang W.T., 2007]. One may note that the equations (3.15) to (3.26) below 
have been adapted/copied from the book [Ang W.T., 2007]. The integrals above are 
evaluated by using the formula: 
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∫ ∫ ∫−=
mS

v
mm dudvJzyxfdSzyxf

1

0

1

0

),,(),,(  

                           ∫ ∫ −=

1

0

1

0

)1)(,,( dtdvJvzyxf m  

                           ( )∑
=

≅
16

1
,16

1
k

kk vtf  

                           ( )( )∑
=

−=

16

1
1,,16

1
k

m
kkkk Jvzyxf                                                      (3.15) 

Equation (3.15) may be written as  

∫
mS

mdSzyxf ),,( ( )( )∑
=

−=

16

1
1,,16

1
k

m
kkkk Jvzyxf                                               (3.16) 

In equation (3.16), ( )zyxf ,,  is the fundamental solution (i.e., xxU , xxT , xyU , xyT , xzU , 

xzT , yxU , yxT , yyU , yyT , yzU , yzT , zxU , zxT , zyU , zyT , zzU , zzT ) which needs to be 
integrated over the element that has the element number m . 

Let ( )aaa zyx ,, , ( )bbb zyx ,,  and ( )ccc zyx ,,  be the coordinates of the vertices which 
define the triangular boundary element m . Of course, the vertices always have to be 
properly ordered such that the normal vector to mS points out of the 3D solid under 
consideration. Then mJ in (3.16) is given by 

( )( )( )mmmmmmmmJ γσβσασσ −−−= 2                               (3.17) 

                                               where 2
mmm

m γβασ ++=   

                                                          ( ) ( ) ( )222
bababa

m zzyyxx −+−+−=α  

                                                         ( ) ( ) ( )222
cbcbcb

m zzyyxx −+−+−=β  

                                                          ( ) ( ) ( )222
acacac

m zzyyxx −+−+−=γ  
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For the purpose of evaluating kx , ky  and kz  in (3.16), the values for ( )kk vt ,  are noted 
down as follows (4 by 4 numerical integration is assumed here for the sake of 
simplicity of explanations). 

( ) 


 ++= 34
1

4
1,34

1
4
1, 11 vt     ( ) 


 −+= 34

1
4
1,34

1
4
1, 22 vt  

( ) 


 +−= 34
1

4
1,34

1
4
1, 33 vt     ( ) 


 −−= 34

1
4
1,34

1
4
1, 44 vt  

( ) 


 ++= 34
1

4
1,34

1
4
3, 55 vt     ( ) 


 −+= 34

1
4
1,34

1
4
3, 66 vt  

( ) 


 +−= 34
1

4
1,34

1
4
3, 77 vt     ( ) 


 −−= 34

1
4
1,34

1
4
3, 88 vt  

( ) 


 ++= 34
1

4
3,34

1
4
3, 99 vt     ( ) 


 −+= 34

1
4
3,34

1
4
3, 1010 vt  

( ) 


 +−= 34
1

4
3,34

1
4
3, 1111 vt     ( ) 


 −−= 34

1
4
3,34

1
4
3, 1212 vt  

( ) 


 ++= 34
1

4
3,34

1
4
1, 1313 vt     ( ) 


 −+= 34

1
4
3,34

1
4
1, 1414 vt  

( ) 


 +−= 34
1

4
3,34

1
4
1, 1515 vt     ( ) 


 −−= 34

1
4
3,34

1
4
1, 1616 vt  

                                                                                                                           (3.18) 

The value of ku  is calculated by using the formula 

( )kkk vtu −= 1                                                 (3.19) 

Next, to calculate kx , ky  and kz  in (3.16), one needs to also calculate the components 
of the unit normal vector to the element surface mS . Again, assuming that ( )aaa zyx ,,  
, ( )bbb zyx ,,  and ( )ccc zyx ,,  are the coordinates of the vertices of the triangular 
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boundary element m ,  the components of the unit normal vector in the x ,  y  and z  
direction are given by 

( )( ) ( )( )
d

yyzzzzyyn acabacabm
x

−−−−−
=  

( )( ) ( )( )
d

zzxxxxzzn acabacabm
y

−−−−−
=  

( )( ) ( )( )
d

xxyyyyxxn acabacabm
z

−−−−−
=                                                                                                     

(3.20) 

where =d [ ( )( ) ( )( )( )2acabacab yyzzzzyy −−−−−  

                           + ( )( ) ( )( )( )2acabacab zzxxxxzz −−−−−  

                                  + ( )( ) ( )( )( )2acabacab xxyyyyxx −−−−− ]1/2 

Depending on the values of m
zn  and m

yn , kx , ky  and kz  in (3.16) can be calculated 
by using either of the following equations (3.21) - (3.23). 

If 3
1≥m

zn  

( ) ( ) akackabk xvxxuxxx +−+−=  

( ) ( ) akackabk yvyyuyyy +−+−=  

( ) ( ) ( )[ ] aak
m
yak

m
x

m
zk zyynxxnnz +−+−−=

−1  

                                                                                                                                (3.21) 
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Else, if 3
1<m

zn  and 3
1≥m

yn  

( ) ( ) akackabk xvxxuxxx +−+−=  

( ) ( ) akackabk zvzzuzzz +−+−=  

( ) ( ) ( )[ ] aak
m
zak

m
x

m
yk yzznxxnny +−+−−=

−1  

                                                                                                                                (3.22) 

Else, if 3
1<m

zn  and 3
1<m

yn  

( ) ( ) akackabk yvyyuyyy +−+−=  

( ) ( ) akackabk zvzzuzzz +−+−=  

( ) ( ) ( )[ ] aak
m
zak

m
y

m
xk xzznyynnx +−+−−=

−1  

                                                                                                                                (3.23) 

Equations (3.21) - (3.23) are also used to evaluate the Cartesian coordinates of eP  or 

mQ , which may be denoted as ( )mmm zyx ,, , by setting 
4
1
=ku  and 

2
1
=kv . Hence, for 

element m , ( )mmm zyx ,,  which is the chosen point inside the element m  and which is 
the only point on the element where displacement or traction is considered (the other 
points on the element having the same value of displacement or traction as that of this 
point), is given by (3.24) - (3.26).  
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If 3
1≥m

zn  

( ) ( ) aacab
m xxxxxx +−+−=

2
1

4
1  

( ) ( ) aacab
m yyyyyy +−+−=

2
1

4
1  

( ) ( ) ( )[ ] aa
mm

ya
mm

x
m
z

m zyynxxnnz +−+−−=
−1  

                                                                                                                                (3.24) 

Else, if 3
1<m

zn  and 3
1≥m

yn  

( ) ( ) aacab
m xxxxxx +−+−=

2
1

4
1  

( ) ( ) aacab
m zzzzzz +−+−=

2
1

4
1  

( ) ( ) ( )[ ] aa
mm

za
mm

x
m
y

m yzznxxnny +−+−−=
−1  

                                                                                                                                (3.25) 

Else, if 3
1<m

zn  and 3
1<m

yn  

( ) ( ) aacab
m yyyyyy +−+−=

2
1

4
1  

( ) ( ) aacab
m zzzzzz +−+−=

2
1

4
1  

( ) ( ) ( )[ ] aa
mm

za
mm

y
m
x

m xzznyynnx +−+−−=
−1  

                                                                                                                                (3.26) 
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One can see that (3.16) can now be evaluated if one knows the expressions for the 
fundamental solutions (i.e., xxU , xxT , xyU , xyT , xzU , xzT , yxU , yxT , yyU , yyT , yzU , yzT , 

zxU , zxT , zyU , zyT , zzU , zzT ). Using (3.2) and (3.3), expressions for the fundamental 
solutions may be written in the expanded form as given by (3.27) below. In these 
equations, ),,( 111 zyx  denotes the coordinates of the point eP  while ),,( 222 zyx   
denotes the coordinates of the point ( )kkk zyx ,, .  





 


+=

2

1 dx
drC

r
CU xx        








+=
2

1 dy
drCr

CU yy  





 


+=

2

1 dz
drC

r
CU zz  










== dy
dr

dx
dr

r
CUU yxxy        








== dz
dr

dy
dr

r
CUU zyyz  
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







==
dx
dr

dz
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r
CUU xzzx  










 


+−= θcos3
2

32
2

dx
drC

r
CTxx        




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
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

+−= θcos3
2

32
2

dy
drCr

CTyy  
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






 −−




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r
CT m

z
m
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2 cos3 θ  
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
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

 −−




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dx
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CT m

z

m

xzx 32
2 cos3 θ  




 


 −−

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CT m

x
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zxz 32
2 cos3 θ  

                                                                                                                                (3.27) 

where ( ) ( ) ( )212
2

12
2

12 zzyyxxr −+−+−=   

            ( )
r
xx

dx
dr 12 −=            ( )

r
yy

dy
dr 12 −=      

             ( )
r
zz

dz
dr 12 −=                

            ( ) ( ) ( )[ ]m
z

m
y

m
x nzznyynxxr 121212

1cos −+−+−=θ        

                    (From equation (3.4)) 

            Other notations have the same meanings as earlier 

           m
y

m
x nn ,  and m

zn  are constant over an element m  

           m
y

m
x nn ,  and m

zn  are different for different elements, in general 

One can note that since there are sixteen ( )kkk zyx ,,  for every element m , when one 
integrates a fundamental solution over an element surface mS (which contains the 
point mQ ), for every ),,( 111 zyx , there are sixteen different ),,( 222 zyx . Further, when 
the whole code is considered, since the total number of elements equals T , for every 

),,( 111 zyx , there are T16   different ),,( 222 zyx ; and there are T different ),,( 111 zyx  in 
total. 

The code addresses strong singularity by using ‘rigid body modes’ and weak 
singularity is taken care of by utilizing higher number of integration points over each 
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of the boundary elements. The next paragraph tells a few words about ‘rigid body 
modes’. 

When an integral as encountered in the 3D linear elastostatics without body forces 
(with constant elements) is strongly singular, the value of the definite integral exists 
only in the sense of Cauchy Principal Value (CPV). Cauchy Principal Values in this 
case may be found either by direct evaluation [M. Guiggiani and A. Gigante, 1990; 
M. Guiggiani, n.d.] or by using ‘rigid body modes’ explained in [Gernot Beer, et al., 
2008; C.A. Brebbia and J. Dominguez, n.d.]. The code uses ‘rigid body modes’ or 
‘rigid body considerations’ as explained in [Gernot Beer, et al., 2008; C.A. Brebbia 
and J. Dominguez, n.d.] to evaluate strongly singular integrals. 

When good accuracy is required, the code can use 16 by 16 numerical integration (i.e., 
256 integration points over each element). Higher number of integration points 
ensures accurate evaluation of weakly singular integrals. Of course, the code has a 
provision to use 4 by 4, 8 by 8, or 32 by 32 integration points also; location of Gauss 
points and the corresponding weights for these cases are listed in the code itself; the 
location of Gauss points and weights are obtained from the web source 
[http://www.efunda.com, n.d.]. Test runs showed that using 4 by 4 integration does 
not give very accurate results. Test runs using 8 by 8 integration gave accurate results 
but the code uses 16 by 16 integration by default just to ensure that one does not get 
erroneous results just because of inaccurate integration. It was also observed from test 
runs that there is not much improvement in accuracy by using more than 16 by 16 
integration points. Of course, using 8 by 8 integration instead of the default 16 by 16 
integration would definitely make the code execute faster. 

3.1.2 Illustration and Verification 

In the present subsection, the code is tested by using the code to solve four simple 
problems with known analytical solutions. 

All the four problems considered here use the same geometry, although four different 
boundary conditions give rise to four different problems named as: Problem A, 
Problem B, Problem C, and Problem D. Each of the four problems is solved for three 
mesh resolutions named as: Mesh 1, Mesh 2, and Mesh 3. Mesh 1 always consists of 
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100 boundary elements whereas Mesh 2 always consists of 300 boundary elements 
and Mesh 3 always consists of 500 boundary elements. 

The geometry is a block of 1 mm by 1 mm cross section and 3 mm length. This is the 
geometry that is used for each of the simulations here, although different boundary 
conditions together with different mesh resolutions give rise to many simulations. The 
geometry is constructed in Rhinoceros, and then the geometry is saved as a .stl file, 
the geometry being described by less than 100 triangles in total. Then one can obtain 
Mesh 1, Mesh 2, and Mesh 3 by using MeshLab to increase the total number of 
triangles that describe the geometry to 100, 300, and 500 respectively. 

In this subsection, for all the simulations, modulus of elasticity is assumed as 200000 
N/mm2, and the Poisson’s ratio is assumed to be equal to 0.33. 

Problem A is the problem where one end of a bar is fixed while a load of specified 
magnitude is applied at the other end, the load being applied as the uniformly 
distributed load over the whole face which represents the loaded end. The solution 
(displacement over the whole face, along the direction of the applied load) is sought at 
the loaded end. The magnitude of the applied load is such that the load produces a 
displacement of 1 mm at the loaded end, as calculated by the analytical formula.  

Problem B is to take a cantilever beam, fix one end of the beam, and apply a load (of 
specified magnitude) at the other end in the lateral direction, the load being applied as 
the uniformly distributed load over the whole face which represents the loaded end. 
The solution (displacement over the whole face, along the direction of the applied 
load) is sought at the loaded end. The magnitude of the applied load is such that the 
load produces a displacement of 1 mm (along the direction of the load) at the loaded 
end, as calculated by the analytical formula. 

Problem C is to take a bar, fix one end of the bar, and apply a specified non-zero 
displacement at the other end. The specified non-zero displacement is uniformly 
enforced over the whole face. The solution (traction over the whole face, along the 
direction of the specified non-zero displacement) is sought at the end of the bar where 
the non-zero displacement is applied. The magnitude of the specified non-zero 
displacement is equal to 1 mm. 
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Problem D is to take a cantilever beam, fix one end of the beam, and apply a specified 
non-zero displacement at the other end in the lateral direction. The specified non-zero 
displacement is uniformly enforced over the whole face. The solution (traction over 
the whole face, along the direction of the specified non-zero displacement) is sought 
at the end of the beam where the non-zero displacement is applied. The magnitude of 
the specified non-zero displacement is equal to 1 mm. 

Whenever Mesh 1 is used, element numbers 6, 7, 12, 16, 25, 26, 35, 36, 37, 38, 40, 
52, 63, 64, 96, 97, 98, 99, and 100 are subjected to the boundary condition of zero 
displacement along all the three axes. Whenever Mesh 1 is used to solve Problem A 
or Problem B, element numbers 8, 39, and 53 are subjected to non-zero traction. 
Whenever Mesh 1 is used to solve Problem C or Problem D, element numbers 8, 39, 
and 53 are subjected to non-zero displacement. Whenever Mesh 1 is used, the rest of 
the elements are subjected to zero traction. 

Whenever Mesh 2 is used, element numbers 18, 19, 23, 38, 39, 46, 71, 72, 80, 123, 
124, 125, 126, 127, 128, 129, 141, 168, 169, 170, 171, 172, 173, 174, 175, 176, 200, 
201, 202, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, and 293 are subjected to 
the boundary condition of zero displacement along all the three axes. Whenever Mesh 
2 is used to solve Problem A or Problem B, element numbers 2, 20, 21, 22, 24, 47, 48, 
130, 131, 132, 133, 177, 178, 179, 180, 181, 203, 204, 294, 295, 296, 297, 298, 299, 
and 300 are subjected to non-zero traction. Whenever Mesh 2 is used to solve 
Problem C or Problem D, element numbers 2, 20, 21, 22, 24, 47, 48, 130, 131, 132, 
133, 177, 178, 179, 180, 181, 203, 204, 294, 295, 296, 297, 298, 299, and 300 are 
subjected to non-zero displacement. Whenever Mesh 2 is used, the rest of the 
elements are subjected to zero traction.  

Whenever Mesh 3 is used, element numbers 29, 30, 31, 32, 33, 39, 63, 64, 65, 66, 80, 
81, 122, 123, 142, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 248, 292, 293, 
294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 343, 344, 345, 346, 476, 477, 478, 
479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, and 490 are subjected to the 
boundary condition of zero displacement along all the three axes. Whenever Mesh 3 is 
used to solve Problem A or Problem B, element numbers 3, 8, 34, 35, 36, 37, 40, 41, 
67, 68, 82, 83, 84, 124, 158, 228, 229, 230, 231, 232, 233, 304, 305, 306, 307, 308, 
309, 310, 311, 347, 348, 349, 350, 491, 492, 493, 494, 495, 496, 497, 498, 499, and 
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500 are subjected to non-zero traction. Whenever Mesh 3 is used to solve Problem C 
or Problem D, element numbers 3, 8, 34, 35, 36, 37, 40, 41, 67, 68, 82, 83, 84, 124, 
158, 228, 229, 230, 231, 232, 233, 304, 305, 306, 307, 308, 309, 310, 311, 347, 348, 
349, 350, 491, 492, 493, 494, 495, 496, 497, 498, 499, and 500 are subjected to non-
zero displacement. Whenever Mesh 3 is used, the rest of the elements are subjected to 
zero traction. 

The analytical solutions for bar and beam are obtained by using formulae from 
[Warren C. Young and Richard G. Budynas, 2002]. In the case of beams, the said 
reference informs that the analytical formula is reasonably accurate for ‘length to 
diameter ratio’ equal to or more than 3. Hence one can assume that the analytical 
formulae can provide reasonably accurate results here. The analytical formulae used 
here are the same as the ones that can be found in any book on the ‘mechanics of 
materials’ (also known as ‘strength of materials’ or ‘engineering mechanics’) or any 
design data handbook. 

Traction and force are related by 
Area
ForceTraction =  

All the tractions in all the tables below refer to the ‘applied tractions’ (not ‘reaction 
tractions’; the sign of the ‘reaction tractions’ is opposite to the corresponding ‘applied 
tractions’). 

For all the tables below, ‘A’ is the analytical solution, ‘B’ is the solution using this 
author’s code, and ‘C’ is the solution obtained by using the software from [Yijun Liu, 
n.d.]. 

 

Table 3.1 Solution of Problem A with Mesh 1 

Serial 
Number 

Element 
Number 

A         
(mm) 

B         
(mm) 

C         
(mm) 

1 8 1.000 0.911 0.976 
2 39 1.000 0.887 0.969 
3 53 1.000 0.929 0.975 
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Table 3.2 Solution of Problem A with Mesh 2 

Serial 
Number 

Element 
Number 

A         
(mm) 

B         
(mm) 

C         
(mm) 

1 2 1.000 0.933 0.976 
2 20 1.000 0.934 0.971 
3 21 1.000 0.946 0.987 
4 22 1.000 0.976 0.994 
5 24 1.000 0.943 0.988 
6 47 1.000 0.937 0.969 
7 48 1.000 0.974 0.991 
8 130 1.000 0.940 0.988 
9 131 1.000 0.954 0.988 

10 132 1.000 0.975 0.991 
11 133 1.000 0.965 0.989 
12 177 1.000 0.936 0.985 
13 178 1.000 0.957 0.967 
14 179 1.000 0.971 0.988 
15 180 1.000 0.975 0.989 
16 181 1.000 0.975 0.983 
17 203 1.000 0.961 0.989 
18 204 1.000 0.975 0.993 
19 294 1.000 0.979 0.981 
20 295 1.000 0.964 0.986 
21 296 1.000 0.962 0.990 
22 297 1.000 0.972 0.980 
23 298 1.000 0.969 0.990 
24 299 1.000 0.976 0.987 
25 300 1.000 0.982 0.982 
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Table 3.3 Solution of Problem A with Mesh 3 

Serial 
Number 

Element 
Number 

A         
(mm) 

B         
(mm) 

C         
(mm) 

1 3 1.000 0.961 0.987 
2 8 1.000 0.973 0.991 
3 34 1.000 0.959 0.981 
4 35 1.000 0.964 0.990 
5 36 1.000 0.964 0.993 
6 37 1.000 0.978 0.994 
7 40 1.000 0.957 0.990 
8 41 1.000 0.970 0.992 
9 67 1.000 0.957 0.979 

10 68 1.000 0.975 0.993 
11 82 1.000 0.951 0.971 
12 83 1.000 0.967 0.990 
13 84 1.000 0.969 0.991 
14 124 1.000 0.961 0.979 
15 158 1.000 0.972 0.993 
16 228 1.000 0.953 0.988 
17 229 1.000 0.963 0.991 
18 230 1.000 0.963 0.991 
19 231 1.000 0.978 0.992 
20 232 1.000 0.976 0.994 
21 233 1.000 0.964 0.988 
22 304 1.000 0.962 0.985 
23 305 1.000 0.955 0.988 
24 306 1.000 0.965 0.989 
25 307 1.000 0.961 0.972 
26 308 1.000 0.978 0.992 
27 309 1.000 0.974 0.991 
28 310 1.000 0.962 0.986 
29 311 1.000 0.960 0.979 
30 347 1.000 0.961 0.990 
31 348 1.000 0.965 0.989 
32 349 1.000 0.971 0.993 
33 350 1.000 0.969 0.990 
34 491 1.000 0.964 0.980 
35 492 1.000 0.957 0.989 
36 493 1.000 0.969 0.988 
37 494 1.000 0.966 0.992 
38 495 1.000 0.972 0.983 
39 496 1.000 0.976 0.994 
40 497 1.000 0.971 0.992 
41 498 1.000 0.966 0.989 
42 499 1.000 0.963 0.987 
43 500 1.000 0.964 0.978 
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Table 3.4 Solution of Problem B with Mesh 1 

Serial 
Number 

Element 
Number 

A         
(mm) 

B         
(mm) 

C         
(mm) 

1 8 1.000 0.123 0.164 
2 39 1.000 0.125 0.170 
3 53 1.000 0.125 0.167 

 
 

Table 3.5 Solution of Problem B with Mesh 2 

Serial 
Number 

Element 
Number 

A         
(mm) 

B         
(mm) 

C         
(mm) 

1 2 1.000 0.220 0.301 
2 20 1.000 0.221 0.302 
3 21 1.000 0.222 0.303 
4 22 1.000 0.239 0.311 
5 24 1.000 0.225 0.305 
6 47 1.000 0.224 0.299 
7 48 1.000 0.241 0.312 
8 130 1.000 0.223 0.303 
9 131 1.000 0.228 0.306 

10 132 1.000 0.237 0.308 
11 133 1.000 0.231 0.307 
12 177 1.000 0.220 0.304 
13 178 1.000 0.231 0.299 
14 179 1.000 0.234 0.304 
15 180 1.000 0.239 0.312 
16 181 1.000 0.240 0.311 
17 203 1.000 0.229 0.305 
18 204 1.000 0.239 0.311 
19 294 1.000 0.239 0.312 
20 295 1.000 0.232 0.304 
21 296 1.000 0.232 0.308 
22 297 1.000 0.236 0.303 
23 298 1.000 0.237 0.310 
24 299 1.000 0.237 0.309 
25 300 1.000 0.240 0.313 
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Table 3.6 Solution of Problem B with Mesh 3 

Serial 
Number 

Element 
Number 

A         
(mm) 

B         
(mm) 

C         
(mm) 

1 3 1.000 0.280 0.363 
2 8 1.000 0.295 0.372 
3 34 1.000 0.289 0.368 
4 35 1.000 0.281 0.368 
5 36 1.000 0.282 0.365 
6 37 1.000 0.294 0.371 
7 40 1.000 0.289 0.370 
8 41 1.000 0.292 0.371 
9 67 1.000 0.291 0.371 

10 68 1.000 0.291 0.367 
11 82 1.000 0.279 0.356 
12 83 1.000 0.296 0.373 
13 84 1.000 0.291 0.370 
14 124 1.000 0.293 0.372 
15 158 1.000 0.292 0.371 
16 228 1.000 0.282 0.363 
17 229 1.000 0.283 0.363 
18 230 1.000 0.288 0.367 
19 231 1.000 0.292 0.367 
20 232 1.000 0.295 0.372 
21 233 1.000 0.293 0.373 
22 304 1.000 0.291 0.372 
23 305 1.000 0.280 0.365 
24 306 1.000 0.286 0.365 
25 307 1.000 0.283 0.356 
26 308 1.000 0.292 0.367 
27 309 1.000 0.288 0.362 
28 310 1.000 0.294 0.373 
29 311 1.000 0.295 0.372 
30 347 1.000 0.287 0.366 
31 348 1.000 0.290 0.370 
32 349 1.000 0.295 0.372 
33 350 1.000 0.295 0.373 
34 491 1.000 0.295 0.373 
35 492 1.000 0.279 0.367 
36 493 1.000 0.286 0.361 
37 494 1.000 0.289 0.368 
38 495 1.000 0.288 0.361 
39 496 1.000 0.293 0.370 
40 497 1.000 0.293 0.369 
41 498 1.000 0.295 0.373 
42 499 1.000 0.294 0.373 
43 500 1.000 0.296 0.374 
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Table 3.7 Solution of Problem C with Mesh 1 

Serial 
Number 

Element 
Number 

A         
(N/mm2) 

B         
(N/mm2) 

C         
(N/mm2) 

1 8 66666.667 69455.491 67709.806 
2 39 66666.667 87269.862 67597.361 
3 53 66666.667 68126.836 69598.728 

 
 

Table 3.8 Solution of Problem C with Mesh 2 

Serial 
Number 

Element 
Number 

A         
(N/mm2) 

B         
(N/mm2) 

C         
(N/mm2) 

1 2 66666.667 81486.037 72147.765 
2 20 66666.667 84995.345 96075.469 
3 21 66666.667 60477.860 58340.465 
4 22 66666.667 63451.442 65324.353 
5 24 66666.667 61538.614 61009.855 
6 47 66666.667 89685.834 86463.197 
7 48 66666.667 72730.978 75117.094 
8 130 66666.667 81725.052 71178.087 
9 131 66666.667 60001.908 57705.564 
10 132 66666.667 56818.792 58661.374 
11 133 66666.667 70193.468 60635.449 
12 177 66666.667 77898.163 70736.586 
13 178 66666.667 95974.703 102684.039 
14 179 66666.667 54412.395 58161.175 
15 180 66666.667 70418.616 63709.805 
16 181 66666.667 70688.789 84493.907 
17 203 66666.667 60214.349 60584.703 
18 204 66666.667 59849.910 58948.963 
19 294 66666.667 74441.487 85417.435 
20 295 66666.667 57029.932 58600.649 
21 296 66666.667 58294.055 58062.791 
22 297 66666.667 94369.778 89092.484 
23 298 66666.667 55930.383 57797.973 
24 299 66666.667 59414.068 62179.143 
25 300 66666.667 105867.355 88768.029 
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Table 3.9 Solution of Problem C with Mesh 3 

Serial 
Number 

Element 
Number 

A         
(N/mm2) 

B         
(N/mm2) 

C         
(N/mm2) 

1 3 66666.667 80476.356 73159.342 
2 8 66666.667 55361.324 58157.622 
3 34 66666.667 81488.617 72990.680 
4 35 66666.667 88061.514 83577.623 
5 36 66666.667 84322.201 58739.816 
6 37 66666.667 55216.998 62156.941 
7 40 66666.667 100695.230 59235.072 
8 41 66666.667 59496.037 57981.005 
9 67 66666.667 105300.871 83651.848 
10 68 66666.667 56521.454 55767.696 
11 82 66666.667 101867.166 98513.931 
12 83 66666.667 73946.175 74829.386 
13 84 66666.667 60380.866 58330.960 
14 124 66666.667 73281.612 79994.163 
15 158 66666.667 62786.751 57938.524 
16 228 66666.667 81912.796 72839.110 
17 229 66666.667 58204.600 59675.048 
18 230 66666.667 61334.618 58250.261 
19 231 66666.667 51198.805 58036.568 
20 232 66666.667 59142.952 61901.167 
21 233 66666.667 59131.074 59150.439 
22 304 66666.667 63908.099 61983.984 
23 305 66666.667 -24162.010 72759.266 
24 306 66666.667 59526.511 57062.372 
25 307 66666.667 97691.950 101571.154 
26 308 66666.667 55190.489 62833.250 
27 309 66666.667 57028.667 59152.382 
28 310 66666.667 74329.468 64840.899 
29 311 66666.667 79957.222 85299.495 
30 347 66666.667 61955.035 61226.324 
31 348 66666.667 49676.034 58915.288 
32 349 66666.667 64664.811 61325.679 
33 350 66666.667 57082.719 58612.255 
34 491 66666.667 74295.764 85650.272 
35 492 66666.667 157395.807 109298.246 
36 493 66666.667 59576.169 60274.758 
37 494 66666.667 62087.698 58549.440 
38 495 66666.667 93969.612 87382.461 
39 496 66666.667 53555.652 57365.196 
40 497 66666.667 136219.200 98542.285 
41 498 66666.667 61211.673 59074.620 
42 499 66666.667 64546.506 59417.968 
43 500 66666.667 117247.806 89561.493 
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Table 3.10 Solution of Problem D with Mesh 1 

Serial 
Number 

Element 
Number 

A         
(N/mm2) 

B         
(N/mm2) 

C         
(N/mm2) 

1 8 1851.852 16745.249 14038.863 
2 39 1851.852 14955.246 8343.157 
3 53 1851.852 14647.078 11391.793 

 
 

Table 3.11 Solution of Problem D with Mesh 2 

Serial 
Number 

Element 
Number 

A         
(N/mm2) 

B         
(N/mm2) 

C         
(N/mm2) 

1 2 1851.852 18244.275 13142.154 
2 20 1851.852 5455.474 9299.625 
3 21 1851.852 11861.911 8381.703 
4 22 1851.852 5704.807 4044.563 
5 24 1851.852 9784.264 6129.254 
6 47 1851.852 17826.030 16801.162 
7 48 1851.852 3336.521 2120.893 
8 130 1851.852 16568.507 9112.139 
9 131 1851.852 10339.188 7333.374 

10 132 1851.852 5277.272 6285.796 
11 133 1851.852 12325.845 7992.502 
12 177 1851.852 2711.764 5034.345 
13 178 1851.852 23381.354 19417.762 
14 179 1851.852 9049.983 10662.799 
15 180 1851.852 1990.279 3893.684 
16 181 1851.852 -2544.444 4636.885 
17 203 1851.852 9552.691 8184.371 
18 204 1851.852 4154.832 4725.087 
19 294 1851.852 14116.890 11219.491 
20 295 1851.852 10504.130 10891.369 
21 296 1851.852 6297.779 5542.622 
22 297 1851.852 7255.440 9279.251 
23 298 1851.852 3294.441 4792.101 
24 299 1851.852 5117.793 7314.132 
25 300 1851.852 6862.872 9318.893 
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Table 3.12 Solution of Problem D with Mesh 3 

Serial 
Number 

Element 
Number 

A         
(N/mm2) 

B         
(N/mm2) 

C         
(N/mm2) 

1 3 1851.852 15222.115 11018.318 
2 8 1851.852 5130.232 4799.061 
3 34 1851.852 19880.347 12566.685 
4 35 1851.852 4517.181 9191.471 
5 36 1851.852 13686.393 6232.052 
6 37 1851.852 3222.669 3373.365 
7 40 1851.852 18120.214 4286.694 
8 41 1851.852 6405.182 5306.015 
9 67 1851.852 32838.165 18274.278 

10 68 1851.852 7280.242 6738.656 
11 82 1851.852 22682.031 19879.622 
12 83 1851.852 3799.621 1851.409 
13 84 1851.852 6727.599 5156.966 
14 124 1851.852 15597.445 11754.625 
15 158 1851.852 7680.305 5398.902 
16 228 1851.852 14570.145 7367.858 
17 229 1851.852 11075.544 11323.280 
18 230 1851.852 6265.970 6833.082 
19 231 1851.852 4928.453 6599.296 
20 232 1851.852 3452.823 3940.951 
21 233 1851.852 5767.174 4582.045 
22 304 1851.852 8684.409 7425.243 
23 305 1851.852 -32724.628 3707.784 
24 306 1851.852 9587.585 8351.468 
25 307 1851.852 23976.227 19357.735 
26 308 1851.852 3739.101 4301.970 
27 309 1851.852 11322.100 11805.035 
28 310 1851.852 4796.674 3331.125 
29 311 1851.852 6857.137 3845.101 
30 347 1851.852 9412.559 7351.534 
31 348 1851.852 4891.820 5378.983 
32 349 1851.852 4670.369 3630.269 
33 350 1851.852 5501.112 4487.105 
34 491 1851.852 16602.155 12500.110 
35 492 1851.852 29371.086 11074.415 
36 493 1851.852 11947.036 12320.136 
37 494 1851.852 7431.994 5579.314 
38 495 1851.852 10873.372 9543.230 
39 496 1851.852 5126.721 6020.652 
40 497 1851.852 5006.136 1302.501 
41 498 1851.852 5701.605 4648.435 
42 499 1851.852 5770.083 4548.775 
43 500 1851.852 -1107.964 8370.779 
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From the tables above, one can see that as the mesh is refined, general trend is that the 
solutions obtained by using this author’s code approach the corresponding analytical 
solutions. Further, the solutions obtained by using this author’s code are in good 
agreement with the corresponding solutions obtained by using the software from 
[Yijun Liu, n.d.]. Thus one can infer that the present code (i.e., this author’s code) has 
performed satisfactorily. 
3.2 Description of Hardware and Software Utilized 
In the present chapter, simulations are carried out on two hardware platforms. The 
first hardware platform is a desktop computer, and the second hardware platform is a 
computer cluster. 

Coming to hardware and software that are used when simulations are carried out on a 
desktop, MATLAB codes (with or without GPU) are run on a desktop computer 
(Intel(R) Xeon(R) CPU E5405 @ 2.00 GHz (8 cores), 8 GB RAM, Mainboard: Intel 
D5400XS, Chipset: Intel 5400B, Windows XP Professional x64 Edition, SSD: Corsair 
CSSD-F60GB2, MATLAB2011b (32 bit version), GPU: NVIDIA Quadro 4000 (Driver 
Version 6.14.12.9573)). Apart from the solid-state drive (SSD), the simulations were 
tried out using the ordinary hard disk also. The 64 bit version of MATLAB2011b was 
also tried out. Since it was found from the simulation results that the SSD is about 1.5 
times faster when compared to the conventional hard disk and the 32 bit MATLAB is 
about 10 times faster when compared to the 64 bit MATLAB, it is decided to use the 
SSD and the 32 bit MATLAB. 

Coming to hardware that is used when simulations are carried out on a cluster, a 
computer cluster consisting of 17 nodes is used. The cluster consists of 9 nodes with 
32 cores each (2.4 GHz AMD Opteron 6136 processor, 64 GB RAM) and 8 nodes 
with 64 cores each (2.2 GHz AMD Opteron 6274 processor, 128 GB RAM). A 500 
GB SATA HDD (3 Gbps) is used for the operating system and system software. An 
Infiniband Card (MHQH19B-XTR) is used for Message Passing Interface (MPI) 
communication, and Dual-port Gigabit Ethernet Connectivity is used for enabling 
logins and Network File System (NFS). Coming to software, Intel Composer XE 
(Version: 2011.5.220) which includes Intel Fortran compiler together with Intel Math 
Kernel Library (Intel MKL) is used with MVAPICH2 (Version: 1.8-r5423). CentOS 
6.2 (Linux x86_64 Platform) is the operating system, and the batch scheduler software 
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Torque is used for job scheduling and load balancing. Whenever Torque is required, 
mpiexec (Release 0.84) from Ohio Supercomputer Center (OSC) is used instead of the 
usual command ‘mpirun’, in the job script. Although the cluster has 800 processors in 
total, only 256 cores are used in the present work. This is because the author’s 
organization does not allow any individual to use more than 256 processors at any 
given point of time in the concerned computer cluster; this is to avoid a single user 
utilizing all the available computing resources which may cause problems to other 
users of the computer cluster. From the results to be presented later in this chapter, 
one can also see that there may not be a need to go for more number of processors 
since that is not likely to lead to any speed up. 

Whenever a BEM code is needed, present chapter makes use of the BEM code 
explained in the last section, which is freely downloadable from [Kirana Kumara P, 
2014a]. The source [Kirana Kumara P, 2014a] provides the code in three versions: (i) 
A MATLAB code for solving three dimensional linear elastostatic problems using 
constant boundary elements while ignoring body forces (ii) A Fortran translation of 
the MATLAB code (iii) A parallelized version of the Fortran code. In the present 
chapter, whenever a simulation needs to be run on a desktop computer (with or 
without using a GPU), a MATLAB version of the code is used. Whenever a 
simulation needs to be run on a computer cluster, a Fortran version of the code is 
used. 

3.3 Studies on the Speed of the Boundary Element Method  
The necessity and the novelty and the significance of conducting a study on the speed 
of BEM, as applied to the real-time computational simulation of biological organs, is 
already noted down in the first chapter of the present thesis. This section conducts a 
study of speed of BEM by actually running a BEM code on a computer or a computer 
cluster. Although tools (e.g., Warwick Performance Prediction (WARPP) simulator) 
that can predict the time required to run a particular computer program without 
actually running the program are available, there is advantage in using these tools 
only if the target hardware is not accessible to the user or if the user cannot run all the 
desired simulations on the targeted hardware for some reason (e.g., a single execution 
taking too much time). The execution times predicted by these tools are just estimates 
which may or may not always be reliable. Further, when it comes to the real-time 
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simulation of biological organs, all the sources in the literature get an estimate of the 
time needed to complete a simulation by actually running the simulations on a 
computer system. One can also note that by studying references like [Al Aho and Jeff 
Ullman, 1992; Hammond Simon D., et al., 2009; Stephen A. Jarvis, et al., 2006], one 
can come to the conclusion that it is not possible to obtain a reliable estimate of the 
execution time of a given program without actually running the program at least once 
(for a specified input) and/or running benchmark tests that specifically aim to 
characterize the given hardware.     

Many of the subsections in this section utilize a sample problem. The sample problem 
is about taking up a 4 mm by 4 mm by 4 mm cube, and completely fixing one face of 
the cube, and applying traction of 4 N/mm2 in the y-direction over the whole of the 
opposite face. Each face of the cube is discretized into sixteen boundary elements. 
Young’s modulus is assumed to be equal to 200000 N/mm2, and Poisson’s ratio is 
assumed to be equal to 0.33; aim of the simulation is to obtain the displacements for 
the elements that are subjected to known tractions and also to obtain the tractions for 
the elements that are subjected to known displacements, using constant boundary 
elements, and using linear elastostatic assumption and ignoring body forces. To 
demonstrate the speed that can be achieved using BEM, one needs to solve a problem 
using BEM, and the sample problem is of help here. Whenever the phrase ‘sample 
problem’ appears in the present chapter, the phrase refers to this problem only. 

The present section uses just the sample problem (explained above) to demonstrate 
the speed of BEM, and does not mention anything about the speed of BEM when 
simulations are carried out on complicated geometry like biological organs. One can 
note that the speed of a simulation here depends solely on the total number of 
elements and boundary conditions, and the speed does not have any relevance to the 
actual geometry; hence there is no need to carry out simulations on different geometry 
just to measure how fast (or slow) the simulations are; in fact, trying out simulations 
on different geometry could be of help when one is concerned about accuracy but one 
can also note that the next section of the present chapter uses a complicated geometry 
(i.e., a liver), not just a cantilever beam, to demonstrate the accuracy of BEM. 

The following subsections give information about speeds that can be achieved using 
different hardware and software; results indicate whether or not a particular hardware-
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software combination can offer real-time performance for simulations considered in a 
particular subsection. 

3.3.1 Solving the Sample Problem (without Manual Parallelization) 

In this subsection, no GPU is used. No manual parallelization is attempted. Of course, 
the automatic parallelization available in MATLAB is utilized. 

Time needed to solve the sample problem is found using the MATLAB commands 
‘tic’ and ‘toc’. It was found that it took 2.103 s, 2.146 s, and 2.092 s respectively, 
during three trials, to solve the sample problem using the default option of using all 8 
cores (i.e., using the default fully automatic parallelization available in MATLAB) in 
the desktop. Next, the problem is solved using a single core in the desktop, and the 
time needed to solve the problem in this case was found to be 2.101 s, 2.090 s, and 
2.101 s respectively, during three successive trials. One can see that it takes more time 
to solve the problem on 8 cores, when compared to the time needed to solve the 
problem on a single core. Hence, the automatic parallelization offered by MATLAB is 
not of use for this problem (in fact, in this case, performance offered by the 
automatically parallelized code is worse when compared to the performance offered 
by the sequential code), and one can also observe that the code takes about the same 
time to run on the 8 cores as it takes to run on a single core. One can also see that the 
simulation is far from being real-time. 

A small note on the speed of MATLAB in general, now. There is a general opinion 
that MATLAB is slower when compared to ‘lower level’ programming languages like 
Fortran, C, C++; in fact, there have been many discussions in online forums on topics 
like “Speed of MATLAB versus speed of Fortran” etc. Upon going through these 
forums, one comes across varying opinions like “Present day compilers for high level 
languages such as FORTRAN are so good that the codes written in high level 
languages are almost as fast as the same codes written in an assembly language, at 
least when the programmer is not extremely skilled”, “MATLAB used to be about 
100 times slower when compared to languages like FORTRAN; but once MATLAB 
started using the modern JIT compiler, MATLAB is about 10 times slower”, 
“MATLAB has many built-in functions for scientific applications and the functions 
are so optimized for speed that it is difficult to write the same functions oneself, in 
languages like FORTRAN, to achieve the same speed”, “If the programmer is not 
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skilled, languages like FORTRAN could be slower when compared to MATLAB”, or 
“Whether Fortran is faster when compared to MATLAB is highly dependent on the 
problem in hand as well as the skill of the programmer”. In the present work, instead 
of assuming that the MATLAB is faster when compared to Fortran or otherwise, 
codes are written both in MATLAB and Fortran and whether Fortran is faster is 
decided based on the results from the actual runs; in fact, from the results presented 
(or to be presented) in this section, one can conclude that Fortran is significantly 
faster when compared to MATLAB; further, a Fortran code can be parallelized and 
run on a computer cluster whereas it is not easy to find a MATLAB version that can 
run on a cluster, and even if a MATLAB version that can run on a cluster is found, 
that version has its own limitations. Of course, people make their MATLAB codes 
faster by making use of ‘System Objects’, ‘MATLAB Coder’, ‘MEX functions’ etc. 
(e.g., [“Simulation Acceleration using System Objects, MATLAB Coder and Parallel 
Computing Toolbox”, n.d.]), but the present work aims to achieve the real-time 
performance without making use of these specialized approaches; also, all simulations 
cannot be translated to these approaches, and one can note that the GPU 
implementations of these specialized features are not available often, and further, it 
may not be possible to achieve the real-time performance with MATLAB even after 
employing these specialized techniques. 

3.3.2 Solving the Sample Problem (with Manual Parallelization) 

Since it is found from the previous subsection that the real-time performance cannot 
be obtained through either a sequential or an automatically parallelized MATLAB 
code that solves the sample problem, attempt is made in this subsection to manually 
parallelize the code. 

Now, only a portion of the MATLAB code is parallelized; idea is that if real-time 
performance can be obtained for this portion of the code, manual parallelization can 
be attempted for a larger portion of the code; and of course, there is no need to 
attempt to parallelize the whole MATLAB code if one cannot obtain the real-time 
performance even for a portion of the whole code. Manual parallelization is attempted 
only for the ‘for’ loop that calculates the components of the unit normal to the 
element faces; this is because the concerned ‘for’ loop is “embarrassingly parallel”, 
and also because manual parallelization is as easy as just replacing ‘for’ with ‘parfor’.  
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One can note here that “embarrassingly parallel” is a terminology used by the High 
Performance Computing (HPC) community to indicate that the program to be 
parallelized is highly scalable. Ideally, the time required to solve an “embarrassingly 
parallel” problem reduces linearly as the number of processors increase (ignoring the 
time needed for inter-processor communications, and the linear scalability is possible 
only up to certain number of processors). 

The time taken to execute the loop after just replacing ‘for’ with ‘parfor’ (without 
initializing ‘matlabpool’) is 0.102 s, 0.102 s, and 0.102 s, for the three trials 
considered; here, the code runs on the ‘client’ only, not on the ‘MATLAB workers’. 

Next, ‘matlabpool’ is used to initialize ‘matlabpool’, and ‘matlabpool close’ is used to 
close ‘matlabpool’. Again, ‘for’ is replaced with ‘parfor’. The time taken to execute 
the concerned ‘for’ loop is 13.680 s, 13.667 s, and 11.533 s, for the three trials 
considered; times include the time taken to initialize and close ‘matlabpool’. If one 
ignores the time taken to initialize and close ‘matlabpool’, the time taken to execute 
the concerned ‘for’ loop is 0.324 s, 0.322 s, and 0.330 s, for the three trials. Hence one 
can see that initializing and closing ‘matlabpool’ takes a lot of time. All the 
simulations mentioned in this paragraph use the default 8 ‘workers’ (since there are 8 
cores in the desktop); ‘workers’ are also known as ‘labs’. 

Now, simulations exactly similar to the ones in the last paragraph but only with 1 
‘worker’ are carried out. The time taken to execute the same ‘for’ loop, excluding the 
time taken for executing ‘matlabpool’ and ‘matlabpool close’, is 0.263 s, 0.264 s, and 
0.265 s, for three trials. 

Now, the time taken for the same simulation as the one in the last paragraph but with 
2 ‘workers’ is found to be 0.277 s, 0.274 s, and 0.275 s, for three trials. The time 
taken for the same simulation as the one in the last paragraph but with 4 ‘workers’ is 
found to be 0.290 s, 0.290 s, and 0.289 s, for three trials. 

One can observe that as the number of ‘labs’ increase, simulation becomes slower in 
this case. One can also observe that none of the simulations mentioned in the present 
subsection could be completed in real-time. One can also observe that if one does not 
substitute ‘parfor’ for ‘for’, and uses the default automatic parallelization of 
MATLAB, the time taken to execute the ‘for’ loop is just 0.032 s, 0.032 s, and    
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0.032 s, for the three trials, which makes the simulation a real-time one; the default 
option of using all the available 8 cores is used here. Instead of using the default 
option of using all the available cores, if ‘maxNumCompThread’ is used to restrict the 
number of cores to be used, following is the time needed to execute the portion of the 
MATLAB code within and including the concerned ‘for’ loop, without substituting 
‘parfor’ for ‘for’: 0.032 s, 0.032 s, and 0.032 s for the three trials if only one core is 
used; 0.032 s, 0.032 s, and 0.032 s for the three trials if two cores are used; 0.033 s, 
0.032 s, and 0.032 s for the three trials if four cores are used; 0.032 s, 0.032 s, and 
0.032 s for the three trials if eight cores are used.    

From the results presented in this subsection, at least for the problem considered in 
this subsection, there is no use in manually parallelizing the MATLAB code using 
‘parfor’. One should also note that not all statements that can be put inside a ‘for’ loop 
can be put inside a ‘parfor’ loop. Of course, one cannot rule out the possibility of a 
future version of MATLAB providing a better implementation of ‘parfor’. 

3.3.3 Solving the Sample Problem on a GPU 

Since the previous two subsections are not successful in obtaining real-time 
performance, there is a need to run the sample problem on the GPU to see whether 
one can achieve real-time performance. 

GPU computing features available in MATLAB depend on the features available in 
CUDA and GPU drivers, which in turn depend on the features supported by the GPU 
hardware. One has to note that only a small subset of MATLAB functions can be run 
on GPUs using the MATLAB Parallel Computing Toolbox. One can observe that 
newer versions of MATLAB (and the Parallel Computing Toolbox) have better 
support for GPUs, and one can definitely hope to see the future versions of MATLAB 
enabling more and more MATLAB functions to be run on GPUs using Parallel 
Computing Toolbox. As of now, a lot more needs to be done from the software 
developers to make many MATLAB functions to readily run on GPUs. Not only 
functions, but some MATLAB scripts cannot readily be ported to GPUs. Of course, 
programs written in lower level languages like Fortran and C may also be modified to 
run on GPUs; however, this task may not be easy always, and sometimes, porting a 
code to a GPU could itself be a research problem. Whenever a GPU is used, one 
needs to transfer the variables from CPU to GPU, and after performing computations 
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on the GPU, results have to be transferred from GPU to CPU; and these data transfers 
are time consuming. Although author is aware of these limitations of GPU computing, 
present subsection makes an attempt to run the MATLAB code (that solves the 
sample problem) on a GPU with the intention of obtaining real-time performance, 
using the MATLAB Parallel Computing Toolbox. 

Just like in the last subsection (which tried to parallelize the MATLAB code (that 
solves the sample problem) using ‘parfor’), only a portion of the MATLAB code that 
solves the sample problem is parallelized in this subsection first; idea is that if real-
time performance cannot be obtained for even a portion (or a part) of the code, there 
is no need to attempt to parallelize the whole MATLAB code. Hence the 
parallelization is now attempted only for the ‘for’ loop that calculates the components 
of the unit normal to the element faces. Whenever the parallelized code is run on the 
GPU, there is a need to transfer the variables from CPU to GPU. 

With prior initialization of the GPU arrays using ‘parallel.gpu.GPUArray.zeros’, time 
needed to execute the MATLAB program from the beginning of the program to the 
end of the concerned ‘for’ loop is found to be 1.249 s, 1.247 s, and 1.251 s, for the 
three trials. If GPU arrays are not initialized using ‘parallel.gpu.GPUArray.zeros’, 
time needed to execute the MATLAB program from the beginning of the program to 
the end of the concerned ‘for’ loop is found to be 1.789 s, 1.807 s, and 1.805 s for 
three trials. 

The simulation that is exactly same as the one carried out in the last paragraph but 
carried out on the CPU alone (without using the GPU at all) takes 0.172 s, 0.173 s, 
and 0.173 s (for three trials) to complete, if run on a single core of the desktop; but if 
all the 8 cores of the desktop are utilized, the same simulation takes 0.173 s, 0.173 s, 
and 0.173 s, for three trials.   

Now, with prior initialization of the GPU arrays using ‘parallel.gpu.GPUArray.zeros’, 
time needed to execute on the GPU the concerned ‘for’ loop alone is 1.252 s, 1.251 s, 
and 1.253 s for three trials. If the time needed to execute 
‘parallel.gpu.GPUArray.zeros’ is also taken into account, time needed to execute on 
the GPU the concerned ‘for’ loop alone plus the time needed to execute 
‘parallel.gpu.GPUArray.zeros’ is 1.271 s, 1.258 s, and 1.266 s for three trials. If GPU 
arrays are not initialized using ‘parallel.gpu.GPUArray.zeros’, time needed to execute 
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on the GPU the concerned ‘for’ loop alone is 1.728 s, 1.708 s, and 1.729 s for three 
trials. 

One can see that none of the simulations that are tried out in the present subsection 
turned out to be real-time. As far as the problems considered in this subsection are 
concerned, there is no advantage in using a GPU instead of a CPU. Since it is found 
that not even a portion of the sample problem could be executed in real-time on a 
GPU, there is no point in trying to run the whole of the sample problem on a GPU in 
real-time. 

3.3.4 Using the GPU to Solve the System of Equations only 

Results presented in the previous subsections of the present section show that it is not 
possible to solve the sample problem in real-time by making use of a desktop 
computer loaded with MATLAB, even if a GPU together with the MATLAB Parallel 
Computing Toolbox is made use of. One can note that the sample problem is a small-
sized problem and if it is not possible to solve this small-sized problem in real-time, it 
would not be possible to solve a larger sized problem in real-time. It is of use 
sometimes, even if one manages to solve only a part of the sample problem in real-
time. For example, if one is happy with linear elastostatics and if there is no change in 
the geometry during a simulation, the ‘characteristic matrix’ and its inverse can be 
precomputed, and the problem then reduces to just a matrix multiplication; and in this 
case, if one can manage to complete the matrix multiplication in real-time, it could be 
as good as solving the whole problem in real-time. Hence there is a need to see 
whether particular portions of the sample problem can be executed in real-time, either 
by making use of a GPU or not. 

Hence, in this subsection, attempt is made to obtain the real-time performance while 
solving a system of linear simultaneous algebraic equations; also, in the next 
subsection, attempt is made to obtain the real-time performance while multiplying a 
matrix by a vector. One can note that solving a system of equations is a part of solving 
the sample problem. The task that is carried out in the present subsection is taken up 
just out of curiosity (or academic interest) since, unlike the task that is concerned with 
just multiplying a matrix by a vector, present author cannot think of any use in 
achieving the real-time performance just for the portion of the MATLAB code that 
just solves the system of simultaneous equations. 
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One can see that the time needed to multiply a matrix by a vector depends on the size 
of the matrix, not on the actual values of the elements of the matrix. Similarly, at least 
when not using an iterative solver, the time needed to solve a system of equations is 
mainly dependent on the size of the system of equations only. Hence, in the present 
work, instead of solving the actual system of equations obtained through BEM, a 
dummy system of equations is generated and solved. Using dummy system of 
equations is useful here because, while the sample problem always generates a system 
of equations that has 288 simultaneous equations, different problem sizes can easily 
be tried out if dummy system of equations are utilized. Results show that when the 
size of the system of equations is equal to 500, the system of equations can be solved 
in real-time, either by making use of the GPU or otherwise; here, solving the system 
of equations on the GPU, and solving the system of equations on the CPU, both take 
almost the same amount of time. When the size of the system of equations is equal to 
around 1000, the system of equations can be solved in real-time only if the GPU is 
made use of. When the size of the system of equations is equal to 1500, the system of 
equations cannot be solved in real-time whether a GPU is used or not. 

3.3.5 Using the GPU to Multiply a Matrix by a Vector 

Motivation for the present attempt to obtain the real-time performance while 
multiplying a matrix by a vector is explained in the previous subsection. The same 
arguments used in the last subsection to make use of dummy problems are applicable 
to the present subsection too. 

From the results, when the size of the vector is 16000, the simulation on the CPU 
takes 0.418 s while the simulation that uses the GPU takes just 0.030 s (i.e., 14 times 
faster). The thirty computations per second desired by real-time graphics amounts to 
an allowable time of up to 0.033 s per computation, and one can note that this targeted 
speed for this simulation cannot be achieved if the GPU is not made use of here. 

As already mentioned in the previous subsection, if one is happy with linear 
elastostatics and if there is no change in the geometry during a simulation, the 
‘characteristic matrix’ and its inverse can be precomputed and hence the problem 
reduces to just that of multiplying a matrix with a vector. Hence in this case, if one 
can manage to multiply a matrix with a vector in real-time, it is as good as solving the 
whole problem in real-time. One cannot find any source in the literature that uses a 
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GPU to achieve the real-time performance while utilizing the BEM in this manner. 
Further, as already noted, it is not possible to achieve the real-time performance for a 
model with as high a number of degrees of freedom as 16000, if a GPU is not utilized 
for multiplying a matrix with a vector.    

3.3.6 Running the Sample Problem on a Computer Cluster 

This subsection is a very important part of the present chapter. Motivation for trying 
to obtain the real-time performance while solving the whole of the sample problem on 
a cluster has already been explained in the beginning of the present chapter; also, the 
last section (i.e., ‘Summary’) mentions some points related to the present subsection. 

In this subsection, whole of the sample problem (not a part) is run on a cluster. The 
sample problem is solved using 1, 4, 16, 64, and 256 processors, and the time needed 
to solve the sample problem is noted down for each of the cases. One can note that the 
code first calculates the ‘characteristic matrix’ and the ‘right hand side’, and then 
solves the system of equations; the ‘time’ needed to solve the problem (as noted down 
in the tables included in this subsection) always includes both the time needed to 
calculate the ‘characteristic matrix’ and the ‘right hand side’ and the time needed to 
solve the system of equations. Part of the code that calculates the ‘characteristic 
matrix’ and the ‘right hand side’ is separated from the part of the code that solves the 
system of equations by using the BLACS routine ‘blacs_barrier’; hence, in the code, 
the task of solving the system of equations begins only just after the whole of both the 
‘characteristic matrix’ and the ‘right hand side’ are assembled (i.e., solution of the 
system of equations can begin only after each of the processes in the process grid 
complete their part of the work in calculating the ‘characteristic matrix’ and the ‘right 
hand side’). Parallelization of the part of the code that calculates the ‘characteristic 
matrix’ and the ‘right hand side’ uses the ‘Block Distribution’ whereas the part of the 
code that solves the system of equations uses the ‘Block-Cyclic Distribution’. When 4 
processors are used, a 2 by 2 process grid is used; when 16 processors are used, a 4 by 
4 process grid is used; when 64 processors are used, an 8 by 8 process grid is used; 
and when 256 processors are used, a 16 by 16 process grid is used. Parallel version of 
the Fortran code that solves the sample problem on the cluster uses ScaLAPACK to 
solve the system of equations while the sequential version of the Fortran code that 
solves the sample problem on a single core of the cluster uses LAPACK while solving 
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the system of equations. The parallel version of the Fortran code uses BLACS and 
MPI also. 

One can see that the present simulation uses a ‘characteristic matrix’ of 288 by 288 
size. One can note that when the parallelized Fortran code is run on a single 
processor, the ‘characteristic matrix’ is Block-Cyclically distributed by using a block 
size of 288 by 288. When the parallelized Fortran code is run on 4 processors, block 
sizes of 144, 128, 64, 32, and 1 are tried out. Similarly, when the code is run on 16 
processors, block sizes of 64, 32, and 1 are tried out; when the code is run on 64 
processors, block sizes of 32 and 1 are tried out; and when the code is run on 256 
processors, a block size of 16 is used. Idea behind choosing these block sizes is that, 
from literature, codes execute slower if the block sizes are too small (like 1), and 
again, if the block sizes are too large, some of the processors may not get any data to 
process and hence the very use of higher number of processors to achieve better 
parallelism may lose its purpose; also, some references recommend using a block size 
of 32, 64, or even 128, for good performance. Hence the block sizes for different 
cases that use different number of processors are chosen such that all the processors 
get some data to process, and different block sizes are tried out for the same cases to 
find out how block sizes affect the speed. 

Now, the time taken for the code to execute on different number of processors, for 
different block sizes, is listed in Table 3.13; results are presented for four trials, and 
the averages of the four trials are also listed. Table 3.14 gives the average time taken 
by the code to execute itself on different total number of processors, taking into 
account all the block sizes considered for the case, and taking into account all the 
trials of a particular simulation also. 
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Table 3.13 Solution Time in Seconds 

                                                                    First Run     Second Run      Third Run         Fourth Run                  Average 

Serial (with ‘-mkl=sequential’) 0.170 0.246 0.165 0.134 0.179 

Threaded (with ‘-mkl’) 0.364 0.335 0.330 0.246 0.319 

Parallel (1 Process, Block Size=288) 0.340 0.230 0.149 0.182 0.225 

Parallel (4 Processes, Block Size=144) 0.226 0.069 0.136 0.053 0.121 

Parallel (4 Processes, Block Size=128) 0.219 0.116 0.099 0.106 0.135 

Parallel (4 Processes, Block Size=64) 0.406 0.497 0.212 0.460 0.394 

Parallel (4 Processes, Block Size=32) 0.221 0.187 0.255 0.239 0.225 

Parallel (4 Processes, Block Size=1) 0.532 0.441 0.344 0.527 0.461 

Parallel (16 Processes, Block Size=64) 0.055 0.067 0.063 0.070 0.064 

Parallel (16 Processes, Block Size=32) 0.065 0.057 0.050 0.042 0.054 

Parallel (16 Processes, Block Size=1) 0.053 0.049 0.058 0.064 0.056 

Parallel (64 Processes, Block Size=32) 1.008 1.229 0.750 0.078 0.766 

Parallel (64 Processes, Block Size=1) 1.740 2.041 2.400 1.171 1.838 

Parallel(256 Processes,Block Size=16) 2.067 1.167 1.321 1.460 1.504 

 

Table 3.14 Average Solution Time in Seconds, Considering all the Runs and all the 
Block Sizes that are Considered 

Serial (with ‘-mkl=sequential’) 0.179 

Threaded (with ‘-mkl’) 0.319 

Parallel (1 process) 0.225 

Parallel (4 processes) 0.267 

Parallel (16 processes) 0.058 

Parallel (64 processes) 1.302 

Parallel (256 processes) 1.504 
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From the results presented in Table 3.13 and Table 3.14, for the sample problem (i.e., 
the problem considered here), block sizes do not play any significant and meaningful 
role in the overall sense. On an average, the speediest performance is obtained when 
16 processors together with a block size of 32 are used; for this case, the simulation 
took 0.054 s to complete (this corresponds to about 19 computations per second). One 
can also observe that the fastest performance recorded in the tables corresponds to the 
‘Fourth Run’ corresponding to the case when 16 processors together with a block size 
of 32 are used; for this instance, the simulation took 0.042 s to complete (and this 
corresponds to about 24 computations per second). One can observe that if the 
average is taken for all the runs and all the block sizes together, on an average, 
speediest performance is obtained when 16 processors are used (solution time = 0.058 
s; this corresponds to about 17 computations per second). 

One might need to keep a few points in mind while studying the results presented in 
this subsection. The cluster used here is made up of heterogeneous nodes. The nodes 
with 32 cores have 2.4 GHz processors whereas the nodes with 64 cores have 2.2 GHz 
processors. Inter-node communications could be slower when compared to intra-node 
communications. In the present subsection, simulations using 1, 4, and 16 processors 
are usually run on a node having 32 cores, and the simulation that uses 64 processors 
is run on a node having 64 cores; the simulation requiring 256 processors is run using 
four nodes with 64 cores each. Of course, for each and every simulation mentioned in 
this subsection, each of the processors runs one and only one process. 

One can see that one is not likely to achieve faster performance by going for higher 
number of processors in this cluster. 

One can note that because the whole of the sample problem is made to run on a 
cluster here, results presented here are useful when one wishes to learn about the 
performance of BEM when the ‘characteristic matrix’ changes during simulations 
(e.g., during the simulation of cutting, during the simulations that use nonlinear 
BEM). One can also note that the BEM used here is the ‘standard’ BEM, not any 
specialized version of BEM (e.g., the Fast Multipole Boundary Element Method 
which uses the fast multipole method to accelerate the solution of the system of 
equations). 

 



  Chapter 3 
 

80 
 

3.3.7 Possibility of Simulating Nonlinear Behaviour in Real-Time using BEM 

Many a times, realistic description of nonlinear behaviour of biological organs (like 
liver) requires the use of hyperelastic material models (e.g., Mooney-Rivlin model, 
Neo-Hookean model). Solving one hyperelastic problem is equivalent to solving 
many linear problems. Although the total number of iterations (i.e., linear solutions or 
Newton iterations) required to solve a nonlinear problem within the specified 
tolerance (for the error) cannot be known beforehand, one can get an idea of the total 
number of iterations needed to solve a nonlinear problem by referring to the literature 
that deals with the solution of similar type of problems. For example, [Mark Adams 
and James W. Demmel, 1999] includes the task of solving a hyperelastic problem, and 
by going through [Mark Adams and James W. Demmel, 1999], the total number of 
Newton iterations needed to solve the problem is always between 62 to 70. By 
making use of software like ANSYS which have in-built hyperelastic material 
models, one can solve similar hyperelastic problems to get an idea of the total number 
of iterations needed to solve such problems. Thus by solving dummy hyperelastic 
problems on ANSYS, and also by referring to the literature dealing with the solution 
of hyperelastic problems, one can see that solving a hyperelastic problem takes about 
5, 10, 20, 50 or even 80 Newton iterations, while solving different nonlinear 
problems; it is also observed by the present author that more than 100 linear solutions 
are rarely needed to solve a hyperelastic problem, although this conclusion is reached 
just by observing a limited number of examples. Hence it is reasonable to assume that 
a hyperelastic problem can be solved in real-time if the corresponding linear problem 
can be solved in real-time 100 times. 

But looking at the results presented in the previous subsections of this section, it may 
be difficult to obtain the real-time performance with a hyperelastic material model. 

3.4 Real-time Simulation of Biological Organs on a Computer 
Cluster 
From the previous section, a ‘sample problem’ which uses a total of 96 triangular 
boundary elements to discretize the geometry can be solved in real-time using a 
computer cluster, using this author’s BEM code. It is easy to see that, as far as this 
work is concerned, the speed hardly depends on geometry, boundary conditions, or 
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material properties, but mainly depends on the total number of elements used to 
describe the geometry only. Hence in this section, each of the biological organs 
considered are discretized by 96 triangular boundary elements, so that it should be 
possible to achieve the real-time performance for each of the simulations.   

In this section, simulations are carried out on biological organs, a human liver and the 
left and right kidneys of the Visible Human male in particular. The results obtained by 
using the BEM codes developed by this author are compared with the results obtained 
by using the BEM software available from [Yijun Liu, n.d.]. One can note that source 
code is not available for the software available from [Yijun Liu, n.d.], although the 
software can be downloaded for free. Further, the software can be used only for the 
purposes of education, research and further development. The software can run only 
on the Microsoft Windows operating system (not on Linux). It is noteworthy to 
mention that source code is available for the program written by this author, and the 
program can be used for commercial purposes too. A slight difference between the 
results obtained using this author’s code with the results obtained using the program 
from [Yijun Liu, n.d.] is expected since [Yijun Liu, n.d.] does not provide the 
implementation details of their software. Hence it is entirely possible that [Yijun Liu, 
n.d.] handles strong and weak singularities in a different way, and uses a different 
type of numerical integration scheme when compared to this author’s code, which 
could result in results which are slightly different from those obtained using this 
author’s code.      

This section does not compare the execution speed of this author’s code with the 
execution speed of the software available from [Yijun Liu, n.d.]. This is because it 
does not make sense to compare the speed of the parallelized version of this author’s 
code with the speed of the sequential program available from [Yijun Liu, n.d.]. 
However, it is important to note that while it is possible to achieve the real-time 
performance with this author’s code, the program from [Yijun Liu, n.d.] needs several 
seconds to complete the same simulations.   

The geometry of the left kidney and the right kidney of the Visible Human male 
obtained in Chapter 2 is used for the purpose of this chapter, but here both the 
geometry are represented by just 96 surface triangles (instead of the higher number of 
triangles in Chapter 2) to enable the simulations to be carried out in real-time. As for 
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the geometry of human liver, the geometry available from [“STLA Files - ASCII 
stereolithography files”, n.d.] is used, but again, the geometry here is represented by 
just 96 surface triangles (instead of 38142 triangles in [“STLA Files - ASCII 
stereolithography files”, n.d.]). 

The geometry of the pig liver, obtained in Chaptet 2 has not been used in this chapter 
for the simulations. One can see that that particular liver is very thin. It is a well 
known fact that the BEM is not recommended for the purpose of analyzing thin 
structures. In fact, this author has still carried out simulations using that particular 
geometry, but the results are not presented here because it was found that the results 
obtained were not satisfactory. Of course, it should be possible to obtain accurate 
solutions if a larger number of elements are used (much more than 96 elements). This 
is because it is a well known fact that the solutions obtained using constant boundary 
elements always converge as the total number of elements is increased [W. T. Ang, 
2007]. However, real-time performance would be lost if a large number of elements is 
used. 

Values of Young’s modulus and Poisson’s ratio are taken from [C. Monserrat, et al., 
2001]. The reference reports the value of Young’s modulus to be equal to 150 N/mm2 
while the value of Poisson’s ratio to be equal to 0.4 for a pig liver, while indicating 
that the same values may be used in the case of human livers. Further, many source in 
the literature use the same values of material constants for all soft tissues and hence 
the same material parameters given above can be used in the case of human kidneys 
also. Hence these values of material constants are used for the purpose of this chapter. 
Although material constants can vary from person to person, between human beings 
and animals, from one soft tissue to another, and because of the presence or absence 
of certain pathologies, one can think that the material parameters used here reasonably 
approximate those of a representative healthy human kidney and human liver. Use of 
‘general purpose’ material parameters is supported also by the fact that different 
sources in the literature report different values for the same material parameters and 
sometimes the values of a particular material constant reported by different sources 
could be so different that the simulation results obtained by making use of these 
different values can deviate so much from one another that the results may lose their 
practical significance.  
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By referring to [Henry Gray, 1918], human liver and human kidneys are subjected to 
boundary conditions that are so complicated that it is virtually impossible to 
reproduce the boundary conditions in a computer model. Hence the liver and the 
kidneys are subjected to arbitrary boundary conditions here. The idea is that if a 
computer model can give accurate solutions for many sets of arbitrary boundary 
conditions, and for different geometry, then it is reasonable to assume that the user 
can specify whatever set of boundary conditions one wants to impose and the solution 
obtained for the specified set of boundary conditions would be accurate. The liver and 
each of the two kidneys considered in this work are subjected to three different sets of 
boundary conditions. Hence there are nine problems to be solved, and one would 
expect to see that accurate solutions are obtained for all the nine problems. As can be 
seen later in this section, this happens to be the case indeed. Of course, two more 
kidneys (left and right kidneys of the Visible Human female) can also be simulated 
and further, each of the geometry may be subjected to many more sets of boundary 
conditions. However, the later two geometry and the extra sets of boundary conditions 
are not considered here since this author felt that the nine simulations are enough to 
get a feel of the simulation of biological organs and further simulations may not add 
much value to the present study. 

One of the advantages of using the BEM for the simulation of biological organs is that 
there is no need to convert the surface models of biological organs into solid models. 
Further, each of the surface triangles that are used to describe the geometry can itself 
be considered to be a boundary element, thus eliminating the need for a separate step 
of discretization. Hence each of the 96 surface triangles that describe the geometry of 
kidneys acts as a boundary element also. One can note that this is not the case if FEM 
is to be used for the simulations. If FEM is to be employed, surface models need to be 
converted into solid models first, and then a separate step of discretization is required. 

The boundary conditions applied during each of the nine simulations are explained 
now. Problem 1, Problem 2, and Problem 3 refer to cases where the left kidney of the 
Visible Human male is simulated. The location where the kidney is fixed (i.e., zero 
displacement specified in all the x, y, and z directions), and the location where a 
specified non-zero displacement is specified are shown in Figure 3.1. For each of 
these three problems, element numbers 8, 15, and 24 are subjected to the zero 
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displacement condition in each of the x, y, and z directions, and the element number 
94 is subjected to a non-zero displacement. 

 

Figure 3.1 Boundary Conditions for the Left Kidney 

 

Similarly, Problem 4, Problem 5, and Problem 6 refer to cases where the right kidney 
of the Visible Human male is simulated. The location where the kidney is fixed (i.e., 
zero displacement specified in all the x, y, and z directions), and the location where a 
specified non-zero displacement is specified are shown in Figure 3.2. For each of 
these three problems, element numbers 1, 4, and 11 are subjected to the zero 
displacement condition in each of the x, y, and z directions, and the element number 
91 is subjected to a non-zero displacement. 

 

 

Elements Fixed Here 

Elements Subjected to 
Specified Non-zero 
Displacements Here 
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Figure 3.2 Boundary Conditions for the Right Kidney 

 

Similarly, Problem 7, Problem 8, and Problem 9 refer to cases where the liver is 
simulated. The location where the liver is fixed (i.e., zero displacement specified in all 
the x, y, and z directions), and the location where a specified non-zero displacement is 
specified are shown in Figure 3.3. For each of these three problems, element numbers 
55, 60, and 38 are subjected to the zero displacement condition in each of the x, y, and 
z directions, and the element number 59 is subjected to a non-zero displacement. 

One can note that one needs to fix in all directions at least three boundary elements 
during any of the simulations. In the case of each of the nine problems considered 
above, three elements are fixed in all the directions. 

 

 

Elements Fixed Here 

Elements Subjected to 
Specified Non-zero 
Displacements Here 
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Figure 3.3 Boundary Conditions for the Liver 

 

For Problem 1, the element 94 is subjected to the non-zero displacement of 5 mm in 
the x direction. For Problem 2, the element 94 is subjected to the non-zero 
displacement of 5 mm in the y direction. For Problem 3, the element 94 is subjected to 
the non-zero displacement of 5 mm in the z direction. For Problem 4, the element 91 
is subjected to the non-zero displacement of 5 mm in the x direction. For Problem 5, 
the element 91 is subjected to the non-zero displacement of 5 mm in the y direction. 
For Problem 6, the element 91 is subjected to the non-zero displacement of 5 mm in 
the z direction. For Problem 7, the element 59 is subjected to the non-zero 
displacement of 5 mm in the x direction. For Problem 8, the element 59 is subjected to 

Elements Subjected to Specified 
Non-zero Displacements Here 

Elements Fixed Here 
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the non-zero displacement of 5 mm in the y direction. For Problem 9, the element 59 
is subjected to the non-zero displacement of 5 mm in the z direction. The value of 5 
mm is chosen for all the problems because this value of displacement corresponds to 
about 5% deformation along the largest dimension of the biological organs 
considered, if the load that causes the deformation is applied along the same direction. 
Of course, specifying 5 mm displacement in other directions can result in 
deformations that are not close to the 5% deformation. However, one can note that the 
idea here is to specify physically meaningful non-zero displacement boundary 
conditions. This author has not aligned the liver or the kidneys to match the largest 
dimensions of the liver or the kidneys to any of the x, y, and z axes. Hence, although 
the non-zero displacement boundary conditions are specified along only one of x, y, 
and z axes (at a time) for all of the problems considered, one can note that it is 
reasonable to assume that the biological organs have been subjected to arbitray 
boundary conditions. However, one may note that the direction of the largest 
dimension for the liver and for both the kidneys is close to the z axis than any of the 
other two axes. 

This author has found that it is of use to make use of a collection of simple, single 
task, browser based, text manipulation tools available from [Text Mechanic, n.d.] 
while preparing input files for the programs that are used to run the simulations. 

Table 3.15 to Table 3.23 compare the displacement solutions obtained by using this 
author’s code with the displacement solutions obtained by using the software from 
[Yijun Liu, n.d.], for all the problems considered (Problem 1 to Problem 9). In these 
tables, u1, u2, and u3 refer to the displacements in the x, y, and z directions 
respectively, calculated by using this author’s code. Similarly, U1, U2, and U3 refer 
to the displacements in the x, y, and z directions respectively, calculated by using the 
software from [Yijun Liu, n.d.]. The solutions are listed for each of the 96 elements, 
for each of the problems considered (Problem 1 to Problem 9). 

No attempt has been made here to compare the tractions obtained by using this 
author’s code with the tractions obtained by using the software from [Yijun Liu, n.d.]. 
This is because one needs to calculate tractions only if one need to incorporate haptics 
into the simulations. Since only real-time graphics has been possible in this work 
(real-time haptics has not been possible), it does not make sense to look into tractions. 
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Table 3.15 Displacement Solutions for Problem 1 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 0.773 0.734 0.144 0.147 -0.098 -0.008 
2 0.727 0.583 -0.147 -0.168 -0.520 -0.481 
3 0.955 1.135 -0.148 -0.168 -0.571 -0.663 
4 0.970 1.064 0.328 0.284 0.258 0.219 
5 0.127 0.218 -0.258 -0.238 -0.412 -0.449 
6 -0.010 0.022 -0.449 -0.453 -0.547 -0.680 
7 1.448 1.504 -0.028 -0.050 -0.647 -0.653 
8 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.624 0.587 -0.487 -0.481 -1.125 -1.197 
10 0.509 0.499 -0.400 -0.424 -0.938 -1.073 
11 0.053 0.126 -0.535 -0.490 -0.763 -0.886 
12 0.782 0.699 -0.230 -0.295 -0.703 -0.859 
13 -0.011 0.025 -0.527 -0.485 -0.670 -0.766 
14 0.061 0.087 -0.295 -0.336 -0.414 -0.546 
15 0.000 0.000 0.000 0.000 0.000 0.000 
16 0.489 0.414 0.230 0.214 0.247 0.279 
17 1.295 1.320 -0.282 -0.270 -1.124 -1.226 
18 1.868 2.149 0.024 -0.006 -0.863 -0.874 
19 1.027 0.979 -0.245 -0.237 -0.836 -0.920 
20 0.496 0.424 -0.430 -0.398 -0.877 -0.884 
21 1.058 1.050 0.060 0.085 -0.445 -0.236 
22 0.880 0.922 -0.466 -0.439 -1.186 -1.282 
23 0.337 0.393 0.171 0.131 0.151 0.107 
24 0.000 0.000 0.000 0.000 0.000 0.000 
25 1.044 1.044 -0.376 -0.367 -1.187 -1.257 
26 1.132 1.130 -0.058 -0.060 -0.697 -0.789 
27 1.095 1.095 -0.370 -0.372 -1.154 -1.274 
28 0.328 0.517 -0.291 -0.302 -0.522 -0.706 
29 0.404 0.468 0.299 0.291 0.336 0.386 
30 1.090 1.134 -0.140 -0.119 -0.679 -0.789 
31 1.856 1.887 0.402 0.433 0.416 0.274 
32 0.990 1.388 0.619 0.546 0.526 0.344 
33 1.088 1.314 0.025 0.047 -0.493 -0.487 
34 3.116 2.847 -0.101 0.071 -0.238 -0.144 
35 1.557 1.609 -0.158 -0.172 -0.855 -0.929 
36 1.776 1.927 -0.060 0.051 0.008 -0.096 
37 1.151 1.303 0.645 0.648 0.738 0.611 
38 0.839 0.957 -0.275 -0.316 -0.786 -0.964 
39 2.053 2.098 0.251 0.261 0.265 0.064 
40 2.031 2.059 -0.047 0.115 0.274 0.029 
41 1.296 1.266 -0.163 -0.196 -0.921 -0.984 
42 0.755 0.936 0.369 0.424 0.386 0.450 
43 1.279 1.324 -0.295 -0.264 -1.174 -1.236 
44 1.660 2.026 0.038 0.014 -0.660 -0.754 
45 1.099 1.184 0.532 0.583 0.587 0.611 
46 0.837 0.854 0.055 0.069 -0.139 -0.112 
47 2.539 2.569 0.225 0.405 0.333 0.364 
48 1.999 2.064 0.676 0.675 0.878 0.665 
49 1.398 1.435 -0.148 -0.180 -0.978 -1.090 
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50 1.349 1.370 -0.195 -0.204 -1.054 -1.116 
51 1.515 1.792 0.654 0.705 0.846 0.760 
52 1.771 1.864 0.540 0.624 0.829 0.742 
53 1.498 1.503 -0.176 -0.182 -0.769 -0.784 
54 2.422 2.519 0.617 0.594 0.872 0.673 
55 3.515 3.360 0.619 0.628 0.748 0.769 
56 2.874 2.859 0.523 0.622 0.749 0.766 
57 1.463 1.675 0.540 0.653 0.711 0.737 
58 1.677 1.675 0.165 0.243 0.036 0.086 
59 3.241 3.024 0.006 0.172 -0.219 -0.070 
60 4.143 3.889 0.446 0.479 0.507 0.647 
61 2.489 2.632 0.671 0.726 1.024 0.949 
62 3.829 3.581 0.153 0.223 -0.200 -0.084 
63 4.623 4.472 0.143 0.189 -0.127 0.019 
64 3.749 3.570 0.000 0.118 -0.489 -0.428 
65 2.967 3.073 0.013 0.108 -0.003 -0.104 
66 2.090 2.147 0.654 0.711 0.953 0.886 
67 2.075 2.079 0.538 0.540 0.719 0.574 
68 1.821 1.850 0.335 0.444 0.442 0.507 
69 3.623 3.623 0.103 0.062 -0.369 -0.502 
70 2.259 2.372 -0.022 0.043 -0.354 -0.441 
71 1.651 1.854 0.021 0.057 -0.317 -0.341 
72 2.953 2.872 0.679 0.689 1.015 0.881 
73 2.758 2.731 -0.045 0.206 -0.582 -0.395 
74 1.785 2.127 0.158 0.188 -0.504 -0.433 
75 2.520 2.519 -0.101 0.008 -0.612 -0.706 
76 2.391 2.545 0.286 0.439 0.290 0.412 
77 3.248 3.111 -0.178 0.091 -0.769 -0.613 
78 3.195 3.137 -0.167 0.022 -0.772 -0.731 
79 2.681 2.736 0.116 0.284 -0.050 0.052 
80 3.840 3.806 0.373 0.316 0.174 0.144 
81 3.935 3.729 0.429 0.506 0.345 0.431 
82 3.781 3.662 -0.129 -0.001 -0.481 -0.562 
83 4.129 4.037 0.163 0.171 0.092 0.019 
84 3.868 3.728 -0.024 0.087 -0.580 -0.484 
85 4.302 4.197 0.009 0.076 -0.469 -0.452 
86 3.457 3.596 0.154 0.132 -0.042 -0.246 
87 4.503 4.305 0.117 0.163 -0.281 -0.179 
88 4.357 4.151 0.362 0.371 0.311 0.391 
89 4.484 4.375 -0.032 0.047 -0.592 -0.573 
90 3.824 3.886 -0.169 -0.074 -0.622 -0.653 
91 4.192 4.128 0.385 0.369 0.484 0.539 
92 3.603 3.681 0.412 0.369 0.749 0.595 
93 4.717 4.797 0.064 0.029 -0.250 -0.157 
94 5.000 5.000 0.000 0.000 0.000 0.000 
95 4.926 4.800 0.092 0.097 -0.148 -0.093 
96 4.922 4.823 0.055 0.083 -0.312 -0.360 
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Table 3.16 Displacement Solutions for Problem 2 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 0.026 0.042 0.396 0.311 -0.411 -0.256 
2 0.057 0.018 0.183 0.109 -0.500 -0.344 
3 -0.383 -0.241 0.895 0.832 0.360 0.286 
4 -0.206 -0.096 1.580 1.323 0.582 0.567 
5 -0.048 -0.038 -0.038 -0.016 -0.019 -0.077 
6 -0.022 -0.042 -0.065 -0.065 0.108 0.047 
7 -0.119 0.063 1.121 0.945 -0.277 -0.112 
8 0.000 0.000 0.000 0.000 0.000 0.000 
9 -0.099 -0.071 0.163 0.110 -0.130 -0.149 
10 -0.055 -0.033 0.055 0.043 -0.188 -0.217 
11 -0.041 -0.046 -0.071 -0.057 0.140 0.023 
12 0.008 0.017 0.174 0.112 -0.429 -0.382 
13 -0.033 -0.043 -0.071 -0.059 0.128 0.058 
14 -0.086 -0.081 0.094 0.051 0.203 0.149 
15 0.000 0.000 0.000 0.000 0.000 0.000 
16 0.040 0.072 0.416 0.291 0.050 0.115 
17 -0.100 0.112 0.617 0.494 -0.284 -0.406 
18 -0.071 0.074 1.500 1.475 -0.304 -0.142 
19 -0.046 0.062 0.366 0.282 -0.441 -0.463 
20 -0.186 -0.134 0.239 0.161 0.199 0.144 
21 0.016 0.026 0.440 0.471 -0.716 -0.413 
22 -0.104 0.010 0.315 0.246 -0.203 -0.350 
23 -0.125 -0.067 0.683 0.525 0.438 0.401 
24 0.000 0.000 0.000 0.000 0.000 0.000 
25 -0.032 0.068 0.379 0.298 -0.392 -0.453 
26 0.010 0.089 0.449 0.419 -0.463 -0.505 
27 -0.160 0.002 0.510 0.363 -0.130 -0.263 
28 -0.226 -0.207 0.330 0.344 0.305 0.251 
29 -0.016 0.067 0.740 0.576 0.351 0.352 
30 -0.055 0.053 0.442 0.429 -0.306 -0.411 
31 0.071 0.295 1.474 1.230 -0.576 -0.590 
32 -0.149 0.164 1.425 1.183 0.052 -0.203 
33 -0.112 0.036 0.743 0.752 -0.241 -0.332 
34 0.156 0.241 2.379 2.171 -0.805 -0.812 
35 -0.314 -0.066 1.170 0.912 0.066 -0.023 
36 0.032 0.215 1.309 1.179 -0.620 -0.539 
37 -0.067 0.180 1.494 1.314 0.060 0.002 
38 -0.339 -0.203 0.623 0.484 0.334 0.175 
39 0.134 0.335 1.495 1.250 -0.713 -0.693 
40 0.080 0.235 1.814 1.434 -0.470 -0.472 
41 -0.124 0.106 0.778 0.605 -0.427 -0.343 
42 -0.152 -0.018 1.287 1.210 0.473 0.482 
43 -0.064 0.132 0.546 0.471 -0.443 -0.493 
44 -0.059 0.127 1.419 1.360 -0.335 -0.264 
45 -0.103 0.072 1.683 1.445 0.387 0.313 
46 -0.345 -0.185 1.160 0.948 0.477 0.469 
47 0.173 0.328 1.904 1.745 -0.847 -0.906 
48 0.106 0.303 1.852 1.562 -0.342 -0.525 
49 -0.083 0.169 0.790 0.628 -0.348 -0.333 
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50 -0.079 0.155 0.696 0.579 -0.461 -0.423 
51 0.025 0.238 1.772 1.602 0.079 -0.151 
52 -0.055 0.099 2.319 2.059 0.402 0.320 
53 -0.370 -0.206 1.229 1.027 0.250 0.225 
54 0.181 0.318 2.126 1.875 -0.531 -0.755 
55 0.222 0.296 3.044 2.788 -0.737 -0.749 
56 0.053 0.200 3.098 2.808 0.320 0.191 
57 -0.018 0.165 1.912 1.752 0.287 0.105 
58 -0.266 -0.108 2.121 1.823 0.574 0.575 
59 0.220 0.268 2.374 2.172 -0.873 -0.946 
60 0.097 0.191 3.735 3.356 -0.621 -0.673 
61 0.090 0.241 2.711 2.498 0.155 -0.041 
62 0.205 0.257 2.839 2.586 -1.088 -1.135 
63 0.179 0.184 3.988 3.805 -1.106 -1.200 
64 0.055 0.155 2.858 2.678 -0.649 -0.716 
65 0.154 0.239 2.477 2.430 -0.590 -0.697 
66 0.038 0.177 2.483 2.233 0.338 0.249 
67 -0.059 0.040 2.507 2.287 0.458 0.454 
68 -0.184 -0.039 2.327 2.090 0.575 0.554 
69 0.018 0.091 2.845 2.858 -0.407 -0.361 
70 -0.217 -0.092 2.376 2.121 0.446 0.364 
71 -0.296 -0.123 1.802 1.731 0.506 0.470 
72 0.178 0.302 2.798 2.438 -0.277 -0.513 
73 0.057 0.281 2.308 2.051 -0.256 -0.262 
74 0.047 0.217 1.591 1.587 -0.245 -0.247 
75 -0.182 -0.020 2.352 1.961 0.174 0.107 
76 -0.102 0.078 2.740 2.620 0.482 0.407 
77 -0.068 0.165 2.782 2.378 -0.200 -0.283 
78 -0.115 0.036 2.821 2.535 -0.069 0.020 
79 -0.138 0.011 2.859 2.677 0.390 0.391 
80 0.287 0.266 2.892 2.835 -1.140 -1.257 
81 0.256 0.305 3.114 2.822 -1.155 -1.181 
82 -0.239 -0.086 3.436 3.173 0.002 0.037 
83 -0.186 -0.082 4.108 3.809 0.157 0.129 
84 0.096 0.190 2.912 2.766 -0.814 -0.964 
85 0.146 0.165 3.300 3.250 -1.030 -1.038 
86 -0.126 -0.044 3.362 3.222 0.213 0.140 
87 0.260 0.232 3.632 3.384 -1.173 -1.286 
88 0.132 0.187 3.721 3.372 -0.950 -1.097 
89 -0.072 0.049 3.688 3.495 -0.520 -0.685 
90 -0.136 -0.041 3.192 3.138 -0.259 -0.285 
91 -0.040 0.093 4.079 3.788 -0.123 -0.298 
92 -0.073 0.032 3.691 3.526 0.100 0.057 
93 -0.228 -0.197 4.313 4.386 -0.137 -0.144 
94 0.000 0.000 5.000 5.000 0.000 0.000 
95 0.122 0.198 4.493 4.329 -0.646 -0.855 
96 -0.010 0.065 4.289 4.066 -0.537 -0.650 
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Table 3.17 Displacement Solutions for Problem 3 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 -0.059 -0.190 -0.016 -0.130 1.498 1.223 
2 -0.385 -0.379 0.018 0.074 1.387 1.267 
3 -0.125 -0.320 -0.101 -0.110 0.625 0.750 
4 0.191 -0.028 -0.065 -0.014 1.088 0.974 
5 -0.186 -0.238 0.250 0.245 0.646 0.870 
6 -0.146 -0.154 0.404 0.420 0.543 0.756 
7 -0.097 -0.345 -0.228 -0.176 1.531 1.404 
8 0.000 0.000 0.000 0.000 0.000 0.000 
9 -0.275 -0.336 0.101 0.189 0.934 1.075 
10 -0.309 -0.350 0.193 0.241 0.989 1.114 
11 -0.186 -0.214 0.423 0.407 0.643 0.882 
12 -0.375 -0.425 0.052 0.148 1.210 1.241 
13 -0.152 -0.148 0.428 0.420 0.593 0.782 
14 -0.117 -0.137 0.197 0.250 0.370 0.581 
15 0.000 0.000 0.000 0.000 0.000 0.000 
16 0.099 0.006 0.064 0.009 1.090 0.875 
17 -0.157 -0.441 -0.163 -0.059 1.004 1.217 
18 -0.053 -0.234 -0.298 -0.295 1.618 1.580 
19 -0.269 -0.446 -0.025 0.037 1.160 1.284 
20 -0.269 -0.296 0.082 0.169 0.683 0.806 
21 -0.199 -0.263 -0.077 -0.124 1.686 1.328 
22 -0.258 -0.401 -0.009 0.085 0.965 1.200 
23 0.074 -0.080 0.101 0.110 0.517 0.453 
24 0.000 0.000 0.000 0.000 0.000 0.000 
25 -0.267 -0.438 -0.030 0.056 1.063 1.251 
26 -0.261 -0.429 -0.039 -0.050 1.229 1.335 
27 -0.217 -0.414 -0.119 0.002 0.898 1.128 
28 -0.189 -0.304 0.073 0.073 0.447 0.663 
29 0.164 0.051 0.095 0.116 0.788 0.768 
30 -0.228 -0.397 -0.059 -0.056 1.095 1.266 
31 0.373 -0.038 -0.070 0.039 2.895 2.862 
32 0.199 -0.191 0.020 0.114 1.948 2.292 
33 -0.152 -0.294 -0.155 -0.173 1.152 1.329 
34 0.093 0.036 -0.557 -0.590 3.448 3.315 
35 0.015 -0.271 -0.259 -0.183 0.949 1.038 
36 0.188 -0.068 -0.400 -0.335 2.456 2.350 
37 0.256 -0.104 0.027 0.046 2.158 2.200 
38 -0.215 -0.365 -0.083 -0.027 0.642 0.845 
39 0.357 -0.005 -0.230 -0.167 3.014 2.889 
40 0.311 0.038 -0.655 -0.466 2.452 2.348 
41 -0.102 -0.446 -0.200 -0.121 1.212 1.205 
42 0.189 0.001 0.017 0.082 1.110 1.186 
43 -0.169 -0.449 -0.117 -0.042 1.092 1.269 
44 -0.044 -0.252 -0.317 -0.339 1.678 1.648 
45 0.241 0.019 -0.076 -0.013 1.601 1.702 
46 0.011 -0.189 -0.061 -0.008 0.679 0.642 
47 0.366 0.177 -0.493 -0.400 3.160 3.228 
48 0.387 0.081 -0.204 -0.109 2.747 2.938 
49 -0.091 -0.451 -0.205 -0.111 1.133 1.189 
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50 -0.107 -0.451 -0.172 -0.095 1.166 1.240 
51 0.338 0.062 -0.103 -0.096 2.249 2.580 
52 0.397 0.212 -0.354 -0.307 2.040 2.101 
53 -0.021 -0.258 -0.224 -0.180 0.908 0.935 
54 0.355 0.166 -0.407 -0.351 2.950 3.159 
55 0.172 0.111 -0.868 -0.803 3.358 3.331 
56 0.494 0.348 -0.692 -0.678 2.452 2.569 
57 0.327 0.133 -0.192 -0.197 1.881 2.227 
58 0.336 0.110 -0.265 -0.220 1.344 1.293 
59 0.072 0.053 -0.568 -0.599 3.481 3.413 
60 0.184 0.134 -0.931 -0.905 3.633 3.491 
61 0.455 0.280 -0.602 -0.615 2.497 2.700 
62 -0.076 -0.068 -0.689 -0.696 3.651 3.611 
63 -0.079 -0.137 -0.772 -0.808 3.711 3.703 
64 -0.017 -0.057 -0.571 -0.638 3.570 3.558 
65 0.112 -0.013 -0.614 -0.665 3.277 3.321 
66 0.429 0.242 -0.452 -0.421 2.224 2.314 
67 0.511 0.311 -0.450 -0.463 1.958 1.878 
68 0.455 0.285 -0.345 -0.332 1.619 1.667 
69 0.012 -0.098 -0.489 -0.589 3.319 3.316 
70 0.336 0.112 -0.372 -0.382 1.469 1.492 
71 0.211 0.014 -0.205 -0.243 1.100 1.179 
72 0.340 0.176 -0.723 -0.640 2.857 3.032 
73 0.004 -0.131 -0.441 -0.437 2.574 2.669 
74 -0.015 -0.145 -0.299 -0.348 1.828 2.046 
75 0.204 -0.022 -0.388 -0.375 1.646 1.628 
76 0.469 0.323 -0.524 -0.560 1.844 2.083 
77 -0.019 -0.121 -0.657 -0.648 2.604 2.672 
78 -0.008 -0.104 -0.556 -0.581 2.485 2.427 
79 0.426 0.304 -0.590 -0.605 1.828 1.903 
80 -0.058 -0.097 -0.790 -0.794 3.637 3.659 
81 -0.035 -0.041 -0.888 -0.845 3.637 3.597 
82 -0.020 -0.119 -0.659 -0.692 2.844 2.752 
83 0.103 0.013 -0.480 -0.560 3.353 3.272 
84 -0.058 -0.104 -0.606 -0.684 3.657 3.651 
85 -0.119 -0.159 -0.760 -0.817 3.695 3.673 
86 0.261 0.040 -0.705 -0.708 2.484 2.596 
87 -0.119 -0.154 -0.795 -0.827 3.688 3.682 
88 -0.004 -0.060 -0.947 -0.934 3.741 3.687 
89 -0.187 -0.221 -0.806 -0.850 3.564 3.597 
90 -0.102 -0.204 -0.681 -0.768 3.216 3.293 
91 0.274 0.198 -0.692 -0.751 3.523 3.545 
92 0.438 0.303 -0.781 -0.731 2.886 2.964 
93 -0.171 -0.219 -0.599 -0.489 3.628 3.804 
94 0.000 0.000 0.000 0.000 5.000 5.000 
95 0.157 0.017 -0.520 -0.571 3.940 3.835 
96 0.023 -0.089 -0.708 -0.752 3.772 3.693 
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Table 3.18 Displacement Solutions for Problem 4 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.787 0.697 0.282 0.314 0.599 0.524 
3 2.171 2.130 0.017 0.083 0.006 -0.157 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.130 0.038 0.120 0.114 0.188 0.225 
6 0.153 0.115 0.169 0.163 0.270 0.265 
7 0.782 0.680 0.014 0.071 0.063 0.008 
8 0.399 0.444 0.052 0.112 0.185 0.243 
9 0.422 0.464 -0.002 0.043 0.057 0.043 
10 0.280 0.281 -0.082 -0.057 -0.122 -0.177 
11 0.000 0.000 0.000 0.000 0.000 0.000 
12 0.631 0.637 0.168 0.202 0.478 0.462 
13 0.706 0.734 -0.138 -0.052 -0.314 -0.365 
14 0.542 0.585 -0.173 -0.091 -0.403 -0.426 
15 0.462 0.446 0.257 0.315 0.372 0.409 
16 0.522 0.568 -0.180 -0.099 -0.484 -0.528 
17 0.309 0.313 -0.094 -0.047 -0.300 -0.312 
18 0.363 0.295 0.102 0.162 0.113 0.200 
19 1.100 0.927 0.221 0.252 0.443 0.422 
20 3.109 3.223 0.093 0.216 0.427 0.565 
21 0.422 0.493 0.214 0.314 0.268 0.341 
22 0.694 0.681 -0.098 0.039 -0.334 -0.237 
23 0.464 0.425 0.008 0.054 -0.101 -0.134 
24 1.102 0.904 0.177 0.206 0.249 0.127 
25 0.745 0.826 -0.198 -0.121 -0.624 -0.678 
26 1.014 1.047 -0.099 -0.001 -0.221 -0.305 
27 1.157 0.972 0.164 0.218 0.198 0.047 
28 1.114 1.139 0.351 0.448 0.617 0.653 
29 0.721 0.793 -0.170 -0.078 -0.564 -0.559 
30 1.827 1.714 -0.127 0.004 -0.275 -0.418 
31 1.305 1.295 0.163 0.284 0.237 0.287 
32 1.526 1.398 0.300 0.389 0.542 0.580 
33 1.119 1.067 -0.125 0.025 -0.115 -0.162 
34 1.388 1.303 -0.162 -0.034 -0.552 -0.553 
35 2.232 2.194 0.208 0.294 0.428 0.441 
36 1.641 1.501 0.348 0.456 0.650 0.672 
37 1.165 1.189 -0.243 -0.122 -0.762 -0.788 
38 0.940 0.974 0.193 0.224 0.260 0.066 
39 0.719 0.763 0.001 0.156 -0.080 0.004 
40 1.271 1.345 0.027 0.148 0.036 0.080 
41 1.382 1.354 -0.209 -0.101 -0.706 -0.769 
42 1.344 1.235 0.376 0.431 0.564 0.527 
43 1.064 1.086 -0.182 -0.094 -0.609 -0.601 
44 1.753 1.607 0.036 0.127 0.146 0.134 
45 1.499 1.469 0.295 0.384 0.342 0.470 
46 2.265 2.162 0.346 0.402 0.589 0.554 
47 1.812 1.742 -0.266 -0.100 -0.802 -0.843 
48 2.037 1.943 -0.157 0.020 -0.550 -0.529 
49 1.560 1.499 0.103 0.180 -0.005 -0.093 
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50 1.466 1.544 0.257 0.371 0.347 0.353 
51 1.167 1.109 -0.131 0.068 -0.430 -0.307 
52 1.914 1.838 -0.086 0.069 -0.190 -0.204 
53 2.132 2.057 0.448 0.523 0.640 0.687 
54 1.805 1.833 -0.259 -0.107 -0.666 -0.799 
55 2.413 2.400 0.242 0.320 0.460 0.452 
56 2.119 2.061 -0.234 -0.085 -0.694 -0.836 
57 2.026 1.946 -0.284 -0.133 -0.768 -0.868 
58 2.216 2.157 -0.194 -0.036 -0.133 -0.480 
59 2.073 1.975 0.380 0.449 0.531 0.512 
60 2.402 2.484 0.397 0.456 0.655 0.678 
61 2.442 2.527 0.382 0.424 0.690 0.699 
62 2.260 2.244 -0.340 -0.166 -0.868 -0.971 
63 2.589 2.689 -0.256 -0.126 -0.837 -0.928 
64 2.152 2.269 0.256 0.373 0.275 0.329 
65 2.620 2.582 0.230 0.303 0.653 0.569 
66 4.470 4.456 -0.048 -0.035 0.219 0.179 
67 3.381 3.352 -0.029 0.035 0.081 -0.040 
68 3.123 3.272 0.235 0.284 0.628 0.637 
69 2.681 2.828 0.086 0.205 0.298 0.349 
70 2.540 2.677 -0.262 -0.061 -0.837 -0.649 
71 2.749 2.919 -0.055 0.038 -0.212 -0.250 
72 3.712 3.659 -0.145 -0.056 -0.359 -0.224 
73 2.482 2.543 0.276 0.378 0.432 0.506 
74 2.832 3.003 0.247 0.316 0.478 0.566 
75 2.150 2.277 0.043 0.134 -0.102 -0.217 
76 4.069 4.168 -0.113 -0.183 -0.533 -0.514 
77 3.645 3.659 -0.240 -0.230 -0.690 -0.656 
78 2.952 3.151 -0.131 -0.121 -0.755 -0.810 
79 2.791 2.981 0.094 0.128 -0.038 -0.192 
80 4.143 4.252 0.191 0.103 0.450 0.328 
81 2.975 3.220 0.227 0.270 0.265 0.254 
82 3.363 3.319 -0.012 -0.052 -0.262 -0.514 
83 4.029 3.897 0.347 0.323 0.743 0.697 
84 4.550 4.536 0.073 0.056 0.390 0.301 
85 4.195 4.291 0.281 0.268 0.636 0.577 
86 4.472 4.333 0.194 0.222 0.519 0.490 
87 4.206 4.158 -0.013 -0.012 -0.365 -0.332 
88 4.798 4.714 0.149 0.109 0.041 -0.027 
89 4.510 4.492 -0.160 -0.203 -0.401 -0.351 
90 4.506 4.474 0.174 0.205 0.571 0.537 
91 5.000 5.000 0.000 0.000 0.000 0.000 
92 3.822 3.944 0.286 0.276 0.696 0.606 
93 4.919 4.908 0.024 0.020 0.193 0.154 
94 4.583 4.723 0.093 0.072 0.223 0.203 
95 4.917 4.931 0.014 0.002 0.151 0.103 
96 4.914 4.945 0.043 0.024 0.260 0.179 
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Table 3.19 Displacement Solutions for Problem 5 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.131 0.157 0.624 0.522 -0.086 -0.005 
3 -0.030 0.029 2.072 1.953 -0.550 -0.658 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.178 0.083 0.266 0.180 0.384 0.330 
6 0.121 0.086 0.179 0.107 0.233 0.193 
7 0.090 0.089 0.504 0.416 -0.652 -0.479 
8 0.062 0.100 0.167 0.217 -0.334 -0.262 
9 0.061 0.075 0.187 0.230 -0.404 -0.356 
10 0.051 0.052 0.136 0.171 -0.241 -0.183 
11 0.000 0.000 0.000 0.000 0.000 0.000 
12 0.106 0.120 0.395 0.395 -0.309 -0.251 
13 0.059 0.057 0.577 0.602 -0.455 -0.424 
14 0.048 0.053 0.549 0.538 -0.176 -0.224 
15 0.145 0.190 0.384 0.432 0.119 0.217 
16 0.059 0.072 0.743 0.752 0.071 0.072 
17 0.159 0.139 0.652 0.605 0.387 0.327 
18 0.248 0.216 0.755 0.582 0.541 0.489 
19 0.181 0.165 0.880 0.684 -0.581 -0.414 
20 0.045 0.116 2.740 2.697 -0.747 -0.836 
21 0.241 0.263 0.684 0.701 0.445 0.423 
22 0.198 0.236 1.319 1.115 0.650 0.576 
23 0.213 0.201 0.907 0.771 0.556 0.478 
24 0.174 0.168 0.846 0.648 -0.674 -0.502 
25 0.117 0.093 1.165 1.077 0.310 0.159 
26 0.003 0.014 0.942 0.944 -0.633 -0.560 
27 0.168 0.183 0.945 0.747 -0.622 -0.398 
28 0.165 0.198 1.134 0.980 0.066 0.040 
29 0.170 0.174 1.298 1.244 0.538 0.476 
30 -0.112 0.007 1.838 1.615 -0.696 -0.650 
31 0.076 0.135 1.137 1.050 -0.317 -0.364 
32 0.135 0.168 1.322 1.051 -0.496 -0.393 
33 -0.008 0.034 1.094 0.920 -0.682 -0.526 
34 -0.051 0.024 1.519 1.287 -0.489 -0.509 
35 0.050 0.089 1.856 1.689 -0.449 -0.479 
36 0.123 0.175 1.406 1.144 -0.374 -0.233 
37 0.020 0.049 1.470 1.300 0.019 -0.149 
38 0.206 0.237 1.293 1.257 0.376 0.473 
39 0.213 0.243 1.214 1.089 0.585 0.497 
40 0.031 0.085 1.307 1.235 -0.275 -0.397 
41 0.054 0.093 1.825 1.565 0.312 0.137 
42 0.212 0.264 1.419 1.222 0.157 0.244 
43 0.121 0.135 1.656 1.532 0.584 0.485 
44 -0.020 0.044 1.664 1.448 -0.500 -0.513 
45 0.113 0.135 1.377 1.236 -0.459 -0.429 
46 0.067 0.098 1.827 1.622 -0.500 -0.472 
47 -0.048 0.072 2.181 1.968 -0.157 -0.021 
48 0.130 0.187 2.532 2.270 0.275 0.366 
49 0.205 0.249 2.019 1.810 0.426 0.452 
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50 0.198 0.271 1.721 1.641 0.298 0.295 
51 0.125 0.202 1.732 1.512 0.525 0.494 
52 -0.104 0.014 1.845 1.647 -0.740 -0.688 
53 0.173 0.215 1.982 1.740 -0.164 -0.167 
54 -0.121 0.000 2.046 1.901 -0.479 -0.446 
55 -0.005 0.045 2.150 2.014 -0.507 -0.553 
56 -0.066 0.023 2.342 2.112 -0.504 -0.470 
57 0.040 0.087 2.528 2.256 0.100 0.173 
58 -0.066 0.002 2.258 2.105 -0.622 -0.615 
59 0.193 0.269 2.069 1.881 0.023 0.104 
60 0.097 0.152 2.007 1.983 -0.426 -0.409 
61 0.044 0.071 1.957 1.913 -0.517 -0.559 
62 -0.033 0.033 2.540 2.380 -0.294 -0.118 
63 0.009 0.045 2.873 2.696 -0.178 -0.287 
64 0.217 0.292 2.343 2.257 0.220 0.168 
65 -0.029 0.033 2.207 2.100 -0.623 -0.659 
66 -0.206 -0.074 3.969 3.868 -0.969 -1.063 
67 0.005 0.089 3.006 2.921 -0.709 -0.719 
68 0.097 0.158 2.713 2.753 -0.662 -0.694 
69 0.029 0.095 2.428 2.416 -0.601 -0.713 
70 -0.026 0.053 2.657 2.546 -0.387 -0.461 
71 0.001 0.077 2.605 2.629 -0.516 -0.591 
72 -0.073 0.058 3.459 3.239 -0.550 -0.666 
73 0.177 0.208 2.406 2.245 -0.138 -0.241 
74 0.189 0.215 2.734 2.697 -0.101 -0.266 
75 0.187 0.218 2.521 2.516 0.295 0.304 
76 0.024 0.015 4.310 4.232 0.006 -0.036 
77 -0.024 0.018 3.697 3.451 -0.253 -0.385 
78 0.074 0.065 3.304 3.234 -0.029 -0.055 
79 0.210 0.214 3.026 3.068 0.151 0.149 
80 -0.079 -0.016 3.348 3.486 -0.915 -1.008 
81 0.245 0.266 3.040 3.131 0.056 -0.006 
82 0.181 0.126 3.647 3.476 0.140 0.130 
83 0.030 0.144 3.322 3.318 -0.634 -0.649 
84 -0.195 -0.095 3.872 3.894 -0.924 -1.061 
85 -0.056 0.021 3.350 3.444 -0.929 -1.021 
86 -0.058 0.119 3.742 3.716 -0.655 -0.635 
87 0.076 0.148 4.454 4.242 0.128 0.133 
88 0.231 0.228 4.761 4.683 0.008 0.045 
89 -0.103 -0.081 4.523 4.328 -0.251 -0.430 
90 -0.163 -0.050 3.695 3.663 -0.896 -1.001 
91 0.000 0.000 5.000 5.000 0.000 0.000 
92 0.109 0.186 3.377 3.460 -0.402 -0.435 
93 -0.220 -0.138 4.541 4.497 -0.706 -0.826 
94 0.145 0.129 4.244 4.365 -0.148 -0.320 
95 -0.194 -0.147 4.722 4.695 -0.447 -0.645 
96 -0.176 -0.154 4.572 4.648 -0.645 -0.668 
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Table 3.20 Displacement Solutions for Problem 6 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.349 0.356 0.061 0.088 0.653 0.514 
3 0.167 0.118 -0.130 -0.155 2.006 1.978 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.214 0.120 0.186 0.166 0.267 0.215 
6 0.206 0.176 0.158 0.134 0.230 0.176 
7 0.219 0.246 -0.037 -0.031 0.692 0.618 
8 0.236 0.284 -0.009 0.014 0.476 0.470 
9 0.227 0.261 -0.052 -0.048 0.568 0.558 
10 0.179 0.200 0.018 0.042 0.591 0.640 
11 0.000 0.000 0.000 0.000 0.000 0.000 
12 0.317 0.334 -0.009 0.017 0.573 0.545 
13 0.079 0.085 0.090 0.106 1.125 1.160 
14 0.077 0.090 0.157 0.166 1.002 1.070 
15 0.315 0.311 0.130 0.191 0.335 0.334 
16 0.042 0.045 0.226 0.250 0.924 0.972 
17 0.168 0.154 0.269 0.299 0.583 0.643 
18 0.238 0.223 0.266 0.283 0.377 0.333 
19 0.341 0.327 -0.019 0.002 0.742 0.658 
20 0.321 0.401 -0.448 -0.485 2.780 2.646 
21 0.273 0.254 0.235 0.257 0.352 0.352 
22 0.086 0.074 0.270 0.284 0.751 0.701 
23 0.157 0.120 0.285 0.312 0.466 0.494 
24 0.297 0.266 -0.017 0.012 0.701 0.610 
25 0.022 0.020 0.279 0.271 1.027 1.126 
26 0.051 0.113 0.012 0.048 1.375 1.394 
27 0.308 0.229 0.019 0.070 0.707 0.633 
28 0.365 0.380 0.148 0.188 0.701 0.716 
29 0.044 0.024 0.281 0.274 0.899 0.913 
30 0.109 0.127 -0.090 -0.047 1.945 1.881 
31 0.319 0.357 0.051 0.058 0.962 0.928 
32 0.437 0.474 0.030 0.097 0.957 0.855 
33 0.134 0.183 -0.033 0.034 1.478 1.307 
34 0.025 0.056 0.031 0.049 1.657 1.596 
35 0.421 0.465 -0.055 -0.010 1.675 1.664 
36 0.455 0.464 0.079 0.160 0.978 0.875 
37 -0.027 -0.014 0.168 0.154 1.328 1.424 
38 0.195 0.112 0.188 0.228 0.617 0.660 
39 0.114 0.096 0.268 0.264 0.540 0.534 
40 0.285 0.259 0.089 0.107 1.260 1.426 
41 -0.012 -0.019 0.096 0.131 1.184 1.271 
42 0.308 0.283 0.146 0.202 0.748 0.692 
43 0.001 -0.007 0.199 0.197 0.955 0.987 
44 0.240 0.255 -0.072 -0.012 1.583 1.587 
45 0.380 0.452 0.033 0.072 1.005 0.971 
46 0.490 0.510 0.006 0.085 1.649 1.580 
47 -0.006 0.010 0.060 0.088 1.979 1.814 
48 -0.119 -0.050 -0.046 -0.005 1.531 1.353 
49 0.082 0.071 0.074 0.118 1.021 1.002 
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50 0.188 0.183 0.118 0.137 0.825 0.868 
51 0.014 0.003 0.167 0.174 0.935 0.851 
52 0.107 0.148 -0.123 -0.096 1.876 1.796 
53 0.316 0.371 0.021 0.103 1.146 1.093 
54 0.009 -0.005 -0.030 -0.015 2.026 2.012 
55 0.424 0.487 -0.159 -0.114 2.083 2.075 
56 -0.069 -0.056 -0.113 -0.073 2.220 2.145 
57 -0.112 -0.070 -0.025 0.021 1.807 1.701 
58 0.075 0.021 -0.115 -0.097 2.013 2.000 
59 0.219 0.222 -0.008 0.051 1.115 1.058 
60 0.418 0.410 -0.054 -0.076 1.522 1.524 
61 0.519 0.556 -0.037 -0.054 1.668 1.750 
62 -0.155 -0.100 -0.068 -0.066 2.205 2.012 
63 -0.178 -0.119 -0.195 -0.242 2.326 2.418 
64 0.087 0.128 -0.079 -0.105 1.210 1.238 
65 0.481 0.493 -0.209 -0.197 2.060 2.115 
66 0.070 0.178 -0.772 -0.749 3.604 3.572 
67 0.261 0.274 -0.474 -0.442 3.191 3.160 
68 0.309 0.370 -0.513 -0.496 2.390 2.418 
69 0.312 0.357 -0.261 -0.321 2.475 2.522 
70 -0.160 -0.026 -0.154 -0.210 2.674 2.712 
71 0.115 0.148 -0.260 -0.303 2.755 2.862 
72 0.080 0.205 -0.621 -0.571 3.723 3.502 
73 0.132 0.202 -0.226 -0.220 1.508 1.511 
74 0.233 0.336 -0.285 -0.335 1.929 2.099 
75 -0.009 0.026 -0.089 -0.131 1.337 1.419 
76 -0.188 -0.125 -0.256 -0.244 3.883 3.939 
77 -0.116 -0.015 -0.577 -0.589 3.366 3.328 
78 -0.189 -0.110 -0.315 -0.357 2.437 2.583 
79 0.046 0.098 -0.291 -0.299 1.835 1.966 
80 0.228 0.282 -0.845 -0.762 3.206 3.315 
81 0.153 0.251 -0.360 -0.412 1.899 2.063 
82 0.045 0.006 -0.393 -0.314 2.624 2.551 
83 0.238 0.334 -0.833 -0.735 2.852 2.786 
84 -0.040 0.065 -0.817 -0.788 3.269 3.348 
85 0.187 0.231 -0.846 -0.806 3.086 3.088 
86 0.078 0.204 -0.953 -0.893 3.026 2.905 
87 -0.072 0.082 -0.110 -0.205 3.786 3.450 
88 0.247 0.293 -0.054 -0.042 4.058 3.897 
89 -0.219 -0.113 -0.328 -0.435 4.358 4.192 
90 0.016 0.121 -0.944 -0.884 3.110 3.103 
91 0.000 0.000 0.000 0.000 5.000 5.000 
92 0.338 0.363 -0.786 -0.753 2.588 2.621 
93 -0.450 -0.314 -0.587 -0.572 3.684 3.568 
94 0.245 0.226 -0.524 -0.544 3.362 3.400 
95 -0.433 -0.348 -0.370 -0.387 3.964 3.795 
96 -0.366 -0.346 -0.648 -0.530 3.528 3.567 
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Table 3.21 Displacement Solutions for Problem 7 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 2.859 2.297 0.237 0.332 0.577 0.403 
2 0.216 0.590 0.112 0.161 -0.134 -0.331 
3 0.075 0.343 0.045 0.023 -0.095 -0.205 
4 0.040 0.169 0.206 0.202 0.114 0.096 
5 -0.047 0.077 0.011 0.015 -0.046 -0.066 
6 4.601 3.988 1.007 1.212 -0.387 -0.612 
7 0.165 0.203 0.071 0.053 -0.138 -0.128 
8 0.470 0.420 0.146 0.074 -0.286 -0.250 
9 0.178 0.301 0.147 0.125 -0.195 -0.216 
10 -0.037 0.064 0.125 0.082 0.016 -0.055 
11 0.095 0.155 -0.022 0.062 -0.062 -0.041 
12 1.216 1.094 0.489 0.467 0.769 0.480 
13 0.136 0.244 0.140 0.110 -0.181 -0.204 
14 -0.011 0.125 -0.025 0.014 -0.162 -0.114 
15 0.210 0.309 0.169 0.132 -0.175 -0.216 
16 0.066 0.202 -0.076 0.020 -0.166 -0.124 
17 0.083 0.180 0.072 0.054 -0.156 -0.173 
18 5.083 4.780 0.914 1.176 -0.093 -0.075 
19 0.186 0.365 0.060 -0.012 -0.111 -0.159 
20 0.638 0.627 0.338 0.278 0.021 0.023 
21 0.062 0.193 0.202 0.190 0.200 0.104 
22 0.032 0.079 0.050 0.030 -0.099 -0.097 
23 -0.071 0.049 0.062 0.023 -0.109 -0.096 
24 0.223 0.332 0.181 0.161 -0.086 -0.136 
25 0.205 0.316 -0.293 -0.157 -0.260 -0.219 
26 0.266 0.329 0.168 0.103 -0.215 -0.227 
27 -0.063 0.030 0.067 0.041 -0.099 -0.080 
28 0.185 0.000 0.144 -0.000 -0.061 -0.000 
29 -0.064 0.081 0.073 0.043 -0.098 -0.083 
30 0.008 0.129 -0.056 0.014 -0.154 -0.152 
31 0.060 0.195 -0.085 0.022 -0.159 -0.133 
32 3.268 2.694 0.134 0.271 0.349 0.163 
33 0.371 0.529 0.174 0.203 0.240 0.120 
34 3.814 3.967 0.471 0.823 0.387 0.325 
35 0.039 0.079 0.050 0.031 -0.102 -0.090 
36 0.754 0.834 -0.274 -0.107 -0.316 -0.315 
37 0.407 0.000 0.136 0.000 -0.195 -0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 
39 -0.068 0.044 0.138 0.115 0.010 -0.003 
40 1.494 1.579 -0.029 0.103 -0.617 -0.832 
41 1.312 1.329 0.387 0.354 -0.303 -0.293 
42 1.156 1.128 0.176 0.083 -0.563 -0.523 
43 0.004 0.130 -0.061 0.017 -0.175 -0.163 
44 4.880 4.623 0.374 0.405 0.094 0.065 
45 0.080 0.185 0.089 0.054 -0.178 -0.199 
46 -0.043 0.074 0.079 0.084 -0.082 -0.053 
47 0.445 0.523 0.151 0.095 -0.274 -0.278 
48 2.819 2.442 0.485 0.492 -0.086 -0.067 
49 0.076 0.269 -0.106 0.018 -0.135 -0.119 
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50 -0.002 0.083 0.027 0.004 -0.037 -0.068 
51 -0.019 0.058 0.055 0.018 -0.076 -0.100 
52 0.186 0.275 0.198 0.213 0.263 0.162 
53 0.058 0.036 0.028 0.092 -0.135 0.006 
54 0.081 0.000 0.032 0.000 -0.096 0.000 
55 0.000 0.000 0.000 0.000 0.000 0.000 
56 -0.031 0.058 0.029 0.021 -0.089 -0.107 
57 0.093 0.259 0.163 0.152 0.032 -0.072 
58 0.414 0.513 0.189 0.205 0.330 0.205 
59 5.000 5.000 0.000 0.000 0.000 0.000 
60 0.000 0.000 0.000 0.000 0.000 0.000 
61 -0.043 0.052 0.064 0.019 -0.084 -0.094 
62 0.160 0.275 0.167 0.166 0.160 0.029 
63 0.454 0.628 0.056 -0.013 -0.297 -0.423 
64 0.185 0.453 0.144 0.255 -0.061 -0.243 
65 2.998 2.341 0.193 0.347 0.624 0.495 
66 -0.020 0.075 0.186 0.137 0.115 0.036 
67 0.031 0.131 0.051 0.033 -0.120 -0.163 
68 0.258 0.297 0.242 0.157 0.224 0.046 
69 0.059 0.207 0.151 0.122 -0.005 -0.105 
70 -0.026 0.062 0.179 0.133 0.078 0.013 
71 2.515 2.011 0.421 0.424 0.275 0.055 
72 1.025 0.903 0.270 0.241 0.759 0.461 
73 0.216 0.000 0.112 -0.000 -0.132 -0.000 
74 -0.013 0.063 -0.025 0.012 -0.119 -0.117 
75 0.351 0.853 0.116 0.218 -0.190 -0.401 
76 1.143 1.138 0.217 0.142 -0.566 -0.543 
77 3.043 2.740 0.630 0.770 -0.822 -0.763 
78 0.093 0.215 -0.081 0.024 -0.141 -0.136 
79 0.121 0.214 -0.028 0.029 -0.107 -0.099 
80 0.346 0.417 0.191 0.133 -0.194 -0.207 
81 0.816 0.706 0.321 0.305 0.762 0.489 
82 0.392 0.500 0.235 0.215 0.001 -0.108 
83 -0.024 0.067 0.019 0.011 -0.036 -0.070 
84 0.113 0.198 0.110 0.076 -0.159 -0.170 
85 0.002 0.120 0.096 0.082 -0.067 -0.102 
86 0.056 0.243 -0.114 0.040 -0.142 -0.119 
87 2.404 1.911 0.399 0.418 0.504 0.359 
88 0.288 0.412 0.199 0.189 -0.033 -0.082 
89 0.191 0.251 0.308 0.247 0.346 0.181 
90 -0.219 0.035 -0.132 -0.017 0.032 0.016 
91 -0.045 0.087 -0.019 0.006 -0.158 -0.121 
92 0.061 0.249 -0.127 0.038 -0.119 -0.116 
93 -0.033 0.080 -0.040 0.011 -0.157 -0.135 
94 0.061 0.159 0.196 0.144 0.111 -0.007 
95 0.056 0.113 0.017 0.017 -0.083 -0.098 
96 0.251 0.389 0.170 0.184 0.158 0.022 
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Table 3.22 Displacement Solutions for Problem 8 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 1.325 1.084 3.807 3.250 -0.863 -0.857 
2 0.225 0.156 0.642 1.196 -0.402 -0.725 
3 -0.071 -0.160 0.343 0.818 -0.218 -0.329 
4 0.028 0.117 0.797 0.850 -0.280 -0.363 
5 -0.173 0.043 -0.169 -0.168 0.029 -0.004 
6 0.763 0.562 3.842 2.914 -0.731 -0.463 
7 0.156 0.124 0.449 0.461 -0.366 -0.278 
8 0.441 0.317 0.917 0.753 -0.607 -0.468 
9 0.497 0.552 0.507 0.511 -0.987 -0.866 
10 0.181 0.254 0.280 0.233 -0.559 -0.454 
11 -0.111 -0.072 -0.125 0.298 -0.081 -0.166 
12 0.650 0.483 2.110 2.021 -0.113 -0.036 
13 0.489 0.584 0.403 0.392 -1.044 -0.912 
14 -0.601 -0.392 0.086 0.173 -0.211 -0.027 
15 0.586 0.608 0.567 0.475 -1.098 -0.967 
16 -0.671 -0.442 -0.263 0.114 -0.374 -0.074 
17 0.248 0.303 0.168 0.173 -0.530 -0.445 
18 0.781 0.414 4.384 3.793 -0.405 -0.144 
19 0.147 -0.034 0.429 0.612 -0.208 -0.186 
20 0.869 0.644 1.535 1.524 -1.078 -1.068 
21 0.306 0.412 0.756 0.771 -0.654 -0.740 
22 -0.079 0.026 0.284 0.232 -0.260 -0.215 
23 -0.334 -0.228 0.146 0.119 -0.141 -0.033 
24 0.638 0.697 0.728 0.673 -1.193 -1.133 
25 -0.650 -0.544 0.397 0.429 0.031 0.038 
26 0.487 0.415 0.678 0.502 -0.953 -0.696 
27 -0.206 -0.081 0.075 0.097 -0.154 -0.087 
28 0.213 -0.000 0.738 0.000 -0.420 -0.000 
29 -0.454 -0.368 0.317 0.370 -0.153 -0.030 
30 -0.326 -0.223 -0.181 0.016 -0.076 0.015 
31 -0.618 -0.368 -0.423 0.005 -0.384 -0.042 
32 1.336 1.125 4.292 3.865 -0.791 -0.825 
33 0.607 0.567 1.247 1.364 -0.978 -1.071 
34 -0.025 -0.091 3.276 3.338 0.480 0.393 
35 -0.055 0.030 0.245 0.230 -0.277 -0.196 
36 0.100 -0.010 -0.931 -0.133 -0.231 0.052 
37 0.402 0.000 0.855 0.000 -0.593 -0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 
39 -0.105 0.047 0.402 0.412 -0.276 -0.290 
40 0.556 0.576 1.282 1.488 -0.365 -0.472 
41 1.083 0.880 1.600 1.774 -1.044 -1.045 
42 0.725 0.581 1.213 1.354 -0.787 -0.741 
43 -0.416 -0.256 -0.238 -0.016 -0.104 0.038 
44 0.694 0.494 4.581 4.484 -0.216 -0.118 
45 0.405 0.439 0.199 0.150 -0.790 -0.589 
46 -0.521 -0.298 0.516 0.527 -0.121 -0.043 
47 0.419 0.345 0.901 0.804 -0.635 -0.595 
48 1.433 1.173 3.071 3.281 -1.104 -1.007 
49 -0.793 -0.513 -0.710 0.059 -0.542 -0.140 
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50 0.078 0.191 -0.064 -0.071 -0.034 -0.113 
51 0.098 0.123 -0.003 -0.020 -0.279 -0.193 
52 0.389 0.356 0.947 0.968 -0.669 -0.675 
53 0.098 0.104 0.364 0.619 0.023 0.015 
54 -0.090 -0.000 0.296 0.000 -0.200 -0.000 
55 0.000 0.000 0.000 0.000 0.000 0.000 
56 -0.124 -0.057 -0.111 -0.116 -0.006 0.022 
57 0.532 0.660 0.577 0.600 -1.032 -1.063 
58 0.530 0.463 1.226 1.301 -0.707 -0.857 
59 0.000 0.000 5.000 5.000 0.000 0.000 
60 0.000 0.000 0.000 0.000 0.000 0.000 
61 -0.058 -0.001 0.028 -0.020 -0.179 -0.067 
62 0.510 0.601 0.825 0.776 -1.003 -1.038 
63 0.386 0.278 0.799 0.979 -0.573 -0.731 
64 0.213 0.224 0.738 1.351 -0.420 -0.708 
65 0.858 0.818 3.745 3.133 -0.615 -0.450 
66 0.118 0.210 0.488 0.425 -0.463 -0.466 
67 0.280 0.371 0.044 0.071 -0.554 -0.497 
68 -0.171 -0.217 1.421 1.421 0.150 0.185 
69 0.474 0.597 0.416 0.393 -0.932 -0.903 
70 -0.035 -0.033 0.594 0.543 -0.282 -0.224 
71 1.615 1.148 3.155 2.739 -1.192 -1.174 
72 0.810 0.566 1.943 1.739 -0.741 -0.747 
73 0.232 -0.000 0.639 -0.000 -0.388 -0.000 
74 -0.231 -0.127 -0.114 -0.009 -0.065 -0.004 
75 0.351 0.453 0.749 1.633 -0.523 -1.037 
76 0.822 0.685 1.189 1.323 -0.931 -0.935 
77 0.935 1.014 1.940 2.573 -0.755 -0.764 
78 -0.355 -0.306 -0.329 0.025 -0.095 -0.025 
79 -0.182 -0.191 -0.033 0.180 -0.093 -0.071 
80 0.541 0.413 0.793 0.667 -0.935 -0.711 
81 0.578 0.362 1.776 1.570 -0.318 -0.312 
82 0.689 0.605 1.162 1.040 -1.107 -1.002 
83 -0.063 0.057 -0.142 -0.153 0.063 0.006 
84 0.224 0.287 0.343 0.275 -0.621 -0.493 
85 0.281 0.404 0.190 0.236 -0.651 -0.644 
86 -0.732 -0.443 -0.801 -0.096 -0.490 -0.104 
87 1.668 1.145 3.286 2.803 -1.223 -1.093 
88 0.653 0.691 0.937 0.945 -1.188 -1.154 
89 0.071 0.025 1.238 1.092 -0.097 -0.138 
90 0.106 -0.009 -1.082 -0.240 -0.412 -0.061 
91 -0.454 -0.260 -0.030 0.025 -0.172 0.004 
92 -0.643 -0.404 -0.940 -0.111 -0.403 -0.081 
93 -0.313 -0.183 -0.178 -0.044 -0.083 0.037 
94 -0.238 -0.235 1.063 0.937 -0.012 0.015 
95 -0.019 0.097 0.130 0.137 -0.197 -0.213 
96 0.595 0.664 1.040 1.057 -1.108 -1.169 
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Table 3.23 Displacement Solutions for Problem 9 

Element u1 (mm) U1 (mm) u2 (mm) U2 (mm) u3 (mm) U3 (mm) 
1 -0.179 0.204 -0.742 -0.581 2.262 2.286 
2 -0.256 -0.283 -0.233 -0.030 1.079 2.381 
3 -0.206 -0.333 -0.157 0.089 0.640 1.547 
4 -0.297 -0.211 -0.123 0.019 1.255 1.526 
5 -0.404 -0.687 0.087 0.019 0.153 0.240 
6 -0.017 -0.036 -0.243 -0.497 2.557 2.262 
7 -0.201 -0.013 -0.182 -0.137 0.935 0.861 
8 -0.275 -0.114 -0.458 -0.312 1.190 1.123 
9 -0.280 -0.139 -0.282 -0.175 1.392 1.401 
10 -0.484 -0.533 0.126 0.248 1.293 1.257 
11 0.012 0.031 -0.165 -0.217 0.172 0.629 
12 -0.072 0.102 -0.607 -0.342 1.821 1.978 
13 -0.299 -0.217 -0.179 -0.049 1.482 1.501 
14 -0.232 -0.264 -0.136 -0.087 0.335 0.401 
15 -0.270 -0.126 -0.273 -0.110 1.525 1.533 
16 -0.126 -0.162 -0.228 -0.188 0.057 0.338 
17 -0.265 -0.162 -0.160 -0.082 0.855 0.833 
18 0.533 0.571 0.130 -0.126 3.145 2.952 
19 -0.262 -0.323 -0.212 0.166 0.621 1.208 
20 -0.168 0.166 -0.582 -0.403 1.731 1.882 
21 -0.364 -0.277 -0.078 0.080 1.607 1.801 
22 -0.067 -0.003 -0.183 -0.064 0.707 0.644 
23 -0.400 -0.429 0.078 0.081 0.450 0.508 
24 -0.253 -0.104 -0.305 -0.130 1.677 1.767 
25 -0.174 -0.170 0.067 -0.051 0.614 0.668 
26 -0.226 -0.070 -0.384 -0.198 1.393 1.286 
27 -0.466 -0.559 0.129 0.182 0.468 0.686 
28 -0.265 0.000 -0.231 0.000 1.210 0.000 
29 -0.327 -0.329 -0.013 0.038 0.539 0.651 
30 -0.177 -0.203 -0.157 -0.146 0.113 0.272 
31 -0.107 -0.140 -0.246 -0.194 0.004 0.256 
32 -0.242 0.149 -0.420 -0.345 2.423 2.428 
33 -0.151 0.138 -0.450 -0.319 1.800 1.973 
34 0.051 0.104 -0.049 -0.172 2.701 2.626 
35 0.036 0.044 -0.267 -0.115 0.543 0.518 
36 0.001 -0.063 -0.080 0.101 -0.037 0.351 
37 -0.256 0.000 -0.363 0.000 1.341 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 
39 -0.465 -0.496 0.080 0.201 0.998 1.216 
40 -0.374 -0.170 -0.217 -0.332 2.100 2.248 
41 -0.254 0.076 -0.644 -0.531 1.810 1.989 
42 -0.326 -0.080 -0.510 -0.435 1.660 1.947 
43 -0.194 -0.248 -0.155 -0.144 0.053 0.218 
44 0.405 0.596 0.223 0.267 3.633 3.902 
45 -0.395 -0.300 -0.058 0.017 1.202 1.043 
46 -0.294 -0.309 -0.111 0.067 0.676 0.881 
47 -0.244 -0.052 -0.471 -0.395 1.169 1.281 
48 -0.287 0.128 -0.777 -0.603 2.202 2.327 
49 -0.089 -0.118 -0.405 -0.271 -0.122 0.335 
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50 -0.458 -0.554 0.054 0.080 0.109 0.246 
51 -0.570 -0.609 0.147 0.152 0.674 0.630 
52 -0.247 -0.127 -0.229 -0.037 1.670 1.825 
53 0.039 -0.044 -0.017 -0.020 0.469 0.678 
54 -0.190 0.000 -0.169 0.000 0.558 0.000 
55 0.000 0.000 0.000 0.000 0.000 0.000 
56 -0.389 -0.461 0.026 -0.010 0.109 0.188 
57 -0.353 -0.200 -0.115 -0.016 1.700 1.803 
58 -0.143 0.109 -0.421 -0.260 1.726 1.949 
59 0.000 0.000 0.000 0.000 5.000 5.000 
60 0.000 0.000 0.000 0.000 0.000 0.000 
61 -0.521 -0.552 0.146 0.072 0.524 0.413 
62 -0.275 -0.165 -0.214 -0.029 1.786 1.897 
63 -0.314 -0.026 -0.387 -0.529 1.246 1.917 
64 -0.265 -0.359 -0.231 -0.163 1.210 2.248 
65 -0.109 0.181 -0.809 -0.598 2.620 2.555 
66 -0.416 -0.454 0.086 0.230 1.365 1.479 
67 -0.455 -0.404 0.102 0.119 1.005 0.998 
68 -0.052 -0.093 -0.242 -0.098 1.461 1.514 
69 -0.395 -0.291 -0.018 0.080 1.595 1.637 
70 -0.381 -0.391 -0.002 0.133 1.168 1.214 
71 -0.187 0.172 -0.804 -0.633 2.131 2.215 
72 -0.104 0.191 -0.656 -0.393 1.964 2.084 
73 -0.270 0.000 -0.231 0.000 1.056 0.000 
74 -0.193 -0.229 -0.113 -0.065 0.172 0.257 
75 -0.256 0.018 -0.331 -0.540 1.207 3.026 
76 -0.308 -0.031 -0.564 -0.480 1.677 1.915 
77 -0.537 -0.204 -0.634 -0.672 2.260 2.445 
78 -0.072 -0.074 -0.216 -0.230 0.210 0.355 
79 -0.113 -0.023 -0.177 -0.194 0.385 0.501 
80 -0.204 0.011 -0.436 -0.293 1.404 1.336 
81 -0.082 0.139 -0.554 -0.248 1.818 1.949 
82 -0.154 0.094 -0.480 -0.327 1.697 1.710 
83 -0.377 -0.566 0.090 0.044 0.133 0.276 
84 -0.163 -0.058 -0.223 -0.096 1.048 0.968 
85 -0.470 -0.434 0.097 0.177 1.255 1.379 
86 -0.065 -0.086 -0.388 -0.297 -0.062 0.263 
87 -0.156 0.213 -0.809 -0.599 2.076 2.177 
88 -0.196 0.015 -0.390 -0.234 1.717 1.840 
89 -0.173 -0.060 -0.284 -0.027 1.493 1.595 
90 0.135 0.055 -0.091 0.065 -0.549 0.033 
91 -0.302 -0.338 -0.070 -0.038 0.210 0.299 
92 -0.037 -0.061 -0.420 -0.306 -0.050 0.292 
93 -0.292 -0.349 -0.120 -0.068 0.073 0.216 
94 -0.189 -0.217 -0.224 -0.045 1.228 1.204 
95 -0.021 -0.018 -0.186 -0.096 0.405 0.470 
96 -0.207 -0.005 -0.360 -0.214 1.840 1.966 
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From the above tables, one can see that the solutions obtained by using this author’s 
code are in good agreement with the solutions obtained by using the BEM software 
available from [Yijun Liu, n.d.]. The differences between the displacement solutions 
obtained by using this author’s code and the software available from [Yijun Liu, n.d.] 
are found to be less than 0.1 mm in many cases, less than 0.5 mm in most of the cases, 
and less than 1 mm almost always. These differences would not have any practical 
significance since in general the hardware of surgical simulators cannot offer a 
resolution better than 1 mm. 

As already explained in Chapter 1, this is the first time that the approach that does not 
make use of any type of precomputations has been followed to achieve the real-time 
simulations, while using BEM in general and for the simulation of biological organs 
in particular. Since the same approach has not been followed elsewhere, there is no 
question of comparing the results obtained using this author’s implementation of the 
approach with the results obtained using someone else’s implementation of the same 
approach. Quantitative comparison of the results from the present approach with the 
results from other approaches is not needed in support of the present approach since 
just simple qualitative reasoning makes it clear that the present approach has many 
advantages and that it should be the preferred approach (as already elaborated while 
discussing the advantages of the present approach, in Chapter 1). 

Although nonlinear formulations can give more realistic results when it comes to the 
simulation of biological organs, as already mentioned in the beginning of this chapter, 
present chapter concerns itself mostly about linear elastic analysis only. Coming to 
the question of the validity of the linear elastic material models for large 
deformations, there is no clear line that separates linear analysis from nonlinear 
analysis. Some sources in the literature mention that linear elastic analysis is valid up 
to an ‘elongation’ of 0.2%, while some other sources utilize linear elastic formulations 
when the ‘elongations’ are 1%, 2%, 5%, or even 10%. Clearly, whether a particular 
simulation must make use of nonlinear formulations depends on the application, and 
linear elastic formulations are all right as long as the results obtained are useful and 
satisfactory. Again, the same type of argument is applicable when it comes to the 
allowable error in a simulation when the simulation employs just the linear 
elastostatics. Of course, literature contains many sources that use just the linear 
analysis for achieving the real-time simulation of biological organs while some of 
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these sources use very few elements (finite elements or boundary elements) to 
describe the geometry, which would inevitably result in the loss of accuracy even for 
those linear elastic simulations. However, these linear elastic simulations carried out 
by using very few elements have not been considered to be useless, but such a 
simulation is assumed to be a step towards building more and more realistic 
simulators. 

3.5 Error Estimation 
In a previous section of this chapter, nine simulations were carried out on biological 
organs (six simulations on kidneys and three simulations on a liver). The results given 
by this author’s code and also the results obtained by using someone else’s software 
[Yijun Liu, n.d.] were tabulated. 

Undeformed and deformed shapes of kidneys and the liver are plotted now. Figure 3.4 
shows the undeformed shape of the kidney appearing in Problem 1. Figure 3.5 shows 
the deformed shape of the kidney for Problem 1, deformations calculated by using this 
author’s code. Figure 3.6 shows the deformed shape of the kidney for Problem 1, 
deformations calculated by using the software from [Yijun Liu, n.d.]. 

Similarly, Figure 3.7 to Figure 3.9 show the undeformed and deformed shapes for 
Problem 2, Figure 3.10 to Figure 3.12 show the undeformed and deformed shapes for 
Problem 3 etc. 

The results obtained by using this author’s code are compared with the results 
obtained by using the software available from [Yijun Liu, n.d.] because [Yijun Liu, 
n.d.] was the only software that was readily available and which could simulate 3D 
linear elastostatics. The purpose of comparing the results is just to verify that the 
results from this author’s code do match well with the results obtained by at least one 
BEM software package that is developed by someone else (even for complicated 
geometry like liver and kidney). 
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Figure 3.4 Undeformed Geometry for Problem 1 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 3 
 

109 
 

 

 

 

 

 
 

 

 

 

 

Figure 3.5 Deformed Geometry for Problem 1 (Deformations Calculated by using the 
Present Author’s Code) 
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Figure 3.6 Deformed Geometry for Problem 1 (Deformations Calculated by using the 
Software from [Yijun Liu, n.d.]) 
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Figure 3.7 Undeformed Geometry for Problem 2 
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Figure 3.8 Deformed Geometry for Problem 2 (Deformations Calculated by using the 
Present Author’s Code) 
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Figure 3.9 Deformed Geometry for Problem 2 (Deformations Calculated by using the 
Software from [Yijun Liu, n.d.]) 
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Figure 3.10 Undeformed Geometry for Problem 3 
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Figure 3.11 Deformed Geometry for Problem 3 (Deformations Calculated by using 
the Present Author’s Code) 
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Figure 3.12 Deformed Geometry for Problem 3 (Deformations Calculated by using 
the Software from [Yijun Liu, n.d.]) 
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Figure 3.13 Undeformed Geometry for Problem 4 
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Figure 3.14 Deformed Geometry for Problem 4 (Deformations Calculated by using 
the Present Author’s Code) 
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Figure 3.15 Deformed Geometry for Problem 4 (Deformations Calculated by using 
the Software from [Yijun Liu, n.d.]) 
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Figure 3.16 Undeformed Geometry for Problem 5 
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Figure 3.17 Deformed Geometry for Problem 5 (Deformations Calculated by using 
the Present Author’s Code) 
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Figure 3.18 Deformed Geometry for Problem 5 (Deformations Calculated by using 
the Software from [Yijun Liu, n.d.]) 
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Figure 3.19 Undeformed Geometry for Problem 6 
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Figure 3.20 Deformed Geometry for Problem 6 (Deformations Calculated by using 
the Present Author’s Code) 
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Figure 3.21 Deformed Geometry for Problem 6 (Deformations Calculated by using 
the Software from [Yijun Liu, n.d.]) 
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Figure 3.22 Undeformed Geometry for Problem 7 
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Figure 3.23 Deformed Geometry for Problem 7 (Deformations Calculated by using 
the Present Author’s Code) 
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Figure 3.24 Deformed Geometry for Problem 7 (Deformations Calculated by using 
the Software from [Yijun Liu, n.d.]) 
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Figure 3.25 Undeformed Geometry for Problem 8 
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Figure 3.26 Deformed Geometry for Problem 8 (Deformations Calculated by using 
the Present Author’s Code) 
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Figure 3.27 Deformed Geometry for Problem 8 (Deformations Calculated by using 
the Software from [Yijun Liu, n.d.]) 
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Figure 3.28 Undeformed Geometry for Problem 9 
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Figure 3.29 Deformed Geometry for Problem 9 (Deformations Calculated by using 
the Present Author’s Code) 
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Figure 3.30 Deformed Geometry for Problem 9 (Deformations Calculated by using 
the Software from [Yijun Liu, n.d.]) 

 

From the figures, one can see that the deformations calculated by using this author’s 
code are in good agreement with the deformations calculated by making use of the 
software from [Yijun Liu, n.d.]. The plots are generated through MATLAB, by 
making use of the functions ‘DelaunayTri’, ‘convexHull’, and ‘trisurf’. 

Just to make it clear that there is no noticeable difference between the deformed shape 
that is calculated by using the present author’s code and the deformed shape that is 
calculated by using the software from [Yijun Liu, n.d.] while there is noticeable 
difference between the undeformed and deformed shapes, undeformed and deformed 
shapes are plotted in Figure 3.31 to Figure 3.57, after scaling the deformations by a 
factor of 4. 
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Figure 3.31 Undeformed Geometry for Problem 1 
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Figure 3.32 Deformed Geometry for Problem 1 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.33 Deformed Geometry for Problem 1 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 

 

 

 

 

 

 

 

 



  Chapter 3 
 

138 
 

 

 

 

 

 

 

 

 

 
Figure 3.34 Undeformed Geometry for Problem 2 

 

 

 

 

 

 

 

 

 



  Chapter 3 
 

139 
 

 

 

 

 

 

 

 

 

 
Figure 3.35 Deformed Geometry for Problem 2 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.36 Deformed Geometry for Problem 2 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 
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Figure 3.37 Undeformed Geometry for Problem 3 
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Figure 3.38 Deformed Geometry for Problem 3 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.39 Deformed Geometry for Problem 3 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 
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Figure 3.40 Undeformed Geometry for Problem 4 
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Figure 3.41 Deformed Geometry for Problem 4 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.42 Deformed Geometry for Problem 4 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 

 

 

 

 

 

 

 

 



  Chapter 3 
 

147 
 

 

 

 

 

 

 

 

 

 
Figure 3.43 Undeformed Geometry for Problem 5 
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Figure 3.44 Deformed Geometry for Problem 5 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.45 Deformed Geometry for Problem 5 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 
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Figure 3.46 Undeformed Geometry for Problem 6 
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Figure 3.47 Deformed Geometry for Problem 6 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.48 Deformed Geometry for Problem 6 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 
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Figure 3.49 Undeformed Geometry for Problem 7 
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Figure 3.50 Deformed Geometry for Problem 7 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.51 Deformed Geometry for Problem 7 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 
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Figure 3.52 Undeformed Geometry for Problem 8 
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Figure 3.53 Deformed Geometry for Problem 8 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 
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Figure 3.54 Deformed Geometry for Problem 8 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 
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Figure 3.55 Undeformed Geometry for Problem 9 
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Figure 3.56 Deformed Geometry for Problem 9 (Deformations Calculated by using 

the Present Author’s Code, and Deformations Scaled by a Factor of 4) 

 

 

 

 

 

 

 

 



  Chapter 3 
 

161 
 

 

 

 

 

 

 

 

 

 
Figure 3.57 Deformed Geometry for Problem 9 (Deformations Calculated by using 

the Software from [Yijun Liu, n.d.], and Deformations Scaled by a Factor of 4) 

 

3.6 Summary 
This chapter first talks about BEM codes developed by this author during the course 
of the present research. The codes can solve any three dimensional linear elastostatic 
problem using constant boundary elements while ignoring body forces. The codes 
comprise a MATLAB code, and a Fortran translation of the MATLAB code. The 
Fortran translation comes in two varieties: first one can run on a single core of a 
computer cluster (i.e., sequential version), and the second variety can utilize multiple 
processors available in computer clusters (i.e., parallelized version). These codes are 
essential for carrying out the BEM simulations next. 

First, a try is given to parallelize the entire MATLAB code with the intention of 
running it on a desktop computer equipped with a GPU. The goal is to compute the 
‘characteristic matrix’ and the ‘right hand side’, and also to solve the system of 
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equations, all in real-time. Author has not been successful in achieving this goal using 
MATLAB and the Parallel Computing Toolbox. 

Next, thought was given to obtain the real-time performance, again by utilizing just an 
ordinary desktop computer and a GPU, by resorting to precomputations. In this case, 
one has to precompute the ‘characteristic matrix’ and its inverse offline. Again, 
MATLAB and Parallel Computing Toolbox are used for this purpose. Results show 
that it is possible to get real-time performance (real-time graphics, not real-time 
haptics) when the size of the ‘characteristic matrix’ is up to about 16000 by 16000; 
one can also see that one can get a speed up of about 14 times when the ‘characteristic 
matrix’ is of about 16000 by 16000 size. This means that one can perform real-time 
simulations using boundary elements if the geometry is described by about 5300 
constant boundary elements. Of course, the usual limitations with approaches that use 
precomputations apply in this case too (like one may not be able to compute the 
‘characteristic matrix’ beforehand if there is change in the geometry during 
simulations, e.g., during simulation of cutting). One can note that it is not possible to 
perform the same simulation (with the same precomputations of course) in real-time 
using just an ordinary desktop if a GPU is also not made use of. 

Next, a computer cluster is used to carry out BEM simulations. The fully parallelized 
version of the code (i.e., the parallel Fortran code) is used for this purpose. In this 
case, the goal is to compute the ‘characteristic matrix’ and the ‘right hand side’, and 
also to solve the system of equations, all in real-time. Simulations are carried out on 1, 
4, 16, 64, and 256 processors. Simulations are also carried out for different block sizes 
while Block-Cyclically distributing matrices among processors. From the results, one 
can conclude that it is possible to achieve the real-time performance with BEM (real-
time graphics, not real-time haptics), when biological organs are represented by about 
96 boundary elements (assuming linear elastostatic behaviour of course). The fastest 
simulation could complete 24 computations per second (as against the approximately 
30 computations per second desirable for high quality real-time graphics). During the 
simulation of biological organs, the results obtained by using this author’s BEM code 
are found to be in good agreement with the results obtained by using BEM software 
developed by someone else. During the simulation of biological organs, using an 8 by 
8 integration scheme instead of the 16 by 16 integration scheme employed in the 
present study can speed up the computations, which in turn can enable one to achieve 
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real-time graphics of very high quality and/or enable one to solve a problem of larger 
size in real-time; this author has observed that using 8 by 8 integration instead of the 
16 by 16 integration does not result in unacceptable degradation of accuracy. In the 
present chapter, all the computations involving real numbers are carried out in double 
precision, and carrying out at least a few computations using just the single precision 
can help to speed up the computations.  

From the results presented in this chapter, one can see that it would be difficult to 
obtain the real-time performance (even real-time graphics) if nonlinear material 
behaviour is to be incorporated into simulations, if custom methods and 
communication protocols are not used while parallelizing simulations. Results also 
imply that it may be difficult to obtain real-time haptic feedback with nonlinear 
material models, even if custom methods and communication protocols are used while 
parallelizing simulations. However, results also indicate that BEM could be a very 
useful numerical technique for the realistic simulation of biological organs – 
including the highly nonlinear soft biological organs – if one is happy with nearly 
real-time performance, i.e., one computation taking just a few seconds. 

One can see that the results presented in the present chapter are relevant not only for 
the real-time linear elastostatic simulation of biological organs but any simulation that 
attempts to simulate linear elastostatic response in real-time. 

Present chapter also serves to make some record of the performance (like speed) that 
can be obtained by present day typical computing hardware (like a desktop computer, 
a graphics processing unit (GPU), a computer cluster) together with contemporary 
software (like MATLAB, MATLAB Parallel Computing Toolbox, Fortran, MPI, 
BLACS, ScaLAPACK). 

Although using a supercomputer (e.g., IBM Blue Gene) instead of the computer 
cluster utilized in the present work may offer slightly different speed/performance, 
one may not expect the speed to improve too much because the well known list of top 
supercomputers of the world includes several computer clusters at present (which 
implies that the performance offered by clusters is comparable to the performance 
offered by supercomputers).  
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Chapter 4: Discussion, Conclusions, and Scope for 
Future Work  

4.1 A Discussion on Incorporating Nonlinearity into the 
Simulations 
Biological organs are inherently nonlinear. Hence the simulation of biological organs 
that take into account nonlinearity would result in more accurate results. However, 
whether the simulation would be more realistic after incorporating nonlinearity 
depends not only on the accuracy of the results obtained but also on how fast the 
simulations are (whether or not the simulations are real-time, since not just accuracy 
but the real-time performance also increases realism). 

Hence one has to incorporate nonlinearity into the BEM based simulation of 
biological organs if one wants to answer the questions: “Is it possible to achieve more 
realistic simulations by incorporating nonlinearity into the BEM based simulation of 
biological organs? Is it possible to achieve the real-time performance with such 
models? Is the accuracy offered by such models sufficient in case the models can only 
be made of very few elements to achieve the real-time performance? Or, whether one 
can achieve better realism by using more number of nonlinear elements even if it 
could result in simulations that are not strictly real-time (nearly real-time 
simulations)?” 

Clearly, from the results presented in the previous chapters, one can conclude that it is 
difficult to achieve the real-time performance if nonlinearity is to be incorporated into 
the simulations. However, it should be possible to achieve the real-time performance 
if very few nonlinear boundary elements are used. On the contrary, it may be possible 
to achieve nearly real-time performance (although not strictly real-time performance), 
even if the total number of boundary elements is kept the same as those in the 
simulations carried out in the previous chapters. Whether or not such nearly real-time 
nonlinear simulations are preferred over the simulations which are strictly real-time 
but do not incorporate any nonlinearity is a question which can only be answered by 
competent and experienced surgeons, after they use surgery simulators built by using 
both these technologies (one technology at a time). But the first step towards building 
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a BEM based simulator that can simulate nonlinearity could be to carry out the 
nonlinear simulation of biological organs using BEM. 

It might be important to note that no literature is available on the simulation of 
biological organs using nonlinear BEM, whether in the context of real-time 
simulations or otherwise.  

Even when solving nonlinear problems, the BEM usually uses the same fundamental 
solutions as those used for linear simulations. This might lead to lesser accuracy. 
Moreover, the BEM formulations that are generally employed to solve nonlinear 
problems usually require meshing of the interior of the problem domain, not just the 
boundary of the problem domain. This can make the BEM less attractive (over 
techniques like FEM) because one of the reasons for choosing the BEM over 
techniques like FEM is that it requires meshing of only the boundary of the problem 
domain (at least for linear problems). It may be noted that once the BEM loses this 
advantage (when solving nonlinear problems), there may not be any advantage in 
using the BEM over FEM (in terms of speed and accuracy). Of course, still there is a 
need to carry out the simulation of biological organs by using the BEM and FEM 
both, and find out which of the numerical techniques is better suited for the simulation 
of biological organs. However, while codes and software packages for nonlinear FEM 
are readily available, codes and software packages for nonlinear BEM are not readily 
available. This author is not aware of any nonlinear BEM code that may be useful for 
the simulation of biological organs (e.g., 3D hyperelasticity). Even the commercial 
boundary element simulation software BEASY (developed by Prof. Brebbia who is 
widely considered to be the one who invented the BEM) does not include 
hyperelasticity. Developing one’s own nonlinear BEM codes would require 
significant amount of time, resources, and expertise. These may be the reasons why 
no one has used nonlinear BEM for the real-time simulation of biological organs. 

4.1.1 Literature on Nonlinear BEM 

As regards to the use of the BEM for solving nonlinear problems (2D and 3D), one 
cannot find as much literature as one would expect to see. In fact, one can find only a 
few references on this topic. An attempt has been made in the following paragraphs to 
summarize important references on nonlinear BEM, especially those that are 
important from the point of view of the simulation of biological organs. 
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The reference [Wei-Zhe Feng, et al., 2015] presents a new BEM for solving 2D and 
3D elastoplastic problems without initial stresses/strains. The reference [Trevor G. 
Davies and Xiao-Wei Gao, 2006] uses the boundary element method to carry out 
three-dimensional elasto-plastic analysis. The reference [Katia Bertoldi, et al., 2005] 
presents a new boundary element technique for elastoplastic solids. The technique 
does not use domain integrals. The reference [Xiao-Wei Gao and Trevor G. Davies, 
2000] presents an effective boundary element algorithm for 2D and 3D elastoplastic 
problems. 

The reference [P.M. Baiz and M.H. Aliabadi, 2007] analyzes the buckling of shear 
deformable shallow shells using the boundary element method, while [M.H. Aliabadi, 
2006] uses the boundary element method to analyze shear deformable plates with 
combined geometric and material nonlinearities. The reference [T. Dirgantara and 
M.H. Aliabadi, 2006] uses a boundary element formulation to perform geometrically 
nonlinear analysis of shear deformable shells. The reference [P.H. Wen, et al., 2005] 
carries out large deflection analysis of Reissner plate using the boundary element 
method. The reference [Hui-Shen Shen, 2000] discusses the nonlinear bending of 
simply supported rectangular Reissner–Mindlin plates resting on elastic foundations 
under transverse and in-plane loads. 

The reference [M. Brun, et al., 2003] discusses a boundary element technique for 
incremental, nonlinear elasticity. 

Many a times biological organs may be assumed to be hyperelastic. As far as 
accuracy of the simulations is concerned (if speed is of no concern), one is expected 
to get more realistic results by assuming that biological organs are hyperelastic 
instead of assuming that they follow the linear elastostatic behaviour. Hence, sources 
from the literature that use the BEM for modelling hyperelasticity are identified in the 
next paragraph. 

The reference [O. Köhler and G. Kuhn, 2001] discusses the application of the 
Domain-Boundary Element Method (DBEM) for solving hyperelastic and 
elastoplastic finite deformation problems (axisymmetric and 2D/3D problems). The 
reference [G. Karami and D. Derakhshan, 2001] introduces a field boundary element 
method for large deformation analysis of hyperelastic problems. 
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4.1.2 Nonlinear Formulations and Coding 

The references [O. Köhler and G. Kuhn, 2001; G. Karami and D. Derakhshan, 2001] 
quite extensively and clearly describe the BEM formulation for hyperelasticity. These 
formulations may readily be used for the nonlinear BEM-based simulation of 
biological organs. 

One of the differences between a nonlinear BEM code and a linear BEM code is that 
while carrying out nonlinear simulations, the characteristic matrix has to be calculated 
using a nonlinear formulation, e.g., the formulation explained in [O. Köhler and G. 
Kuhn, 2001; G. Karami and D. Derakhshan, 2001]. The other difference is that the 
system of algebraic equations to be solved to get the final solution is not linear. Hence 
a solution method that is capable of solving a system of nonlinear algebraic equations 
has to be employed at the last stage. 

Codes may be parallelized to make them run faster. Hardware that may be utilized 
include: computer cluster, supercomputer, GPU, using Intel Many Integrated Core 
Architecture (Intel MIC, which is a coprocessor), using a processor with many cores 
(e.g., Knights Landing, which is a standalone processor). From the reference [Victor 
W. Lee, et. al, 2010], it seems that GPUs may or may not be as good as they appear to 
be. However, a single processor with many cores is likely to be helpful for real-time 
simulations since the time for data transfer between computing cores for this type of 
processors is very small because all the cores are present in the same chip (same piece 
of semiconductor). One may also note that a few researchers are trying to develop 
processors that would have a few hundred cores each. 

4.1.3 Comparison between the Results from Nonlinear Analysis (using ANSYS) 
and Linear Analysis (using ANSYS) 

In this section, comparison is made between the results obtained by using linear 
elastostatic analysis and nonlinear analysis. The commercial software package 
ANSYS is used for the purpose; ANSYS is used for both linear and nonlinear analysis 
here.  

The comparison between linear and nonlinear analysis is done for the three 
simulations involving left kidney of the Visible Human male. The simulations 
(meanings geometry and boundary conditions) are explained in the last chapter and 
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are named in the last chapter as Problem 1, Problem 2 and Problem 3. The material 
properties used in this chapter are the same as those used in the last chapter for BEM 
simulations (Young’s modulus = 150 N/mm2, Poisson’s ratio = 0.4), and only 
geometric nonlinearity is taken into account (the material is considered to be linear 
elastic, but the material can undergo large deformation). Literature says that it is much 
more important to incorporate geometric nonlinearity when compared to 
incorporating nonlinear material models, and many a times just incorporating 
geometric nonlinearity while using just the linear elastic constitutive model results in 
highly accurate simulations [Adam Wittek, et al., 2009]. 

The element type used is Tet 10node 187. The geometry is discretized into 782 nodes 
in total. The discretized geometry (undeformed geometry), as displayed in ANSYS, is 
shown in Figure 4.1. Figure 4.2 shows the undeformed and deformed geometry, 
displayed over the same frame, for Problem 1 and for the linear analysis (rendered 
mesh refers to the undeformed geometry whereas the wireframe mesh refers to the 
deformed geometry). Similarly, Figure 4.3 shows the undeformed and deformed 
geometry, displayed over the same frame, for Problem 1 and for the nonlinear 
analysis (rendered mesh refers to the undeformed geometry whereas the wireframe 
mesh refers to the deformed geometry). 

Similarly, Figure 4.4 shows the undeformed and deformed geometry, for Problem 2 
and for the linear analysis (For Figure 4.4 to Figure 4.7, rendered mesh refers to the 
undeformed geometry whereas the wireframe mesh refers to the deformed geometry). 
Figure 4.5 shows the undeformed and deformed geometry, for Problem 2 and for the 
nonlinear analysis.  Figure 4.6 shows the undeformed and deformed geometry, for 
Problem 3 and for the linear analysis. Figure 4.7 shows the undeformed and deformed 
geometry, for Problem 3 and for the nonlinear analysis. 
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Figure 4.1 Discretized Geometry as Displayed in ANSYS 

 

 

 

 

 

 

 

 

 
Figure 4.2 Undeformed and Deformed Geometry for Problem 1 (Linear Analysis) 
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Figure 4.3 Undeformed and Deformed Geometry for Problem 1 (Nonlinear Analysis) 

 

 

 

 

 

 

 

 

 
Figure 4.4 Undeformed and Deformed Geometry for Problem 2 (Linear Analysis) 



  Chapter 4 
 

171 
 

 

 

 

 

 

 

 

 
Figure 4.5 Undeformed and Deformed Geometry for Problem 2 (Nonlinear Analysis) 

 

 

 

 

 

 

 

 

 
Figure 4.6 Undeformed and Deformed Geometry for Problem 3 (Linear Analysis) 
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Figure 4.7 Undeformed and Deformed Geometry for Problem 3 (Nonlinear Analysis) 

 

It is easier to compare the difference between the results from linear and nonlinear 
analyses if the actual values of the displacements are tabulated. Hence, for each of the 
analyses above, the values of the displacement vector sum at eleven distinct nodes is 
noted down. These values are tabulated in Table 4.1 to Table 4.3. The eleven nodes 
are selected such that they are not from a certain part of the geometry only (i.e., nodes 
are scattered throughout the geometry). The node numbers of the chosen nodes are: 
41, 43, 50, 49, 34, 15, 11, 4, 18, 246, 20. 
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Table 4.1 Percentage Errors for Problem 1 (Linear FEM) 

Node Number Displacement 
Vector Sum for 

the Large 
Deformation 

Analysis (mm) 

Displacement 
Vector Sum for 

the Small 
Deformation 

Analysis (mm) 

Percentage 
Error 

41 4.176 5.011 19.995 
43 5.485 5.983 9.079 
50 5.161 5.854 13.428 
49 5.177 5.210 0.637 
34 2.200 2.300 4.545 
15 0.000 0.000 0.000 
11 0.728 0.659 -9.478 
4 0.750 0.982 30.933 

18 1.384 1.375 -0.650 
246 1.551 1.583 2.063 
20 1.870 1.763 -5.722 
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Table 4.2 Percentage Errors for Problem 2 (Linear FEM) 

Node Number Displacement 
Vector Sum for 

the Large 
Deformation 

Analysis (mm) 

Displacement 
Vector Sum for 

the Small 
Deformation 

Analysis (mm) 

Percentage 
Error 

41 5.043 5.011 -0.635 
43 6.048 5.983 -1.075 
50 5.932 5.854 -1.315 
49 5.251 5.210 -0.781 
34 2.323 2.300 -0.990 
15 0.000 0.000 0.000 
11 0.661 0.659 -0.303 
4 0.984 0.982 -0.203 

18 1.373 1.375 0.146 
246 1.584 1.583 -0.063 
20 1.767 1.763 -0.226 
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Table 4.3 Percentage Errors for Problem 3 (Linear FEM) 

Node Number Displacement 
Vector Sum for 

the Large 
Deformation 

Analysis (mm) 

Displacement 
Vector Sum for 

the Small 
Deformation 

Analysis (mm) 

Percentage 
Error 

41 7.551 7.260 -3.854 
43 8.922 8.726 -2.197 
50 9.231 9.108 -1.332 
49 8.446 8.467 0.249 
34 3.146 3.090 -1.780 
15 0.000 0.000 0.000 
11 0.948 0.910 -4.008 
4 1.488 1.371 -7.863 

18 1.610 1.459 -9.379 
246 1.776 1.556 -12.387 
20 2.051 1.822 -11.165 
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4.1.4 Comparison between the Results from Nonlinear Analysis (using ANSYS) 
and Linear Analysis (using this Author’s BEM Code) 

Instead of comparing the results from nonlinear analysis using ANSYS with the 
results from linear analysis using ANSYS (as done in the last section), it is better if 
the linear analysis is conducted using this author’s BEM code (instead of ANSYS). 
However, here one needs to compare the results at the same location (node) of the 
problem domain, and it is difficult to do this since FEM and BEM use different 
discretizations and hence it is difficult to have nodes at the same locations for both the 
discretizations. Still a comparison is done in this section by manually (visually) 
locating the nodes in the BEM discretization, which may be located approximately at 
the same location as the corresponding nodes in the finite element model (ANSYS). 
Of course, it may be noted that the nodes in the BEM discretization are not located 
exactly at the same location as the corresponding nodes in the FEM discretization, and 
this itself can be a cause of some amount of error. 

The same Problem 1, Problem 2, and Problem 3 chosen for the simulations for the last 
section are chosen for the simulations for this section also. Of course, for each of 
Problem 1, Problem 2, and Problem 3 here, geometry, loads and boundary conditions, 
and material properties (both for the linear analysis and the nonlinear analysis) used 
here are the same as the ones mentioned in the last section. 

The results from linear and nonlinear analyses are compared by tabulating the actual 
values of the displacement vector sum at eleven distinct points (tables similar to those 
in the last section). The values are tabulated in Table 4.4 to Table 4.6. The eleven 
nodes in the FEM model are the same as those chosen in the last section, i.e., 41, 43, 
50, 49, 34, 15, 11, 4, 18, 246, 20. The eleven nodes in the BEM model are chosen 
such that they are located approximately at the same location as the corresponding 
FEM nodes, and the node numbers of the corresponding BEM nodes are: 84, 87, 96, 
83, 68, 24, 13, 11, 22, 25, 50. 
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Table 4.4 Percentage Errors for Problem 1 (Linear BEM) 

Node Number Displacement 
Vector Sum for 

the Large 
Deformation 

Analysis (mm) 

Displacement 
Vector Sum for 

the Small 
Deformation 

Analysis (mm) 

Percentage 
Error 

84 4.176 3.911 -6.346 
87 5.485 4.513 -17.721 
96 5.161 4.932 -4.437 
83 5.177 4.133 -20.166 
68 2.200 1.904 -13.455 
24 0.000 0.000 0.000 
13 0.728 0.852 17.033 
11 0.750 0.933 24.400 
22 1.384 1.549 11.922 
25 1.551 1.625 4.771 
50 1.870 1.723 -7.861 
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Table 4.5 Percentage Errors for Problem 2 (Linear BEM) 

Node Number Displacement 
Vector Sum for 

the Large 
Deformation 

Analysis (mm) 

Displacement 
Vector Sum for 

the Small 
Deformation 

Analysis (mm) 

Percentage 
Error 

84 5.043 3.025 -40.016 
87 6.048 3.826 -36.739 
96 5.932 4.322 -27.141 
83 5.251 4.115 -21.634 
68 2.323 2.404 3.487 
24 0.000 0.000 0.000 
13 0.661 0.150 -77.307 
11 0.984 0.162 -83.537 
22 1.373 0.389 -71.668 
25 1.584 0.546 -65.530 
50 1.767 0.839 -52.518 
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Table 4.6 Percentage Errors for Problem 3 (Linear BEM) 

Node Number Displacement 
Vector Sum for 

the Large 
Deformation 

Analysis (mm) 

Displacement 
Vector Sum for 

the Small 
Deformation 

Analysis (mm) 

Percentage 
Error 

84 7.551 3.707 -50.907 
87 8.922 3.775 -57.689 
96 9.231 3.838 -58.423 
83 8.446 3.389 -59.874 
68 3.146 1.717 -45.423 
24 0.000 0.000 0.000 
13 0.948 0.747 -21.203 
11 1.488 0.792 -46.774 
22 1.610 0.999 -37.950 
25 1.776 1.096 -38.288 
50 2.051 1.183 -42.321 

 
4.1.5 A Note on the Difference between the Results from Linear and Nonlinear 
Analysis 

From the tables and the figures in the last two sections, one may see that there is not 
too much difference between the results obtained by linear analysis and nonlinear 
analysis for many of the cases, especially when ANSYS is used both for linear 
analysis and nonlinear analysis although the percentage errors might be significant 
when this author’s code is used for the linear analysis. However, it is difficult to 
definitively say how much error is allowed. Only surgeons can say whether a 
simulation is useful or not. In fact, validating a numerical model by taking feedback 
from many surgeons, many surgical procedures, and many trials could itself be a 
research topic. As of present, there is no clarity on what is the allowable error in a 
simulation, and the subject is a research topic which has not been explored well. 
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This author’s stand is that it is good to stick to linear elastostatic behaviour at present, 
and as more powerful hardware (together with relevant software) becomes readily 
available in the future, it may be good to incorporate nonlinearity. Of course, the 
relevant technology (e.g., developing nonlinear BEM codes) may be developed right 
now, and possibly the results could be used with benefit in cases where there is no 
need for the simulations to be strictly real-time (e.g., surgery planning). 

4.2 Conclusions 
In Chapter 1, literature review is presented, research problem is defined, and 
contributions from this thesis are listed. 

In Chapter 2, a novel procedure that requires only a few free software packages to 
obtain the geometry of biological organs from 2D image sequences is presented. The 
procedure makes use of free software packages only. The geometry of a pig liver is 
extracted from CT scan images for illustration purpose. Next, the three dimensional 
geometry of human kidney (left and right kidney of male, and left and right kidney of 
female) is obtained from the Visible Human Dataset (VHD). The novel procedure 
presented in this work can be used to obtain patient specific organ geometry from 
patient specific images, without requiring any of the many commercial software 
packages that can readily do the job. The software packages used here to reconstruct 
biological organs are quite established and it is reasonable to assume that they do not 
produce erroneous results. Although it is possible to perform the same reconstruction 
(as the one carried out in Chapter 2) using some well established commercial software 
and compare the biological organs thus reconstructed with the one obtained here to 
establish the validity of the procedure followed here, this step may not be required 
since the present work just uses a few software packages all of which must have 
undergone testing prior to their release. 

In Chapter 3, a BEM code that can solve 3D linear elastostatic problems without 
accounting for body forces, developed from scratch by this author, is explained. This 
code is used to carry out studies on the viability of BEM for the real-time simulation 
of biological organs, as explained in the later part of the chapter. The code explained 
is the first BEM source code for 3D elasticity that is available for open access. The 
code assumes further significance because it is released under the very permissive 
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MIT License, which eliminates the ambiguity on how the code can be used by others. 
The code can be of use to those who need a BEM source code for 3D linear elasticity, 
especially because the present author could not find any suitable BEM source code for 
3D linear elastostatics either as free and open source software or as paid software. In 
the later part of the chapter, the code is used to solve problems involving human liver 
and human kidneys, and BEM is found to give accurate solutions. The later part of the 
chapter also demonstrates that it is possible to simulate linear elastostatic behaviour in 
real-time using BEM, without resorting to any type of precomputations. This 
conclusion is arrived at by using a computer cluster, by fully parallelizing the 
simulations, and by performing simulations on different number of processors and for 
different block sizes (by sampling the whole range of possible block sizes, while 
block-cyclically distributing matrices among processors). One can note that all the 
earlier works use some or the other type/types of precomputations to achieve the real-
time performance with BEM, although some of the earlier works recommend the 
present approach as their future work. The result has a lot of implications because 
once it is found that all computations can be performed in real-time, there is no need 
to separately prove that every type of cutting, suturing etc. can be simulated in real-
time (since it is possible to get a complete solution in real-time). This statement holds 
true because only real-time graphics (not real-time haptics) has been achieved in the 
present work, and whenever haptics is ignored, cutting/suturing amounts to nothing 
more than a change in the geometry/topology and a change in the boundary 
conditions. One can see that there is no need to calculate the modified ‘stiffness’ 
matrix from the original ‘stiffness’ matrix when there is a change in the geometry 
because of a surgical cut, if the present approach is followed. While using the 
approach followed in the present work, one is guaranteed to get the real-time 
performance irrespective of whether or not there is a change in the geometry (because 
of cutting, say) and irrespective of whether the change in the geometry is small or 
large, once it is found that the simulation is real-time for the given problem (or the 
given problem size). It is important to note that this is not the case if one follows any 
of the approaches that are followed by any of the earlier works that use BEM to 
achieve the real-time performance during the simulation of biological organs. One can 
arrive at these conclusions just by qualitative reasoning, and hence quantitative 
justification (e.g., a demonstration of cutting of biological organs in real-time) is not 
needed in support of these arguments. Of course, present author cannot claim that the 
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present implementation is the best possible BEM implementation, or cannot claim that 
the present implementation is the speediest possible BEM implementation. However, 
since real-time performance has already been obtained using the present 
implementation, it would only be a beneficial thing if someone else can show that the 
simulations can run even faster (that would not prove that the simulations are not real-
time). 

In addition to having their own individual merits, Chapter 2 and Chapter 3 could 
together represent a step towards building a surgical simulator that uses only free and 
open source software (operating system, image processing software, BEM based 
simulation software). 

In Chapter 4, thesis is summarized and scope for future work is indicated. 

Based on the above, the following conclusions can be drawn:  

(i) It is possible to reconstruct the geometry of biological organs by making use of 
only free and open source software, by making use of the new procedure presented. 

(ii) It is possible to simulate biological organs in real-time (only real-time graphics) if 
the organs are assumed to follow linear elastostatic behavior, by making use of the 
proposed approach. As opposed to any of the earlier literature, the proposed approach 
does not use any precomputations. The feature of not using any precomputations in 
the proposed approach is one of the contributions of this thesis. 

(iii) The use of a GPU has speeded up the computations by an order of magnitude. 

(iv) Use of a computer cluster was useful for speeding up the computations. Very 
good scalability was obtained until the number of processors was increased up to 16. 

(v) It will be difficult to simulate biological organs in real-time (even real-time 
graphics) if the organs are assumed to follow non-linear behavior, if the novel 
approach is employed. One may note that the other approaches that use the BEM to 
achieve real-time simulations have not been able to incorporate nonlinearity also.  

(vi) It is difficult to simulate biological organs in real-time if real-time haptics is 
required and if the novel approach is employed, even if the organs are assumed to 
follow linear elastostatic behaviour. One may note that the other approaches that use 



  Chapter 4 
 

183 
 

the BEM to achieve real-time simulations too have not been able to incorporate 
haptics, even by assuming that the organs follow the linear elastostatic behaviour. 

4.3 Scope for Future Work  
BEM is a promising numerical technique. However, source codes are not readily 
available for BEM. Hence the future work could be to develop a BEM library; the 
library should support highly nonlinear analyses; parallelized versions of the source 
codes (which can execute on a computer cluster or a supercomputer) should also be 
developed. Optionally, the source codes could be made freely available to anyone for 
any purpose. Next, soft biological organs can be simulated on the necessary hardware 
using BEM; target is to achieve both realistic and (nearly) real-time performance. 
Finally, a high quality BEM based surgical simulator needs to be built (e.g., a 
simulator that can simulate laparoscopic surgery). One can include rendering, include 
interaction with other organs, enable cutting, and include physiology (like flow of 
blood during cutting etc.). However, one may note that these tasks would require 
enormous amount of time, resources, and expertise.  

Alternatively, as future work, one could try to use soft computing techniques to 
achieve the real-time performance even with nonlinear models and while using just a 
desktop computer. Author has done some preliminary work on using Support Vector 
Machines (SVM) to achieve realistic simulations in real-time [Kirana Kumara P, 
2013], and future work could be to continue the work. However, one should note that 
although it may be possible to simulate nonlinear material behaviour in real-time by 
utilizing just an ordinary desktop computer if one makes use of SVM, there are 
serious limitations for this approach. The Support Vector Machines need to be trained 
before using them for the simulations, and the training requires huge amount of 
training data; also, training is a cumbersome process. Whenever there is change in the 
geometry (e.g., because of cutting), the SVM has to be trained again, using the 
training data generated for the changed geometry. Hence it is not possible to use SVM 
in those cases to perform real-time simulations. One can note that the Boundary 
Element Method, although computationally intensive when compared to SVM, can 
handle that type of problems and hence may be used to obtain realistic simulations for 
that type of problems also, at least with nearly real-time performance if not with real-
time performance.  
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Appendix: Explanation of Some Terminologies 
Related to Parallel Computing  

BLACS: The BLACS (Basic Linear Algebra Communication Subprograms) is a 
collection of routines that may be used to support a linear algebra oriented message 
passing interface. The advantage of having BLACS is that it makes it possible to 
implement efficient and uniform linear algebra oriented message passing interfaces, 
across many different distributed memory computers. 

blacs_barrier: The ‘blacs_barrier’ is a routine that is used to sychronize the 
processes. The routine achieves the synchronization by holding up the execution of 
the subsequent portion of the program, for all the processes, until all the processes 
finish calling this routine.  

Block Distribution, and Block-Cyclic Distribution: The two types of data 
distribution are explained here with reference to a one dimensional array. The 
explanations presented here for the vector in one dimension can be applied 
independently over two dimensions (for the rows and columns of a matrix) and that 
results in a matrix being distributed among processes as per the concerned 
distribution. The following explanations (including formulae) for Block Distribution 
and Block-Cyclic Distribution are copied/adapted from the website of the IBM 
Knowledge Center. Block Distribution assigns blocks of size r of the global vector of 
M data objects over P processes. For Block Distribution, the mapping m—>(p, i) is 
defined as:         m—>(floor(m/L), m mod L), where L = ceiling (M/P), m is the global 
index of a data object   (0 ≤ m < M), p (0 ≤ p < P) specifies the process to which the 
data object is mapped, and i specifies its location in the local array. In the Block-
Cyclic Distribution, blocks of r consecutive data objects are distributed cyclically 
over the P processes. This can be described by a mapping of the global index m to an 
index triplet (p,b,i), where b is the block number in process p, and other symbols have 
the same meaning as earlier. Hence, for Block-Cyclic distribution, the mapping      
m—>(p, b, i) is defined as: m—>(floor((m mod T)/r), floor(m/T), m mod r), where     
T = rP. 
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Block size: When a matrix or a vector is to be distributed among the available 
processes, one needs to divide the matrix or the vector into pieces. The number of 
rows in a piece is called the ‘row block size’ while the number of columns in the 
piece is called the ‘column block size’. 

CUDA: CUDA (Compute Unified Device Architecture) is a parallel computing 
platform by NVIDIA (NVIDIA produces GPUs). CUDA is very useful when GPUs 
are used as processors (accelerators in fact). 

maxNumCompThreads: The MATLAB command ‘maxNumCompThreads’ 
specifies the number of threads that MATLAB should use (while running MATLAB). 
The maximum value that ‘maxNumCompThreads’ can take is equal to the number of 
computational cores (on any machine).   

MPI: Message Passing Interface (MPI) is a standardized and portable message-
passing system. It can be used to program many of the parallel computers. 

Parallel Computing Toolbox: The MATLAB Parallel Computing Toolbox makes it 
possible for some of the MATLAB codes and scripts to be executed on a GPU (only a 
subset of the MATLAB features is supported), right from within the MATLAB. 

parallel.gpu.gpuArray.zeros: The ‘parallel.gpu.gpuArray.zeros’ is a command 
available through the MATLAB Parallel Computing Toolbox. The command is used 
to initialize an array in the GPU memory with zeros. 

parfor, matlabpool, MATLAB client, MATLAB lab, MATLAB worker, 
matlabpool close: These terminologies are related to the MATLAB Parallel 
Computing Toolbox, specifically when one wants to utilize multiple cores available in 
computers. The ‘parfor’ loop is a replacement for the standard MATLAB ‘for’ loop 
when one wants to run the statements inside the ‘for’ loop on a number of cores in 
parallel. The command ‘matlabpool’ enables the parallel features in the MATLAB. 
The process which starts the parallel environment is called ‘MATLAB client’ while 
the other processes in the parallel environment are called ‘MATLAB labs’. MATLAB 
labs are also known as ‘MATLAB workers’. The command ‘matlabpool close’ 
disables the parallel features in the MATLAB language. 
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Process grid: If the one-dimensional array of processes of a parallel machine is 
mapped into a two-dimensional rectangular grid, then the grid is called the process 
grid. The number of rows in a process grid when multiplied by the number of columns 
in the process grid gives the total number of processes. 

ScaLAPACK: ScaLAPACK (Scalable Linear Algebra PACKage) is a library of 
linear algebra routines for parallel computers. 


