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THE MOMENT OF MOMENTUM AND THE PROTON RADIUS 

S. G. Fedosin and A. S. Kim  UDC 539.12 

The theory of nuclear gravitation is used to calculate the moment of momentum of the gravitational field of a 
proton, which is compared to the corresponding moment of momentum of the electromagnetic field. As a result, the 
proton radius is estimated and a relation for the moment of momentum of the field is established, which coincides 
in form with the expression of the virial theorem for energy. 

A proton, as a quantum object, possesses its inherent magnetic moment, electric charge, spin, mass, and other 
characteristics, which are measured with a high accuracy in numerous experiments in elementary particle physics. 
Obviously, many parameters of a proton may be related to one another by some expressions that follow from the physical 
nature of interactions. Characteristic examples are the proportionality between the magnetic moment, the spin, and the 
specific charge, observed for the majority of elementary particles, and the proportionality between the spin and the squared 
mass for particles on Regge trajectories. In quantum chromodynamics, it is supposed that the integrity of a proton is 
provided by the strong interaction between its three constituent quarks and the field quanta – gluons. With another 
approach, nuclear gravitation [1] is introduced by analogy with conventional gravitation where the integrity of cosmic 
objects is due to the balance of the attracting gravitational forces and the repulsing electromagnetic forces of matter 
particles. In this paper, in terms of gravitational field theory, a condition is placed on the moment of momentum of a proton 
and its radius is estimated. 

The scalar gravitational potential inside a proton for the case of a homogeneous density distribution of the matter is 
expressed, with proper boundary conditions, as 
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Here, Γ  is the nuclear gravitation constant; ρ  is the density of the proton matter; r is the moving radius, and R and M are 
the proton mass and radius, respectively. 

In the static case, the acceleration of a matter, G, under the action of a field is determined in terms of the potential 
gradient: 
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where M(r) is the mass of the matter within the radius r. 
For a rotating proton, the gravitational field acquires a moment of momentum whose volumetric density, according 

to [1], is found by the formula 
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= − ×
π Γ

g G Ω , (2) 

where Ω is the torsion of the gravitational field. 
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To estimate the torsion inside the proton, we perform an instantaneous Lorentz transformation of the gravitational 
field tensor, whose components are the components of the vectors G/c and Ω, from a resting frame of reference S′′ into a 
frame of reference S, which moves with velocity V along the x-axis. Since the torsion Ω in S′ is equal to zero, neglecting the 
Lorentz factor, we find for the frame of reference S  
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In virtue of the relativity of a motion in the frame of reference S, the proton also moves with the velocity V, but in 
the reverse direction. If the transformation is performed from the frame of reference S′′ into S at each point inside the 
proton, the linear velocity V can be expressed in terms of angular rotational velocity w and spherical coordinates r, θ, and ϕ 
as sinV w r= θ , and (1) and (3) can be rewritten: 
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For not very great velocities, we may neglect the additions to the field components (4) that appear due to the fact 
that the transformations should be performed, in fact, in frames of reference rotating along the z-axis rather than in locally 
inertial frames of reference. According to (4), if the proton rotates counterclockwise, the internal torsion zΩ  is directed 
everywhere opposite to the z-axis, while the projections of the torsion Ω on the plane z = const are directed away from the  
z-axis. With expression (2) we find the components of the momentum density vector of the gravitational field inside the 
proton: 
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The vector g points in the same direction as the linear velocity of rotation of unit volumes of the proton matter. To 
calculate the moment of momentum of the gravitational field inside the proton, it is necessary to multiply the modulus of the 
vector g by the distance from the z-axis, that is, by sinr θ , and then integrate the result over the proton volume: 
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In view of the expressions for the proton mass, 34
3

M Rπ= ρ , and spin, 20,4I M wR= , for the case of a uniform 

distribution of the matter, the quantity L can be written  
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the vector L being directed along the spin I. 
We assume that there is only one type of degenerate objects in every gravitational field, which have the maximum 

matter density and, accordingly, the highest gravitational and electromagnetic fields. For nuclear gravitation and 
conventional gravitation, objects of this type are, respectively, nucleons and neutron stars. Then it should be expected that in 
(5) the moment of momentum L of the gravitational field is equal to the proton spin I. Actually, if it were the case that L > I, 
then the gravitational field would start the rotation of the proton, thereby increasing its spin. Similarly, the electromagnetic 
pressure on the matter is directed along the momentum density vector of the electromagnetic field and is proportional to the 
field energy absorbed by the matter. By reducing the quantities L and I in (5), we can estimate the proton radius: 
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The nuclear gravitation constant Γ  in (6) is found from the condition that in a hydrogen atom, within the Bohr 
radius BR , the gravitational force is equal to the electrostatic one: 
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where e  is the elementary electric charge; 0ε  is the dielectric constant, and and eM M  are the proton and the electron 
mass, respectively. 

For comparison with the result (6), we find the proton radius by other methods [1]. A neutron and a proton form 
together an isotopic dublet and are very similar to one another in properties. The difference between the masses of an 
electrically neutral neutron and a proton of charge e can be ascribed to the mass-energy of the electric field of the proton: 
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Putting K = 0.6, as for a uniformly charged ball, and substituting the neutron mass nM  and the velocity of light c, 

we find the proton radius: 166.68 10R −= ⋅ m. In the explanation of the de Broglie waves accompanying moving particles in 
terms of the electromagnetic field, a condition placed on the particle sizes has been found. For protons we obtain 

166.6 10 m
2

hR
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−= = ⋅ , where h is Plank’s constant. 

Experimentally determined values of the proton radius are rather close to the value given by (6). In this case, as a 
rule, the mean-square charge radius qR  is determined, which can be greater than R. Thus, in experiments on electron 

scattering by protons [2] it has been found that 167.5 10 mqR −= ⋅ . According to [3], the cross section for the interaction of 

nucleons with one another that is established at energies over 10 GeV is 38 mb. In the classical limit, this cross section can 
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be assumed to be close to the geometrical cross section of colliding particles that is, to 22 Rπ . Then we have 
167.8 10 mR −< ⋅ . 

Equality (7) allows us to relate the gravitational and the electromagnetic energy in a proton. For these energies, we 
can write 
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where 1 2andK K  are coefficients depending on the mass and the charge distribution, respectively; for a uniform 
distribution, we have 1 2 0.6K K= = . Putting 1 2K K≈ , with the help of (7), we get 
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that is, the gravitational-to-electrostatic energy ratio is approximately equal to the proton-to-electron mass ratio. 
Let us now return to relation (5) to support the conclusion that the moment of momentum of the gravitational field 

inside a proton is equal to its spin. Assume that the proton charge is uniformly distributed over a volume of radius R and the 
magnetic moment mP  is concentrated at the center and directed along the z-axis. To calculate the momentum density of the 
electromagnetic field outside the proton for r > R, we use the following conventional expressions: 
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where E is the electric field strength; B is the magnetic field induction, and 0µ  is the magnetic constant. 
The vector outg  lies everywhere in the planes z = const, is normal to the z-axis, and rotates counterclockwise. For 

its modulus, we can write in spherical coordinates: 
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The moment of momentum of the electromagnetic field outside the proton is determined by the volume integral 
from r R=  to infinity: 
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The electric field strength inside a uniformly charged proton, the modulus of the momentum density vector, and the 
moment of momentum of the field are given by 
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where e(r) is the charge within the radius r. 
We have obtained that the moment of momentum of the electromagnetic field inside a proton is half that outside the 

proton: 
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In addition, the law of conservation of moment of momentum relates the mechanical moment of momentum qL  of 

the charges moving inside a proton, which create the magnetic field of the proton, and the total moment of momentum of 
the electromagnetic field, fL : 

 in outf = +L L L ,   0q f+ =L L . (9) 

If we assume that the magnetic moment of a proton is concentrated at its center and is directed along the z-axis, 
from (8) and (9) it follows that qL  and mP  are oppositely directed and the magnetic field of the proton is such as if it had 

been formed due to the motion of negative charges clockwise about the z-axis. In this case, the following equality should be 

fulfilled: out
3
2q = −L L . 

In another, opposite, case, the magnetic moment is not localized at the center of a proton, but is uniformly 
distributed over its volume. Among the well-known objects, the closest analog of a proton is a neutron star whose magnetic 
field, matter density, and degree of degeneracy are not much less than those of a proton. In a neutron star, the magnetic field 
should be frozen in the matter, being supported by the ordered state of the magnetic moments of the neutrons whose 
magnetic moment and the spin are counterdirected. Let us imagine that the magnetic moment of a proton, which we earlier 
considered to be located at the center, now occupies the whole of the volume so that the amplitude of the magnetic field 
both inside and outside the proton could be considered invariable. Then the magnetic field pattern outside the proton will be 
the same; however, the magnetic field inside the proton will change its sign, and, instead of (8) and (9), we shall get 
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Irrespective of the character of the magnetic moment distribution over the volume of a proton, its total magnetic 
moment appears to be opposite in direction to the mechanical moment of momentum of the particles creating the magnetic 
moment. This is also valid for neutron stars, so that there is one more indication of similarity. 

If we compare in pairs the electrical and gravitational quantities, qL  and I and inL  and L, then from (10) just 

follows the equality of the moment of momentum of the rotating masses of a proton or its spin to the moment of momentum 
of the gravitational field inside the proton: I = L, and this has been used in (5) to estimate the proton radius. 

In accordance with the foregoing, for the case where the magnetic field or mass sources are distributed uniformly, 
the internal moment of momentum of the electromagnetic or, respectively, gravitational field is equal, accurate to the sign, 
to half the moment of momentum of the field outside the object. Relation (10) remarkably has something in common with 
the well-known virial theorem according to which the work of irrelevant forces on the creation of an object is executed so 
that one half the expended energy goes into the kinetic energy of the object particles, while the other goes into the energy of 
the field and generally is carried away by radiation. 
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