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Abstract

We define the topology atop(χ) on a complete upper semilattice χ = (M,≤).
The limit points are determined by the formula

lim
D

(X) = sup{a ∈M | {x ∈ X| a ≤ x} ∈ D},

where X ⊆M is an arbitrary set, D is an arbitrary non-principal ultrafilter
on X. We investigate lim

D
(X) and topology atop(χ) properties. In particular,

we prove the compactness of the topology atop(χ).

1. Preliminaries

For any set X we use P (X) to denote the set of all subsets of X. For
an arbitrary collection S of sets we use ∪S and ∩S to denote the union and
the intersection of all sets of S respectively.

A cardinal will be identified with the corresponding lowest ordinal. The
cardinality (size) of a set will be identified with the corresponding cardinal.
Example: |ω| = ω = ω0. We assume the axiom of choice.

Let D be an ultrafilter on X and Y ∈ D. D|Y is the ultrafilter on Y ,
where D|Y = {Z ∩ Y |Z ∈ D}.

A principal ultrafilter is an ultrafilter containing a least element. An
ultrafilter is a non-principal, if it does not contain finite sets.

A complete upper semilattice is a partially ordered set in which every not
empty subset has a least upper bound (sup). We assume that any complete
upper semilattice of this article have the infimum element (zero).

A complete lattice is a partially ordered set in which every subset has a
least upper bound (sup) and a greatest lower bound (inf).
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2. The limit lim
D

(X) and the associated topology

Definition 1. Let χ = (M,≤) be a complete upper semilattice, X ⊆M ,
X 6= ∅ and let D be an arbitrary ultrafilter on X. We denote

lim
D

(X) = sup{a ∈M | {x ∈ X| a ≤ x} ∈ D},

Definition 2. Let χ = (M,≤) be a complete upper semilattice. A set
∆ ⊆M is an approximation base, if for every x ∈M we have

X = sup{α ∈ ∆|α ≤ x}.

Definition 3. Let χ = (M,≤) be a complete upper semilattice, let ∆ be
an approximation base, X ⊆M , X 6= ∅ and let D be an arbitrary ultrafilter
on X. We denote

lim1(∆, D,X) = sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D}

.
Remark 1. Definitions 1,2,3 are correct, because in accordance with the

agreement, each complete upper semilattice of this article has the infimum
element (zero) inf(M) ∈M . Thus, inf(M) ≤ x for any x ∈M .

The approximation base ∆ = M is associated with every complete upper
semilattice χ = (M,≤). In this case we have

lim
D

(X) ≡ lim1(∆, D,X)

Definition 4. Let χ = (M,≤) be a complete lattice, X ⊆ M , X 6= ∅
and let D be an arbitrary ultrafilter on X. We denote

lim2(D,X) = sup{inf(Y )|Y ∈ D},

lim3(D,X) = inf{sup(Y )|Y ∈ D}.

Remark 2. Let χ = (M,≤) be a complete lattice and χ∗ = (M,≤∗),
where ≤∗ coincide with ≥. Let X ⊆ M , X 6= ∅ and let D be an arbitrary
ultrafilter on X. We see that χ∗ is a complete semilattice and

lim2(D,X) = lim∗3(D,X),

lim3(D,X) = lim∗2(D,X),
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where lim∗2(D,X), lim∗3(D,X) are correspond to lim2(D,X), lim3(D,X) for
lattice χ∗.

Proposition 1. Let χ = (M,≤) be a complete upper semilattice, let ∆
be an approximation base, X ⊆M , X 6= ∅ and let D be an ultrafilter on X.
We have

lim
D

(X) = lim1(∆, D,X).

Proof. Since lim
D

(X) ≡ lim1(M,D,X), it is sufficiently to prove that

lim1(∆, D,X) = lim1(M,D,X). It is easy to see that

lim1(∆, D,X) ≤ lim1(M,D,X).

Let a0 ∈ {a ∈M | {x ∈ X| a ≤ x} ∈ D}. Since ∆ is an approximation base,

a0 = sup{δ ∈ ∆|δ ≤ a0}.

Let δ0 ∈ {δ ∈ ∆|δ ≤ a0}, i.e. δ0 ≤ a0 and

{x ∈ X| a0 ≤ x} ⊆ {x ∈ X| δ0 ≤ x}.

Since {x ∈ X| a0 ≤ x} ∈ D, we have {x ∈ X| δ0 ≤ x} ∈ D and

δ0 ∈ {δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

{δ ∈ ∆|δ ≤ a0} ⊆ {δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

sup{δ ∈ ∆|δ ≤ a0} ≤ sup{δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

a0 ≤ sup{δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D}.

Since a0 ∈ {a ∈M | {x ∈ X| a ≤ x} ∈ D} is arbitrary, we have

sup{a ∈M | {x ∈ X| a ≤ x} ∈ D} ≤ sup{δ ∈ ∆|{x ∈ X| δ ≤ x} ∈ D},

lim1(M,D,X) ≤ lim1(∆, D,X).

Proposition 1 is proved.

Remark 3. From Proposition 1 it follows that lim1(∆, D,X) does not
depend on ∆ actually. But we will use it in the future, because it is easier
to prove certain properties associated with lim

D
(X).

Proposition 2. Let χ = (M,≤) be a complete lattice, let ∆ be an
approximation base, X ⊆ M , X 6= ∅ and let D be an ultrafilter on X. We
have

lim
D

(X) = lim1(∆, D,X) = lim2(D,X).
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Proof. First equation lim
D

(X) = lim1(∆, D,X) follows from Proposition 1.

It is necessary to prove that

sup{inf(Y )|Y ∈ D} = sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D}.

Let Y ∈ D. Since ∆ is an approximation base,

inf(Y ) = sup{α ∈ ∆|α ≤ inf(Y )}.

Let α0 ∈ {α ∈ ∆|α ≤ inf(Y )}, X0 = {x ∈ X|α0 ≤ x} then α0 ≤ inf(Y )
and Y = {y ∈ Y |α0 ≤ y} ⊆ {x ∈ X|α0 ≤ x} = X0. Since Y ∈ D and
Y ⊆ X0 then X0 ∈ D. We see that

α0 ∈ {α ∈ ∆| {x ∈ X|α ≤ x} ∈ D},

{α ∈ ∆|α ≤ inf(Y )} ⊆ {α ∈ ∆| {x ∈ X|α ≤ x} ∈ D},

inf(Y ) = sup{α ∈ ∆|α ≤ inf(Y )} ≤ sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D},

sup{inf(Y )|Y ∈ D} ≤ sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D}.

Let us prove the opposite direction.
Let α0 ∈ {α ∈ ∆| {x ∈ X|α ≤ x} ∈ D} then

{x ∈ X|α0 ≤ x} ∈ D,

α0 ≤ inf{x ∈ X|α0 ≤ x} ≤ sup{inf(Y )|Y ∈ D},

sup{α ∈ ∆| {x ∈ X|α ≤ x} ∈ D} ≤ sup{inf(Y )|Y ∈ D}.

Proposition 2 is proved.

Lemma 1. Let χ = (M,≤) be a complete upper semilattice, X ⊆ M ,
X 6= ∅, let D be an ultrafilter on X. The following are

1) if {a} ∈ D then lim
D

(X) = a;

2) if Y ∈ D then lim
D

(X) = lim
F

(Y ), where F = D|Y ,

D is a principal ultrafilter ⇔ F is a principal ultrafilter;
3) if Z ⊆ M and X ⊆ Z then exist an ultrafilter G on Z that X ∈ G,

G|X = D, lim
D

(X) = lim
G

(Z),

D is a principal ultrafilter ⇔ G is a principal ultrafilter;
4) if X ⊆M is an infinite set, D is a non-principal ultrafilter on X then

for any finite set X ′ ⊆ X we have lim
F

(X \X ′) = lim
D

(X), where F = D|X\X′

is a non-principal ultrafilter.
Proof. Let ∆ = M . We prove 1). If {a} ∈ D then for any Y ∈ D we

have {a} ∩ Y 6= ∅, a ∈ Y . Hence for any δ ∈ ∆ it is

δ ≤ a⇔ {x ∈ X| δ ≤ x} ∈ D,
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i.e.
a = sup{δ ∈ ∆| δ ≤ a} = sup{δ ∈ ∆| {x ∈ X| δ ≤ x} ∈ D} =

= lim1(∆, D,X) = lim
D

(X).

The last equation follows from Proposition 1.
We prove 2). We prove that for every
α ∈ ∆ it is

{x ∈ X|α ≤ x} ∈ D ⇔ {y ∈ Y |α ≤ y} ∈ F. (1)

Let {x ∈ X|α ≤ x} ∈ D. Since Y ⊆ X,

{y ∈ Y |α ≤ y} = Y ∩ {x ∈ X|α ≤ x} ∈ D|Y = F.

We prove in the opposite direction. Let Y0 = {y ∈ Y |α ≤ y} ∈ F . We
suppose the opposite that {x ∈ X|α ≤ x} /∈ D, i.e. {x ∈ X|α � x} ∈ D
and

Y \ Y0 = {y ∈ Y |α � y} = Y ∩ {x ∈ X|α � x} ∈ D|Y = F.

We obtain the contradictory Y0 ∈ F, Y \ Y0 ∈ F . We conclusion that
{x ∈ X|α ≤ x} ∈ D. We have proved the statement (1). From (1) it follows

{α ∈ ∆|{x ∈ X|α ≤ x} ∈ D} = {α ∈ ∆|{y ∈ Y |α ≤ y} ∈ F},

sup{α ∈ ∆|{x ∈ X|α ≤ x} ∈ D} = sup{α ∈ ∆|{y ∈ Y |α ≤ y} ∈ F},

lim1(∆, D,X) = lim1(∆, F, Y ),

lim
D

(X) = lim
F

(Y ).

As F ⊆ D, if F contains a finite set then D also contains a finite set.
On the other hand, if D contains a finite set Z then ultrafilter F contains
a finite set Z ∩ Y . This implies that D is a principal ultrafilter ⇔ F is a
principal ultrafilter.

We prove 3). Let G = {Y ⊆ Z|Y ∩X ∈ D}. G is an ultrafilter obviously,
G|X = D, X ∈ G. The remaining assertions of the item 3) follow from the
item 2).

Let us prove 4). Let D be a non-principal ultrafilter, i.e. X\X ′ ∈ D. Let
F = D|X\X′ . The ultrafilter F with respect to the item 2) is a non-principal.
According to 2),

lim
F

(X \X ′) = lim
D

(X).

Definition 3. Let χ = (M,≤) be a complete upper semilattice. We
define the operation C() on the subsets of M . Let X ⊆M , we define

C(X) = X ∪ {lim
D

(X)|D is a non-principal ultrafilter on X}. (2)
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Lemma 2. Let χ = (M,≤) be a complete upper semilattice. The
operation C() defind by (2) has the following properties:
1) C(X1 ∪X2) = C(X1) ∪ C(X2), where X1, X2 ⊆M ;
2) X ⊆ C(X), where X ⊆M ;
3) if X is finite then C(X) = X, where X ⊆M (particulaly, C(∅) = ∅);
4) if X ⊆ Y then C(X) ⊆ C(Y ) for all X,Y ⊆M .

Proof. Assertions 2) and 3) follow from the definition of the operation
C() and Lemma 1.

We prove 1). If X1 is a finite set then

C(X1) = X1 ⊆ X1 ∪X2 ⊆ C(X1 ∪X2).

Assume that X1 is an infinite set. Let D1 be an arbitrary non-principal
ultrafilter on X1. By Lemma 1 there exists a non-principal ultrafilter D on
X1 ∪X2 that X1 ∈ D,D|X1 = D1 and lim

D
(X1∪X2) = lim

D1

(X1). We see that

C(X1) ⊆ C(X1 ∪X2). Similarly C(X2) ⊆ C(X1 ∪X2), i.e.

C(X1) ∪ C(X2) ⊆ C(X1 ∪X2).

Let us prove the item 1) in the opposite direction. LetD be an arbitrary non-
principal ultrafilter on X1 ∪X2. It is obvious that X1 ∈ D or X2 \X1 ∈ D.
If X2 \X1 ∈ D then X2 ∈ D. Hence it is X1 ∈ D or X2 ∈ D. Let X1 ∈ D
for definiteness. From Lemma 1 we have lim

D
(X1 ∪ X2) = lim

D1

(X1), where

D1 = D|X1 . From this it follows that

C(X1 ∪X2) ⊆ C(X1) ∪ C(X2).

The item 1) of the Lemma is proved.
Let us prove the item 4). If X is finite then C(X) = X ⊆ Y ⊆ C(Y ).

Suppose that X is infinite. Let D be an arbitrary non-principal ultrafilter
on X. From Lemma 1 we have that there is a non-principal ultrafilter G on
Y that X ∈ G, G|X = D, lim

D
(X) = lim

G
(Y ), i.e. C(X) ⊆ C(Y ). The item

4) of the the Lemma is proved.

Lemma 3. Let χ = (M,≤) be a complete upper semilattice. The set
of all sets such that X ⊆ M , C(X) = X (we assume that X is closed) is a
topology.

Proof. Let R = {X ⊆ M |C(X) = X}. Obviously ∅, X ∈ R. It is
sufficient to prove:
1) there is ∪P ∈ R for every finite P ⊆ R;
2) there is ∩P ∈ R for each P ⊆ R.

The associativity of the union of a sets implies that property 1) suffices
to prove for two sets in R. Let X1, X2 ∈ R. From Lemma 2 it follows that
C(X1 ∪ X2) = C(X1) ∪ C(X2) = X1 ∪ X2. That is X1 ∪ X2 ∈ R. The
property 1) is proved.
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We prove the property 2). Let P ⊆ R. We consider an arbitrary set
Y ∈ P . It is obviously that ∩P ⊆ Y . We obtain by Lemma 2 that
C(∩P ) ⊆ C(Y ) = Y , i.e. C(∩P ) ⊆ Y . As Y ∈ P is arbitrary, we have
C(∩P ) ⊆ ∩P . Since ∩P ⊆ C(∩P ), we have C(∩P ) = ∩P , i.e. ∩P ∈ R.

Definition 4. The topological space is defined by the Lemma 3 will be
denoted by atop(χ).

Lemma 4. Let χ = (M,≤) is a complete upper semilattice, κ is an
infinite cardinal and (Xλ)λ<κ is a not increasing sequence of closed in the
topology atop(χ) sets, i.e. Xλ ⊇ Xλ+1, C(Xλ) = Xλ for all ordinals λ < κ.
If Xλ 6= ∅ for all λ < κ then this sequence has a non-empty intersection.

Proof. If κ is’t a regular cardinal then we can choose some subsequence
of the size of the regular cardinal cf(κ) (cofinality κ) that for any ordinal
λ0 < κ there is an ordinal λ > λ0 corresponding to the element of the selected
subsequence. It is clear that the intersection of the original sequence and
the selected subsequence are the some. Therefore, we can assume without
loss of generality that κ is a regular cardinal.

Let h : κ → M is an arbitrary mapping for which h(λ) ∈ Xλ for all
λ < κ.

If |Rang(h)| < κ then (in accordance with the regularity of κ) there is
an element a ∈ Rang(h) that |h−1(a)| = κ. For any ordinal λ0 < κ there is
an ordinal λ that λ0 < λ < κ and h(λ) = a. This means that a ∈ Xλ for all
λ < κ, i.e. the sequence (Xλ)λ<κ has a non empty intersection.

Let us assume that |Rang(h)| = κ. Let D be a non-principal ultra-
filter on the set Rang(h) that if Z ∈ D then |Z| = κ. We consider an
arbitrary ordinal λ0 < κ. Let E = {h(λ)|λ < λ0}. It is obvious that the
Rang(h) \ E ∈ D. According to Lemma 1, we have

lim
D

(Rang(h)) = lim
F

(Rang(h) \ E),

where F = D|Rang(h)\E . We note that Rang(h) \ E ⊆ Xλ0 . By lemma 1
there is a non-principal ultrafilter G on the set Xλ0 that

lim
G

(Xλ0) = lim
F

(Rang(h) \ E).

Since Xλ0 is a close set, C(Xλ0) = Xλ0 and

lim
D

(Rang(h)) = lim
F

(Rang(h) \ E) = lim
G

(Xλ0) ∈ Xλ0 .

Since λ0 < κ is an arbitrary ordinal,

lim
D

(Rang(h)) ∈
⋂
λ<κ

Xλ
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Lemma is proved.

Theorem 1. Let χ = (M,≤) be a complete upper semilattice then the
topological space atop(χ) is compact.

Proof. We prove this theorem in two ways.
1) By Lemma 2, every point of atop(χ) is a close set, i.e. atop(χ) is a

T1 space. Lemma 4 implies that every well ordered sequence of non-empty
closed decreasing sets is non-empty intersection. The theorem (Alexandrov
P. S. Uryson P.S.,[1, p.26] ) for T1 topological spaces implies that if ev-
ery well ordered sequence of non-empty closed decreasing sets is non-empty
intersection then the topology is a compact. Thus, atop(χ) is a compact
topology.

2) The second proof uses the methods of the proof of the existence of
a finite subcovering of a countable cover of a countably compact (with the
modern interpretation) topological space (F. Hausdorff [3, p.141]). In this
proof we construct a finite subcovering for a arbitrary covering. This proof
is longer, but it is useful for future analysis.

We will show that each open covers of atop(χ) has a subcovering of a
smaller cardinality. Let κ be an infinite cardinal and let (Gλ)λ<κ be an open
covering of the cardinality κ. Hence (Fλ)λ<κ, where Fλ = G0 ∪ ... ∪ Gλ, is
a non-decreasing sequence of open sets, which is covered. We consider the
corresponding sequence of the close sets M \ F0 ⊇ ... ⊇M \ Fλ ⊇ ..., where
λ < κ. This sequence has empty intersection. By Lemma 4 there exists an
ordinal λ0 < κ that M \ Fλ = ∅ for all λ < κ, which λ > λ0.

We see that the set of open sets G0, ..., Gλ0 is covered and the cardinality
of the cover is |λ0| < κ (|λ0 + 1| in finite case). If |λ0| is an infinite cardinal
then we can repeat the same procedure and we can get an open covering of
a cardinality less than
|λ0| and so on. Thus for a finite number of steps we can get a finite

covering.

Theorem 2. Let χ = (M,≤) be a complete upper semilattice, ∆ be an
approximation base, |∆| = ω0, X ⊆M be an infinite, D be a non-principal
ultrafilter on X. There is a countable subset X0 ⊆ X that

lim
D

(X) = sup(∆0) = lim
D0

(X0),

where
∆0 = {α ∈ ∆|{x ∈ X0|α � x} is finite},

∆1 = ∆ \∆0 = {α ∈ ∆|{x ∈ X0|α ≤ x} is finite},

D0 is an arbitrary non-principal ultrafilter on X0.
Proof.
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For anyone α ∈ ∆ we denote

Xα = {x ∈ X|α ≤ x},

X̄α = {x ∈ X|α 6≤ x},

∆0 = {α ∈ ∆|Xα ∈ D},

∆1 = {α ∈ ∆| X̄α ∈ D}.

It is obvious that

lim
D

(X) = lim1(∆, D,X) = sup(∆0),

∆0 ∩∆1 = ∅,∆0 ∪∆1 = ∆.

Let the sequence α0, α1, α2, . . . be a list of all elements of ∆. We define
the sequence X(0), X(1), X(2), . . . by the induction.
1) If α0 ∈ ∆0 then X(0) = Xα0 , if α0 ∈ ∆1 then X(0) = X̄α0 .
2) If X(i) is determined then
if αi+1 ∈ ∆0 then

X(i+1) = X(i) ∩Xαi+1 ,

if αi+1 ∈ ∆1 then
X(i+1) = X(i) ∩ X̄αi+1 .

We note that for all i ∈ N we have

X(i+1) ⊆ X(i) ⊆ X,X(i) ∈ D.

If αi ∈ ∆0 then αi ≤ x for all x ∈ X(i). If αi ∈ ∆1 then αi 6≤ x for all
x ∈ X(i).

Since X(i) is infinite set, we can construct a sequence x0, x1, x2... of X
for which xi ∈ X(i), xi 6= xj for all i 6= j. Denote X0 the set of all elements
of the sequence. Obviously |X0| = ω0.

Let n ∈ N . If αn ∈ ∆0 then αn ≤ xm for all m ≥ n. If αn ∈ ∆1 then
αn � xm for all m ≥ n. We see that for any α ∈ ∆0 the set {x ∈ X0|α � x}
is finite, for any α ∈ ∆1 the set {x ∈ X0|α ≤ x} is finite.

Since ∆0 ∩∆1 = ∅,∆0 ∪∆1 = ∆, we have

∆0 = {α ∈ ∆| {x ∈ X0|α � x} is finite},

∆1 = {α ∈ ∆| {x ∈ X0|α ≤ x} is finite}.

Let D0 be an arbitrary non-principal ultrafilter on X0.
Obviously if α ∈ ∆0 then

{x ∈ X0|α ≤ x} ∈ D0,
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if α ∈ ∆1 then
{x ∈ X0|α � x} ∈ D0,

i.e
∆0 = {α ∈ ∆| {x ∈ X0|α ≤ x} ∈ D0},

∆1 = {α ∈ ∆| {x ∈ X0|α � x} ∈ D0}.

Thus we have

lim
D

(X) = sup(∆0) = sup{α ∈ ∆| {x ∈ X0|α � x} is finite} =

= sup{α ∈ ∆| {x ∈ X0|α ≤ x} ∈ D0} = lim
D0

(X0).

The theorem is proved.

We generalize the concept of distributivity

(a1 ∨ a2) ∧ (b1 ∨ b2) = (a1 ∧ b1) ∨ (a1 ∧ b2) ∨ (a2 ∧ b1) ∨ (a2 ∧ b2),

(a1 ∧ a2) ∨ (b1 ∧ b2) = (a1 ∨ b1) ∧ (a1 ∨ b2) ∧ (a2 ∨ b1) ∧ (a2 ∨ b2)

to arbitrary set of elements.
Definition 5. Let χ = (M,≤) be a complete lattice. We assume that

χ is a generalized infinite distributive if

inf{sup(s(i))| i ∈ I} =

= sup{inf(Rang(f)| f : I →M is a function, that f(i) ∈ s(i), i ∈ I},

sup{inf(s(i))| i ∈ I} =

= inf{sup(Rang(f)| f : I →M is a function, that f(i) ∈ s(i), i ∈ I}.

where I is an arbitrary set of indexes, s : I → P (M) is an arbitrary function.

Remark 4. If I = {0, 1}, s(0) = {x}, s(1) = X, where x ∈ M,X ⊆ M ,
then the generalized infinite destributuvity coincides with infinite destribu-
tuvity, i.e.

inf{x, sup(X)} = sup{inf{x, y}|y ∈ X},

sup{x, inf(X)} = inf{sup{x, y}|y ∈ X}.

Theorem 3. Let χ = (M,≤) be a generalized infinitely distributive
complete lattice. In this case, the operation C(X) satisfies the axioms of
closure for a topological space:

1) C(X1 ∪X2) = C(X1) ∪ C(X2),
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2) X ⊆ C(X),
3) C(C(X)) ⊆ C(X),
4) C(∅) = ∅,
where X,X1, X2 ⊆M .
Proof.
The properties 1),2),4) were proved in Lemma 2. We will prove the

property 3).
Let D be an arbitrary non-principal ultrafilter on C(X) and

lim
D

(C(X)) = a,

where a ∈M . We will prove that a ∈ C(X). For this purpose, it is sufficient
to determine a non-principal ultrafilter G on X that

a = lim
G

(X).

Since D is an ultrafilter on C(X) then X ∈ D or C(X) \X ∈ D.
If X ∈ D then we define G = D|X . By Lemma 1, we have

lim
D

(C(X)) = lim
G

(X) ∈ C(X).

In this case, the theorem is proved.
We consider the case C(X) \ X ∈ D. We define D0 = D|X0 , where

X0 = C(X) \X. By Lemma 1, we have

lim
D0

(X0) = lim
D

(C(X)) = a.

For any b ∈ X0, we define a non-principal ultrafilter F (b) on X that

lim
F (b)

(X) = b.

We define

R = {K ⊆ X|Z ∈ D0,K ∈ F (b) for any b ∈ Z}.

Since X ∈ R, we have R 6= ∅. Since ∅ /∈ F (b) for any b ∈ X0, we have ∅ /∈ R.
We will show that R is a non-principal ultrafilter on X.
Let K1, ...Kn ∈ R,n ∈ N . There are Z1, . . . , Zn ∈ D0 that Ki ∈ F (b) for

any b ∈ Zi, i = 1, ..., n. SinceD0, F (b) are ultrafilters, we have Z1 ∩ ... ∩ Zn ∈ D0,
K1 ∩ ... ∩Kn ∈ F (b) for any b ∈ Z1 ∩ ... ∩ Zn. We have K1 ∩ ... ∩Kn ∈ R.

Let K ∈ R,K ⊆ K ′ ⊆ X. There is Z ∈ D0 that K ∈ F (b) for any b ∈ Z.
Since F (b) is ultrafilter, we have K ′ ∈ F (b) for any b ∈ Z. We have K ′ ∈ R.

Let K ⊆ X and b ∈ X0. We have K ∈ F (b) or X \ K ∈ F (b). We
define Z = {b ∈ X0|K ∈ F (b)}. We have X0 \ Z = {b ∈ X0|K /∈ F (b)} =
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{b ∈ X0|X \K ∈ F (b)}. Since Z ∈ D0 or X0 \ Z ∈ D0, we have K ∈ R or
X \K ∈ R.

We have proved that R is a ultrafilter on X.
Let K ∈ R. There is b ∈ X0 that K ∈ F (b). Since F (b) is a non-principal

ultrafilter, K is a infinite set, i.e. R is a non-principal ultrafilter.
We assume G = R.
We will prove

lim
G

(X) = a.

Let ∆ = M be an approximation base. Let α ∈ ∆, b ∈ X0 = C(X) \X.
We define

Yα = {x ∈ X0|α ≤ x},

Ȳα = Y \ Yα = {x ∈ X0|α � x},

∆0 = {α ∈ ∆|Yα ∈ D0},

∆1 = ∆ \∆0 = {α ∈ ∆|Ȳα ∈ D0},

Xα = {x ∈ X|α ≤ x},

X̄α = X \Xα = {x ∈ X|α � x},

∆(b)
0 = {α ∈ ∆|Xα ∈ F (b)}, b ∈ X0,

∆(b)
1 = ∆ \∆(b)

0 = {α ∈ ∆|X̄α ∈ F (b)}, b ∈ X0.

We see that
sup(∆0) = lim

D0

(C(X) \X) = a,

sup(∆(b)
0 ) = lim

F (b)
(X) = b, b ∈ X0.

We define
Ω0 = {α ∈ ∆|Xα ∈ G},

Ω1 = ∆ \ Ω0 = {α ∈ ∆|X̄α ∈ G}.

We see that
lim
G

(X) = sup(Ω0).

Let α ∈ ∆0. We define

Λ(α) = {inf(Rang(f))| f : Yα → ∆, where f(b) ∈ ∆(b)
0 , f(b) ≤ α for any b ∈ Yα},

Let α ∈ ∆0. We will prove that
1) Λ(α) ⊆ ∆(b)

0 for any b ∈ Yα;
2) Λ(α) ⊆ Ω0;
3) If Φ(b)

α = {α′ ∈ ∆(b)
0 |α′ ≤ α} then sup(Φ(b)

α ) = α for any b ∈ Yα;
4) sup(Λ(α)) = α.
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We prove 1). Let α′ ∈ Λ(α). There is f : Yα → ∆ that f(b) ∈ ∆(b)
0 ,

f(b) ≤ α for any b ∈ Yα and α′ = inf(Rang(f)). Let b ∈ Yα is an arbitrary.
We have α′ ≤ f(b). Since f(b) ∈ ∆(b)

0 , we have Xf(b) ∈ F (b). F (b) is

an ultrafilter and Xα′ ⊇ Xf(b), i.e. Xα′ ∈ F (b). We have α′ ∈ ∆(b)
0 , i.e.

Λ(α) ⊆ ∆(b)
0 for any b ∈ Yα. Item 1) is proved.

We have also Xα′ ∈ F (b) for any b ∈ Yα. Since Yα ∈ D0, we have
Xα′ ∈ G. Hence α′ ∈ Ω0 and Λ(α) ⊆ Ω0. Item 2) is proved.

Let b ∈ Yα. By definition ∆(b)
0 , we have sup(∆(b)

0 ) = b. Since b ∈ Yα,
we have α ≤ b. If β ∈ ∆(b)

0 , β0 = inf{α, β} then β0 ≤ β. Since Xβ ∈ F (b),
Xβ0 ⊇ Xβ and F (b) is an ultrafilter, we have Xβ0 ∈ F (b) and inf{α, β} =
β0 ∈ ∆(b)

0 . Hence

{inf{α, β}|β ∈ ∆(b)
0 } ⊆ {α

′ ∈ ∆(b)
0 |α

′ ≤ α}.

Since χ is an infinite distributive lattice, it follows (by Remark 4) that

sup{inf{α, β}|β ∈ ∆(b)
0 } = inf{α, sup{β|β ∈ ∆(b)

0 }} =

= inf{α, sup(∆(b)
0 )} = inf{α, b} = α.

Hence

α = sup{inf{α, β}|β ∈ ∆(b)
0 } ≤ sup{α

′ ∈ ∆(b)
0 |α

′ ≤ α} ≤ α,

i.e.
sup{α′ ∈ ∆(b)

0 |α
′ ≤ α} = α.

Item 3) is proved.
Since sup(Φ(b)

α ) = α for any b ∈ Yα, we have (by the generalized infinite
destributuvity of χ)

α = inf{sup(Φ(b)
α )| b ∈ Yα} = sup{inf(Rang(f))| f : Yα → ∆, f(b) ∈ Φ(b)

α , b ∈ Yα} =

= sup{inf(Rang(f))| f : Yα → ∆, f(b) ∈ {α′ ∈ ∆(b)
0 |α

′ ≤ α} for any b ∈ Yα} =

= sup{inf(Rang(f))| f : Yα → ∆, f(b) ∈ ∆(b)
0 , f(b) ≤ α for any b ∈ Yα} = sup(Λ(α)).

Thus, we have sup(Λ(α)) = α. Item 4) is proved.
We define

Λ0 = ∪{Λ(α)|α ∈ ∆0}.

From 4) it follows that
sup(Λ0) = sup(∆0).

From 2) it follows that
Λ0 ⊆ Ω0.
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We have
lim
G

(X) = sup(Ω0) ≥ sup(Λ0) = sup(∆0) = a,

i.e.

lim
G

(X) ≥ a. (3)

We will prove that
Ω0 ⊆ ∆0. (4)

Let α ∈ ∆. We define

Zα = {b ∈ X0|Xα ∈ F (b)}.

If Zα ∈ D0 then Xα ∈ G, i.e. α ∈ Ω0. Let b ∈ X0. If Xα ∈ F (b) then
α ∈ ∆(b)

0 . Since sup(∆(b)
0 ) = b, we have α ≤ b. Thus, we have

Zα = {b ∈ X0|Xα ∈ F (b)} ⊆ {b ∈ X0|α ≤ b} = Yα,

i.e. Zα ⊆ Yα. Since Zα ∈ D0, we have Yα ∈ D0, i.e. α ∈ ∆0.
If Zα /∈ D0 then X0 \ Zα ∈ D0. We have

X0\Zα = {b ∈ X0|Xα /∈ F (b)} = {b ∈ X0|X\Xα ∈ F (b)} = {b ∈ X0| X̄α ∈ F (b)}.

Hence X̄α ∈ G, i.e. α ∈ ∆ \ Ω0.
Thus, we have the following.
If Zα ∈ D0 then α ∈ Ω0, α ∈ ∆0. If Zα /∈ D0 then α ∈ ∆ \Ω0. Thus, we

have
α ∈ Ω0 ⇔ Zα ∈ D0.

If α ∈ Ω0 then Zα ∈ D0, i.e. α ∈ ∆0.
Thus, we have proved (4), i.e.

Ω0 ⊆ ∆0.

We have
lim
G

(X) = sup(Ω0) ≤ sup(∆0) = a.

From (3) we have
lim
G

(X) = a.

The theorem is proved.

Definition 6. Let χ = (M,≤) be a part order, X ⊆ M,x, y ∈ M . We
define

(x, y)|X = {z ∈ X|x ≤ z ≤ y, x 6= z 6= y},

[x, y]|X = {z ∈ X|x ≤ z ≤ y},
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Definition 7. Let χ = (M,≤) be a complete lattice, X ⊆ M and
a ∈M .

a is massive ⇔
1) exist L1 = (lλ)λ<κ1 that κ1 is an infinite cardinal, lλ ∈ M , if λ1 <

λ2 < κ1 then lλ1 < lλ2 , sup(L1) = a.
2) exist L2 = (lλ)λ<κ2 that κ2 is an infinite cardinal, lλ ∈ M , if λ1 <

λ2 < κ2 then lλ2 < lλ1 , sup(L2) = a.

Lemma 5. Let χ = (M,≤) be a complete lattice, S ⊆ P (M). We have
that

sup({inf(Y )|Y ∈ S}) = inf(∩({{y ∈M |inf(Y ) ≤ y}|Y ∈ S})).

Proof.
If x ∈M then

x ≥ sup({inf(Y )|Y ∈ S})⇔

x ≥ inf(Y ) for any Y ∈ S ⇔ x ∈ {y ∈M |inf(Y ) ≤ y} for any Y ∈ S ⇔

x ∈ ∩{{y ∈M |inf(Y ) ≤ y}|Y ∈ S}.

Thus,

inf{x ∈M |x ≥ sup({inf(Y )|Y ∈ S})} = inf(∩{{y ∈M |inf(Y ) ≤ y}|Y ∈ S}),

sup({inf(Y )|Y ∈ S}) = inf(∩{{y ∈M |inf(Y ) ≤ y}|Y ∈ S}).

Theorem 4. Let χ = (M,≤) be a complete lattice and X ⊆ M . Let
D be an arbitrary non-principal ultrafilter on X and a ∈M . If lim

D
(X) = a

then we have one case of the following:
1) exist L = (lλ)λ<κ that κ is an infinite cardinal, lλ ∈M , if λ1 < λ2 < κ

then lλ1 < lλ2 , sup(L) = a.
2) exist non-principal ultrafilter F on {x ∈ X|a ≤ x} that for any Y ∈ F

we have a = inf(X).
Proof.
Let lim

D
(X) = a.

We define A = {inf(Y )|Y ∈ D}. We have that a = sup(A).
We consider the case a ∈ A. In this case there isX0 ∈ D that inf(X0) = a.

We define Xα = {x ∈ X|a ≤ x}. We see that X0 ⊆ Xα, i.e. Xα ∈ D.
Let F = D|Xα . By Lemma 1 and Proposition 2, we have that

lim
D

(X) = lim
F

(Xα) = sup{inf(Y )|Y ∈ F} = a,
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i.e. for any Y ∈ F we have a = inf(Y ).
Thus, we have the case 2).
We consider the case a /∈ A, i.e. for any a′ ∈ A we have a′ < a.
Let (Xλ)λ<µ0 be a sequence of D. Λ0 = (aλ)λ<µ0 , where µ0 is a cardinal,

aλ = inf(Xλ), λ < µ0. We see that sup(Λ0) = a.
Let L0 = (lλ)λ<µ0 be a sequence, where lλ = sup[a0, aλ), a0, aλ ∈ Λ0.
We see that lλ0 ≤ lλ1 , where λ0 ≤ λ1 and sup(L0) = a.
We consider the following procedure
a) Suppose that we have defined Λn, Ln, µn, where Λn, Ln are ordered by

µn. If for any l ∈ Ln we have l < a then procedure is finished else continue
to b).

b) There is λ < µn that lλ = a. Let λ0 be a minimum ordinal of the
such kind. λ0 is an infinite ordinal (we will prove it after the procedure). If
λ0 is a limit ordinal then we define

µn+1 = λ0,Λn+1 = {aλ ∈ Λn|λ < λ0}, Ln+1 = {lλ ∈ Ln|λ < λ0}.

If λ0 is not a limit ordinal then λ0 = λ′0 +m, where λ′0 is a limit ordinal
and m < ω. We define µn+1 = λ′0, Λn+1 is defined as sequence of elements
{aλ′

0
, ..., aλ0−1} and elements {a0, ....aλ, ...} from Λn, where 0 ≤ λ < λ′0. We

rename also elements of Λn+1 as a0, a1, ..., aλ, ..., because we do not want
to introduce new notations. Thus we have removed unnecessary elements,
and we put the last elements in the first place. We define Ln+1 on the
set Λn+1 similar to the L. We do not introduce new notations also, i.e.
Ln+1 = (lλ)λ<µn+1 , where lλ = sup[a0, aλ), a0, aλ ∈ Λn+1.

We continue to a).
Now, we prove that λ0 is an infinite ordinal. We assume the opposite,

i.e. λ0 is finite ordinal. In this case exist finite set S ⊆ D that

a = sup{inf(Y )|Y ∈ S}.

By Lemma 5, we have that

a = sup({inf(Y )|Y ∈ S}) = inf(∩({{y ∈M |inf(Y ) ≤ y}|Y ∈ S})) ≤

≤ inf(∩({{y ∈ X|inf(Y ) ≤ y}|Y ∈ S})).

If Y ∈ S then Y ∈ D,

Y ⊆ {y ∈ X|inf(Y ) ≤ y} ∈ D,

∩({{y ∈ X|inf(Y ) ≤ y}|Y ∈ S}) ∈ D.

We see that for any Z ∈ D we have inf(Z) ≤ a, i.e.

a ≤ inf(∩({{y ∈ X|inf(Y ) ≤ y}|Y ∈ S})) ≤ a
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and
inf(∩({{y ∈ X|inf(Y ) ≤ y}|Y ∈ S})) = a.

Thus, we have the case a ∈ A that is already considered earlier. We
consider the case when a /∈ A. So, we receive a contradiction, i.e. λ0 can
not be a finite ordinal.

We continue to prove. Thus we obtain

Λ0, L0, µ0,

Λ1, L1, µ1,

Λ2, L2, µ2,

...

We see that µ0 > µ1 > µ2 > ..., i.e. this procedure will end after a finite
number of steps. Let

Λn0 , Ln0 , µn0

are the last elements.
We see that µn0 is a limit ordinal, sup(Ln0) = a and for any λ < µn0 we

have lλ < a.
We can select subsequence L of Ln0 that L are ordered by cardinal

κ = cf(µ0) and for any l ∈ Ln0 there is l′ ∈ L that l ≤ l′, i.e.

sup(L) = sup(Ln0) = a.

We can assume also that all elements of L are different.
Thus, we have the case 1).
The theorem 4 is proved.

Corollary. Let χ = (M,≤) be a complete lattice and X ⊆ M,a ∈ M .
If D is a non-principal ultrafilter on X that lim2(D,X) = lim3(D,X) = a
then we have 1) or 2), i.e. a is massive.

1) exist L1 = (lλ)λ<κ1 that κ1 is an infinite cardinal, lλ ∈ M , if λ1 <
λ2 < κ1 then lλ1 < lλ2 , sup(L1) = a.

2) exist L2 = (lλ)λ<κ2 that κ2 is an infinite cardinal, lλ ∈ M , if λ1 <
λ2 < κ2 then lλ2 < lλ1 , sup(L2) = a.

Proof.
By Theorem 4 we have that for lim2(D,X) we have 1) or 2) (from

condition Theorem 4) and for Lim3(D,X) = Lim∗2(D,X) we have 1∗) or
2∗) (from condition Theorem 4).

We have for possible combinations.
a) 1), 1∗)
b) 1), 2∗)
c) 2), 1∗)
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d) 2), 2∗)
Consider the combination 2), 2∗). If 2) then from the proof of the theo-

rem 4 we see that there is F0 ∈ D that inf(F0) = a. Similarly, if 2∗) then
there is F1 ∈ D that sup(F1) = a. Thus, we have that F0 ∩ F1 = ∅ or
F0 ∩ F1 = {a}. Since F0 ∩ F1 ∈ D, then we have ∅ ∈ D or {a} ∈ D. Since
D is a non-principal ultrafilter, then we have obtained a contradiction.

Thus, we have that combination 2), 2∗) is impossible.
Combinations a),b),c) imply 1) or 2).

§ 3. Examples

Example 1. Let χ = ([0, 1],≤) be a lattice on the interval [0, 1] with
standard interpretation of the relation ” ≤ ”. Obviously χ is a complete
lattice.

Let X ⊆ [0, 1], D is an arbitrary non-principal ultrafilter on X. We will
show that the point

a = lim
D

(X)

is a limit point of X in the usual topology, i.e. any open interval of the point
a contains points of the set X \{a}. We assume that a 6= 0, a 6= 1. The cases
a = 0, a = 1 are analyzed in the similar way. We suppose the opposite, i.e.
there is an open interval (b, c) ⊂ [0, 1] that a ∈ (b, c) and (b, c) ∩X = {a}.
We will obtain a contradiction.

SinceD is a non-principal ultrafilter, thenX\{a} ∈ D. LetX0 = X\{a}.
By Lemma 2

lim
D

(X) = lim
D0

(X0),

where D0 = D|X0 . For every Y ∈ D0 we have Y ∩ (b, c) = ∅, i.e either
lim2(D0, X0) ≤ b or lim2(D0, X0) ≥ c. By Proposition 2 we have either
lim
D0

(X0) ≤ b or lim
D0

(X0) ≥ c. Thus it is a 6= lim
D

(X). This is a contradiction

with the assumption that the point a is’t a limit point in the usual topology.
Now let the point a is a limit point of the set X in the usual topology,

i.e. any open interval containing the point a intersects with X \ {a}. We
will show that there is a non-principal ultrafilter D on X that lim

D
(X) = a.

We assume that a 6= 0, a 6= 1. The cases a = 0, a = 1 are analyzed in the
similar way.

Since any open interval containing the point a has a non-empty intersec-
tion with X, then this intersection contains an infinite number of elements.
Otherwise it would be possible to pick up an open interval containing the
point a and has no intersection with X. Let

R = {X ∩ (b, c)|a ∈ (b, c), (b, c) ⊂ [0, 1]}.
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In view of the above remarks any set of R is infinite, the intersection of two
sets of R also belongs to R. There exists a non-principal ultrafilter D on X
that R ⊆ D. By construction D, we have

lim
D

(X) = lim2(D,X) = a.

Thus the topology atop(χ) coincides with the usual topology on [0, 1],
which is a compact topology.

Example 2. Let M = ω ∪ {ω}, χ = (M,≤). Obviously χ is a complete
lattice. Close sets in the topology atop(χ) are finite sets and sets containing
ω. Consequently open sets are sets that do not contain ω and sets with a
finite supplement. Topology atop(χ) is a compact. Any open covering must
to cover the point ω. The covering must include an open set containing ω
and having finite supplement that is covered by a finite number of open sets
of the selected covering.

Example 3.
Let M be a non-empty set. Let E(M) is the set of equivalence that

(X,R) ∈ E(M)⇔

X ⊆M, ifx1, x2 ∈ X and |[x1]| > 1, |[x2]| > 1 then [x1] = [x2].

If E0 = (X,R) ∈ E(M), x ∈ X, |[x]| > 1 then we define Ker(E0) = [x].
We see that the equivalence R is uniquely determined by X and Ker(E0).

Let χ = (E(M),≤). If E1 = (X1, R1), E2 = (X2, R2), E1, E2 ∈ E(M)
then we define E1 ≤ E2 ⇔

1) if x ∈ X1 ∩X2 then [x]E2 ⊆ [x]E1 ,
2) if x ∈ X2 \X1 then [x]E2 ∩X1 = ∅,
3) if x ∈ X1 \X2 then there is x′ ∈ X1 ∩X2 that [x]E1 = [x′]E1 .
We have
1) inf(E(M)) = (M,R) that R = M ×M ,
2) sup(E(M)) = (M,R) that R = {(x, x)|x ∈M}.
If S ⊆ E(M) then
3) sup(S) = E0 that E0 = (X,R), Ker(E0) = ∩{Ker(E1)}|E1 ∈ S},

X = Ker(E0) ∪
⋃
{Y \Ker(E1)|E1 = (Y,R) ∈ S}.

4) inf(S) = E0 that E0 = (X,R), Ker(E0) = ∪{Ker(E1)}|E1 ∈ S},
X = Ker(E0) ∪

⋂
{Y \Ker(E1)|E1 = (Y,R) ∈ S}.

Thus, χ is a complete lattice. By Theorem 1 the topology atop(χ) is a
compact.

Example 4. We will define complete lattice χ = (M,≤χ) and X ⊆M
that C(C(X)) 6= C(X). χ is’t an infinitely distributive.

Let M∗ = P (Ω), where

Ω = ω(0) ∪ ω(1) ∪ ω(2) ∪ ...
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and
ω(m) = {0(m), 1(m), 2(m), ...},m ∈ ω,

i.e. ω(m) is a copy of ω.
We define the relation ≤∗ on M∗.
1) {n(m)

1 } ≤∗ {n(m)
2 } ⇔ n1 ≤ n2, where n1, n2,m ∈ ω;

2) {n(m)} ≤∗ ω(m), where n,m ∈ ω;
3) ω(n1) ≤∗ ω(n2) ⇔ n1 ≤ n2, where n1, n2 ∈ ω;
4) We distribute ≤∗ to transitivity, i.e. {3(2)} ≤∗ ω(2) ≤∗ ω(7) and

{3(2)} ≤∗ ω(7) but {3(7)} �∗ ω(2), {ω(2)} �∗ {3(7)}, {3(7)} �∗ {3(8)}, {3(8)} �∗
{3(7)} and so on.

5) We distribute ≤∗ to any subsets. Let X ∈M∗. We define

H(X) = {a ∈ Ω|{a} ≤∗ Y ⊆ X}.

In particular, H(∅) = ∅, H(Ω) = Ω. Let X1, X2 ∈M∗. We define

X1 ≤∗ X2 ⇔ H(X1) ⊆ H(X2).

In particular, ∅ ≤∗ X ≤∗ Ω for any X ∈M∗;

We see that
H({2(1)}) = {0(1), 1(1), 2(1)},

H(ω(0)) = ω(0),

H(ω(1)) = ω(0) ∪ ω(1),

H({2(1)} ∪ ω(1)) = ω(0) ∪ ω(1),

i.e. ω(1) ≤∗ {2(1)} ∪ ω(1) and {2(1)} ∪ ω(1) ≤∗ ω(1).
Thus we consider the classes of equivalences.
For any X1, X2 ∈M∗ we have

[X1] = [X2]⇔ H(X1) = H(X2).

Let χ = (M,≤χ), where M is a set of equivalence classes of M∗ and the
relation ≤χ correspond to the relation ≤∗.

We see that
1) ≤χ is a part order on M ;
2) if S ⊂M,S 6= ∅ then

inf(S) = [∩{H(X)|[X] ∈ S}],

sup(S) = [∪{H(X)|[X] ∈ S}].

In particular
inf(M) = [∅], sup(M) = [Ω].
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Thus, χ is a complete lattice. Let

V (m) = {[{n(m)}]|n ≤ ω},m ≤ ω,

V = V (0) ∪ V (1) ∪ V (2) ∪ ...

We see that V ⊆ M . Let D is an arbitrary non-principal ultrafilter on V .
If there are X ∈ D and m ∈ ω that X ⊆ V (m) then |X| = ω0 and

lim
D

(V ) = sup(X) = [ω(m)].

Otherwise, for any X ∈ D there are n1, n2,m1,m2 ∈ ω that m1 6= m2 and
[{n(m1)

1 }], [{n(m2)
2 }] ∈ X. If a ∈M and a ≤χ [{n(m1)}], a ≤χ [{n(m2)}]} then

a = [∅]. Hence
lim
D

(V ) = [∅].

Thus, we have

[Ω] /∈ V ∪ {[∅]} ∪ {[ω(m)]|m ≤ ω} = C(V ).

Let F is an arbitrary non-principal ultrafilter on

W = {[ω(0)], [ω(1)], [ω(2)], ...}.

We see thatW ⊆ C(V ) andW ∈ F . Since [ω(m1)] ≤χ [ω(m2)] for any m1 ≤ m2,
m1,m2 ∈ ω, we have

lim
F

(W ) = sup(W ) = [ω(0) ∪ ω(1) ∪ ω(2) ∪ ...] = [Ω].

Thus, we have that

[Ω] ∈ C(W ) ⊆ C(C(V )),Ω /∈ C(V ),

i.e.
C(C(V )) 6= C(V ).

We have

inf{[ω(0)], sup{[{n(1)}]|n ∈ ω}} = inf{[ω(0)], [ω(1)]} = [ω(0)],

sup{inf{[ω(0)], [{n(1)}]}|n ∈ ω} = sup{[∅]} = [∅],

i.e.

inf{[ω(0)], sup{[{n(1)}]|n ∈ ω}} 6= sup{inf{ω(0)], [{n(1)}]}|n ∈ ω}.

We see, that χ is not a infinite distributive.
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Example 5. Let χ = (P (N),⊆) be the lattice of the subsets of the
natural numbers N by inclusion. Obviously χ is a complete lattice. We
consider an approximation base

∆ = {{n}|n ∈ N} ∪ {∅}.

Since |∆| = ω0, according to Theorem 2 the closure of any set X ⊆ P (N) of
atop(χ) can be reduced to the closure of all countable subsets of X.

By Theorem 1 the topology atop(χ) is a compact.

Example 6. Let a, b ∈ R and a < b. Let M be the set of all real
functions f : R → R that a ≤ f(x) ≤ b. Let χ = (M,≤), where ” ≤ ” is
a pointwise comparison of functions. Obviously χ is a complete lattice. By
Theorem 1 the topology atop(χ) is a compact.

Example 7. We consider the propositional logic L = L(A,Ω, Z, I),
where A = {p1, p2, . . . } are propositional variables, Ω = {¬,∧,∨,→} are
logical connectives, Z is a set of inference rules (the rule of inference is
modus ponens), I is a set of Hilbert axioms.

Let Φ be a set of all formulas of L. Let Ψ1,Ψ2 ⊆ Φ. We assume
Ψ1 ≺ Ψ2 ⇔ for anyφ ∈ Ψ1 we have I,Ψ2 ` φ.

We denote
[Ψ] = {X ⊆ Φ|Ψ ≺ X andX ≺ Ψ}.

[Ψ] is a class of equivalence of Ψ.
Let χ = (M,≤), where M = {[X]|X ⊆ Φ}, if X1, X2 ⊆ Φ then we

assume [X1] ≤ [X2]⇔ X1 ≺ X2.
We have inf(M) = [I], if S ⊆ P (M), S 6= ∅ then

sup(S) = [∪{Ψ ⊆ Φ|[Ψ] ∈ S}].

Thus, χ is a complete upper semilattice with zero.
We have
1) [I] ≤ [X] for any X ⊆ Φ, i.e. for any non-principal ultrafilter D on

M we have [I] ≤ lim
D

(X);

2) [I] = [∅] = [T ], where T is a set of all formulas φ ∈ Φ that I ` φ;
3) sup(M) = [Φ] = [{p1,¬p1}];
4) for any non-principal ultrafilter D on M we have lim

D
(X) 6= [{p1,¬p1}];

5) if X ⊆ Φ, X is’t contradictory and |X| < ω0 then there exist a
non-principal ultrafilter D on M that lim

D
(X) = [X].

6) if X ⊆ Φ, X is’t contradictory and X is a complete set of formulas
(for any φ ∈ Φ we have X ` φ or X ` ¬φ) then [X] is’t a limit point.

By Theorem 2, the topology atop(χ) is a compact.
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Example 8 (Semilattice of facts). We consider some set Φ of real
facts. We consider relation ”≺” on Φ. We assume s1 ≺ s2 ⇔ when the fact
”s2 implies s1” belong to Φ. We define classes of equivalence M on subsets
of Φ similar with Example 6.

Let χ = (M,≤), where M = {[X]|X ⊆ Φ}, if X1, X2 ⊆ Φ then we
assume [X1] ≤ [X2]⇔ X1 ≺ X2.

We have inf(M) = [{”s1 implies s1”}], where s1 is an arbitrary fact. If
S ⊆ P (M) and S 6= ∅ then

sup(S) = [∪{Ψ ⊆ Φ|[Ψ] ∈ S}].

Thus, χ is a complete upper semilattice with zero. By Theorem 2, the
topology atop(χ) is a compact.
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