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Abstract. This article is based on how to look for a closed-form expression related to the

value of the Riemann zeta funtion at odd positive integers and explained what meaning of the

expansion of the Euler zigzag numbers is.

1. Introduction

For all s ∈ C, the Riemann zeta funtion and the Dirichlet lambda, eta, beta function are

defined as

(1) ζ(s) =
∞∑

m=0

1

(m+ 1)s
<(s) > 1,

(2) λ(s) =
∞∑

m=0

1

(2m+ 1)s
=

(
1− 1

2s

)
ζ(s) <(s) > 1,

(3) η(s) = (1− 21−s)ζ(s)

and

(4) β(s) =
∞∑

m=0

(−1)m

(2m+ 1)s
<(s) > 0.

For every m ∈ Z∗, the Euler zigzag number Am can be expressed as

(5) secx+ tanx =
∞∑

m=0

Am

m!
xm |x| < π

2

which the power series of secx+ tanx involves. Furthermore, we will use

(6) secx =
∞∑

m=0

A2m

(2m)!
x2m |x| < π

2
,

(7) tanx =
∞∑

m=0

A2m+1

(2m+ 1)!
x2m+1 |x| < π

2

in order to seperate the even and odd parts of Am. Then, we will be following A′2m rather than

A2m in this article. According to this suggestion, the secx is represented by

(8) secx =

∞∑
m=0

A′2m
(2m)!

x2m |x| < π

2
.



2. Basic properties

Lemma 1. For every n ∈ N,

(9) λ(2n) = β(1)
A2n−1

(2n− 1)!

(π
2

)2n−1
,

(10) β(2n− 1) = β(1)
A′2n−2

(2n− 2)!

(π
2

)2n−2
.

Lemma 2. For every n ∈ N and 0 < x < π/2,

(11) ln (cotx) = 2
∞∑

m=1

cos ((4m− 2)x)

2m− 1
.

Proof. We consider [2]

(12) ln (sinx) = − ln 2−
∞∑

m=1

cos (2mx)

m

which was studied by Euler. (12) is replaced by

(13) ln (cosx) = − ln 2−
∞∑

m=1

(−1)m

m
cos (2mx).

To subtract (12) from (13) is

ln (cotx) = 2
∞∑

m=1

cos ((4m− 2)x)

2m− 1
.

�

Lemma 3. For every n ∈ N,

(14)

∫ π
2

0

xn

sinx
dx =

∞∑
m=0

n∑
l=0

(
n

l

)
(−1)lA′2m

(2m+ l + 1)(2m)!

(π
2

)2m+n+1

the binomial coefficient is defined by the next expression:(
n

l

)
=

n!

(l)!(n− l)!
.

Lemma 4. For every n ∈ N, [1]

(15)
1

n!

∫ π
2

0

xn

sinx
dx =

∞∑
m=0

A′2m
(2m+ n+ 1)!

(π
2

)2m+n+1
.

Lemma 5. For every n ∈ N,

(16)
1

n!

∫ π
2

0
xn cotxdx =

∞∑
m=0

A2m+1

(2m+ n+ 2)!

(π
2

)2m+n+2
.

3. Proof of Theorem 1

Theorem 1. For every n ∈ N,

(17)

∞∑
m=0

A′2m
(2m+ n+ 1)!

(π
2

)2m
=
An

n!
cos
(n

2
π
)

+

n∑
l=1

A′l
(l)!(n− l)!

sin

(
l

2
π

)
.
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Proof. Multiplying xn−1 and integrating 0 to π/4 for the both terms of Lemma 2 is

(18)

∫ π
4

0
xn−1 ln (cotx)dx = 2

∫ π
4

0

∞∑
m=1

xn−1

2m− 1
cos ((4m− 2)x)dx.

Carrying out partial integral the left side of (18), equation (18) will be

(19)

∫ π
4

0

xn

sin 2x
dx =

∫ π
4

0

∞∑
m=1

nxn−1

2m− 1
cos ((4m− 2)x)dx.

Calculating the integral terms in (19), we find the following expressions:

(20) β(2) =
1

2

∫ π
2

0

x

sinx
dx,

(21) λ(2n+ 1) =
(−1)n

2(2n)!

∫ π
2

0

x2n

sinx
dx+

n−1∑
l=0

(−1)lβ(2n− 2l)

(2l + 1)!

(π
2

)2l+1

and

(22) β(2n+ 2) =
(−1)n

2(2n+ 1)!

∫ π
2

0

x2n+1

sinx
dx+

n−1∑
l=0

(−1)lβ(2n− 2l)

(2l + 2)!

(π
2

)2l+2
.

Applying of Lemma 3 for each integral term in (20), (21) and (22) yields

(23) λ(2n+ 1) =
β(2n+ 1)

A′2n

∞∑
m=0

n∑
l=0

(
2n

2l

)
(−1)lA′2n−2lA

′
2m

(2l + 2m+ 1)(2m)!

(π
2

)2m
,

(24) β(2n) =
λ(2n)

A2n−1

∞∑
m=0

((
n−1∑
l=0

(
2n− 1

2l

)
(−1)lA2n−2l−1
2l + 2m+ 1

)
− (−1)n−1

2m+ 2n

)
A′2m

(2m)!

(π
2

)2m
.

Applying of Lemma 1 for β(2n+ 1) in (23) and for λ(2n) in (24) provides

(25) λ(2n+ 1) = β(1)
A2n

(2n)!

(π
2

)2n
,

(26) β(2n) = β(1)
A′2n−1

(2n− 1)!

(π
2

)2n−1
which are corresponded with Lemma 1. In other words, A2n in (25) and A′2n−1 in (26) follow

that

(27) A2n =
∞∑

m=0

n∑
l=0

(
2n

2l

)
(−1)lA′2n−2lA

′
2m

(2l + 2m+ 1)(2m)!

(π
2

)2m
,

(28) A′2n−1 =
∞∑

m=0

((
n−1∑
l=0

(
2n− 1

2l

)
(−1)lA2n−2l−1
2l + 2m+ 1

)
− (−1)n−1

2m+ 2n

)
A′2m

(2m)!

(π
2

)2m
.

Applying of Lemma 4 for each integral term in (20), (21) and (22) becomes

(29) β(2) =

∞∑
m=0

A′2m
2(2m+ 2)!

(π
2

)2m+2
,
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(30) λ(2n+ 1) =

n−1∑
l=0

(−1)lβ(2n− 2l)

(2l + 1)!

(π
2

)2l+1
+

∞∑
m=0

(−1)nA′2m
2(2m+ 2n+ 1)!

(π
2

)2m+2n+1

and

(31) β(2n+ 2) =
n−1∑
l=0

(−1)lβ(2n− 2l)

(2l + 2)!

(π
2

)2l+2
+
∞∑

m=0

(−1)nA′2m
2(2m+ 2n+ 2)!

(π
2

)2m+2n+2
.

Left side of (30) is replaced with right side of (25). Also, using right side of (26) in left side of

(29), (31) and β(2n− 2l) each of (30), (31) obtains

(32)

∞∑
m=0

A′2m
(2m+ 2n)!

(π
2

)2m
=

n∑
l=1

(−1)l+nA′2n−2l+1

(2l − 2)!(2n− 2l + 1)!
,

(33)
∞∑

m=0

A′2m
(2m+ 2n+ 1)!

(π
2

)2m
=

(−1)nA2n

(2n)!
+

n∑
l=1

(−1)l+nA′2n−2l+1

(2l − 1)!(2n− 2l + 1)!

respectively. Therefore, (32) and (33) can be combined to

∞∑
m=0

A′2m
(2m+ n+ 1)!

(π
2

)2m
=
An

n!
cos
(n

2
π
)

+
n∑

l=1

A′l
(l)!(n− l)!

sin

(
l

2
π

)
.

�

4. Proof of Theorem 2

Although ζ(1) diverges, we assume that A0 has a constant.

Theorem 2. For every n ∈ N,

∞∑
m=0

A2m+1

(2m+ n+ 2)!

(π
2

)2m+1
=

1

n!

(
2

π

)
ln 2 +

An

2nn!
cos
(n

2
π
)

+
n−1∑
l=0

(2l − 1)Al

2l(2l+1 − 1)(l)!(n− l)!
cos

(
l

2
π

)
.

(34)

Proof. Multiplying xn−1 and integrating 0 to π/2 for the both terms of (12) is

(35)

∫ π
2

0
xn−1 ln (sinx)dx = −

∫ π
2

0
xn−1(ln 2)dx−

∫ π
2

0

∞∑
m=1

xn−1

m
cos (2mx)dx.

Carrying out partial integral the left side of (35), equation (35) will be

(36)

∫ π
2

0
xn cotxdx =

(π
2

)n
ln 2 +

∫ π
2

0

∞∑
m=1

nxn−1

m
cos (2mx)dx.

Calculating the integral terms in (36), we find the following expressions:

(37)
π

2
η(1) =

∫ π
2

0
x cotxdx,

(38)
π

2
η(2n+ 1) =

(−1)n22n

(2n+ 1)!

∫ π
2

0
x2n+1 cotxdx+

n∑
l=1

(−1)l−122lη(2n− 2l + 1)

(2l + 1)!

(π
2

)2l+1
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and

(39) λ(2n+ 1) =
(−1)n22n−1

(2n)!

∫ π
2

0
x2n cotxdx+

n∑
l=1

(−1)l−122l−1η(2n− 2l + 1)

(2l)!

(π
2

)2l
.

Applying of Lemma 5 for each integral term in (37), (38) and (39) becomes

(40)
π

2
η(1) =

∞∑
m=0

A2m+1

(2m+ 3)!

(π
2

)2m+3
,

(41)
π

2
η(2n+ 1) =

∞∑
m=0

(−1)n22nA2m+1

(2m+ 2n+ 3)!

(π
2

)2m+2n+3
+

n∑
l=1

(−1)l−122lη(2n− 2l + 1)

(2l + 1)!

(π
2

)2l+1

and

(42) λ(2n+ 1) =

∞∑
m=0

(−1)n22n−1A2m+1

(2m+ 2n+ 2)!

(π
2

)2m+2n+2
+

n∑
l=1

(−1)l−122l−1η(2n− 2l + 1)

(2l)!

(π
2

)2l
.

From the relation with the (2), (3) and (25), η(2n+ 1) becomes

(43) η(2n+ 1) =
(22n+1 − 2)A2n

(22n+2 − 2)(2n)!

(π
2

)2n+1
.

Left side of (42) is replaced with right side of (25). Also, using right side of (43) in left side of

(41) and η(2n− 2l + 1) each of (41), (42) obtains

∞∑
m=0

A2m+1

(2m+ 2n+ 3)!

(π
2

)2m+1
=

1

(2n+ 1)!

(
2

π

)
ln 2

+

n−1∑
l=0

(−1)l+n22l(22n−2l+1 − 2)A2n−2l
22n+1(22n−2l+1 − 1)(2l + 1)!(2n− 2l)!

,

(44)

∞∑
m=0

A2m+1

(2m+ 2n+ 2)!

(π
2

)2m+1
=

1

(2n)!

(
2

π

)
ln 2 +

(−1)nA2n

22n(2n)!

+

n∑
l=1

(−1)l+n22l−1(22n−2l+1 − 2)A2n−2l
22n(22n−2l+1 − 1)(2l)!(2n− 2l)!

(45)

respectively. Therefore, (40), (44) and (45) can be combined to

∞∑
m=0

A2m+1

(2m+ n+ 2)!

(π
2

)2m+1
=

1

n!

(
2

π

)
ln 2 +

An

2nn!
cos
(n

2
π
)

+
n−1∑
l=0

(2l − 1)Al

2l(2l+1 − 1)(l)!(n− l)!
cos

(
l

2
π

)
.
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