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Abstract

This letter consists of additions to the paper ** A Class of Position-Dependent Mass Liénard Differential
Equations via a General Nonlocal Transformation’’. The objective is to highlight the fact that the general
second-order nonlinear differential equation theory of position-dependent mass oscillators developed previously
has the ability to provide exact analytical periodic solutions with sinusoidal form to the class of quadratic
Liénard-type equations, like the motion of a particle on a rotating parabola and Morse- type oscillator equation,
under question.

1. Consider, firstly, the general class of exactly solvable mixed Liénard-type nonlinear
differential equations [1]
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obtained by applying the nonlocal transformation
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to the damped linear harmonic oscillator equation
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where prime means differentiation with respect to the independent variable . x, » , 1 and
y are arbitrary parameters and, g(x) and ¢(x) are also arbitrary functions of x. This

transformation ensures exact analytical solutions to any equation that belongs to (1) as a
function of the solution to damped linear harmonic oscillator equation.

2. Consider now the case where x=0, and g(x)=1. Then equation (1) reduces to

X — 10 (X)X% + w0’ xexp(2yp(x)) =0 (4)

where prime denotes here differentiation with respect to the dependent variable x(t), and dot

over a symbol means differentiation with respect to time. It is noted in [2] that for
o(x) =In(f (x)) , equation (4) becomes
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Setting f(x) = ;, and y =1, into (5), yields the equation of motion of a particle moving
V1+Ax2

on a rotating parabola [2]

. AX s COZX

X+ =0 (6)

X<+ =
1+ Ax? 1+ Ax?
In this context the nonlocal transformation (2) becomes

dt

y(@)=x() , dr= )
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and, if the solution to linear harmonic oscillator equation according to (3) reads

y(z) = Aysin(wz+6,) (8)

where A, and ¢, are arbitrary constants, then the desired exact analytical periodic solution
with sinusoidal form to equation (6) of a particle moving on a rotating parabola takes the form

X(t) = A sin(@g(t) + 6,) )
where the function 7 =¢(t), satisfies
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3. Let ¢(x) =x. Then, equation (4) reduces to the Morse-type position-dependent mass
oscillator equation

X — %% + w*xexp(2x) =0 (11)
that admits the exact analytical periodic solutions of trigonometric form

X(t) = Ay sin(w y(t) + &) 12)
where the function r =y (t), obeys

dr _ exp[yA, sin(w 7+ 6;)] (13)

dt

That being so, exact analytical periodic solutions for many other quadratic Liénard-type
oscillator equations may be expressed as a sinusoidal function of time, as previously shown
for the Mathews-Lakshmanan oscillator equations by applying the theory of position-
dependent mass oscillator via a nonlocal transformation [1].
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