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Abstract

We study on cycle in the Collatz conjecture and there is something
surprise us. Our goal is to show that there is no collatz cycle.

1 Introduction

In 1937, Lothar Collatz had proposed the conjecture in number theory called
Collatz conjecture or also known as 3n+1 conjecture. It is still a conjecture until

now. We define collatz funtion T as T (n) = n/2 if n is even and T (n) =
3n + 1

2
if n is odd and we let T k(n) = T (T (T (T...T (n)))) for k times mapping

Conjecture (Collatz,1937) There exist k ∈ N such that for any positive
integer n, T k(n) = 1 .

It means that for any natural number n, we can find a positive integer
k which we apply collatz function k times on n to reach 1 ,for example, the
trajectory of thirteen for seven times is

13→ 20→ 10→ 5→ 8→ 4→ 2→ 1

which satisfies the conjecture (T 7(13) = 1).
The parity vector of a number is its trajectory considered modulo two.
Hence, the parity vector of 13 to reach one is 〈 1, 0, 0, 1, 0, 0, 0〉

A lot of mathematicians had studied the Collatz conjecture and concluded
that every positive integers less than 1010 have the behaviors like Collatz pro-
posed.

Definition I T<0>(n) = n/2 and T<1>(n) = (3n + 1)/2

Definition II Let < v1, v2, ...vk > be the parity vector of n then we write

T<v1,v2,...,vk>(n) = T<vk>(T<vk−1>(...(T<v1>(n))))...)
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The above two definitions say that v1 can classify n. If v1 = 0 it means that
n is even and else, i.e. v1 = 1 , n is odd.

Definition III (Collatz cycle)

Collatz cycle means a loop containing of k elements that every element is
greater than 1.If x is one of those elements then it must satisfy the equation
T k(x) = x. Therefore, after mapping T on x for k times it reach itself.

Theorem (Latourette) Let < v1, v2, ...vk > in which

k∑
i=1

vi = n be the par-

ity vector of x.Then T<v1,v2,..vk>(x) = T k(x) =
3n

2k
(x) +

k−1∑
i=0

ai
2k−i

.

Where ai = 3(vk+vk−1+...+vi+2)vi+1

2 Result

Proposition There is no cycle in the collatz problem.
Proof

We assume that there is a Collatz cycle with the number of the elements is
k (not a trivial loop as 4, 2, 1). therefore, T k(a) = a for any integer a > 1 in
that cycle.

Considering in odd x of the loop (The cycle must have odd number . if it
has only even, all of the elements must be in the form of 2s for some natural
s, which will reach one rapidly so it will not be a cycle.) and we see at the
following trajectory compared to x→ 3x+1

2

4x + 1→ 6x + 2→ 3x + 1→ 3x + 1

2

We have that T k(x) = x, T k−1(
3x + 1

2
) = x and T 3(4x + 1) =

3x + 1

2
i.e. T k+2(4x + 1) = x.

Let < v1, v2, ..., vk > be the parity vector of x with the number of ones is

n or

k∑
i=1

vi = n. Hence, < v2, v3, ...vk > must be the parity vector starting at

3x + 1

2
and its value after applying Collatz function is x .
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The trajectory of 4x + 1 above shows that 4x + 1 have the parity vector

as < 1, 0, 0 > before reaching (3x + 1)/2. After combining
(3x + 1

2

)
- par-

ity vector with < 1, 0, 0 > we get a whole parity vector of 4x + 1 for reach-
ing x as < 1, 0, 0, v2, v3, ..., vk >. We clearly see that v1 = 1 (x is odd) so

n =

k∑
i=1

vi = 1 + 0 + 0 +

k∑
i=2

vi

From Latourrette, let ai, a
′
i be the coefficient of x, 4x + 1 in the equation

respectively. Hence,We have x = T k(x) =
3n

2k
(x) +

k−1∑
i=0

ai
2k−i

...(i)

and x = T k+2(4x + 1) =
3n

2k+2
(4x + 1) +

a′0
2k+2

+
a′1

2k+1
+

a′2
2k

+

k+1∑
i=3

a′i
2k+2−i ...(ii)

Note a0 = 3n−1, a′0 = 3n−2 and a′1 = a′2 = 0.

Observation I For any 3 ≤ i ≤ k + 2. We have a′i = ai−2

Proof at i = 3. It is clear that a′3 = 3(vk+vk−1+..+v3)v2 = a1.

Suppose that at i = s the Observation is also true. So a′s = as−2 =
3(vk+vk−1+...+vs)vs−1 and the next step of i would be a′s+1 = 3(vk+vk−1+...+vs+1)vs
which is still equal to as−1. The proof is complete.

By using Note and Observation I the equation (ii) becomes

x =
3n

2k+2
(4x+1)+

3n−2

2k+2
+

k+1∑
i=3

ai−2
2k−(i−2)

=
3n

2k+2
(4x+1)+

3n−2

2k+2
+

k−1∑
i=1

ai
2k−i

...(iii)

We conclude from (i) = (iii) that

3n

2k
(x) +

3n−1

2k
+

k−1∑
i=1

ai
2k−i

=
3n

2k+2
(4x + 1) +

3n−2

2k+2
+

k−1∑
i=1

ai
2k−i

which is equivalent to 10 = 12. Contradiction, hence, the proof is complete.
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