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Abstract: The main objective of this work is to investigate the
impact of the quality of attribute data source on the performance of
a target tracking algorithm. An array of dense scenarios arranged
according to the distance between closely spaced targets is studied
by different confusion matrices. The used algorithm is General-
ized Data Association algorithm for Multiple Target Tracking (GDA-
MTT) processing kinematic as well as attribute data. The fusion rule
for attribute data is based on Dezert-Smarandache Theory (DSmT).
Besides the main goal a comparison is made between the cited above
algorithm and an algorithm with Kinematic based only Data Asso-
ciation (KDA-MTT). The measures of performance are evaluated
using intensive Monte Carlo simulation.
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14.1 Introduction

Target tracking of closely spaced targets is a challenging problem. The kinematic
information is often insufficient to make correct decision which observation to be
associated to some existing track. A new approach presented in [15] describes a
Generalized Data Association (GDA) algorithm incorporating attribute information.
The presented results are encouraging, but it is important to study the algorithm
performance for more complex scenarios with more maneuvering targets and different
levels of quality of attribute data source. It is important to know the level of quality
of the attribute detection used to assure robust target tracking in critical, highly
conflicting situations. The goal of this paper is by using Monte Carlo simulation
to determine the sufficient level of quality of attribute measurements that for given
standard deviations of the kinematic measurements (in our case azimuth and distance)
to overcome allowable miscorrelations.

14.2 Problem formulation

Classical target tracking algorithms consist mainly of two basic steps: data association
to associate proper measurements (usually kinematic measurement z(k)) representing
either position, distance, angle, velocity, accelerations etc.) with correct targets;
track filtering to estimates and predict the state of targets once data association
has been performed. The first step is very important for the quality of tracking
performance since its goal is to associate correctly observations to existing tracks. The
data association problem is very difficult to solve in dense multitarget and cluttered
environment. To eliminate unlikely (kinematic-based) observation-to-track pairings,
the classical validation test [3, 7] is carried on the Mahalanobis distance

d2
j (k) = v

′

j(k)S−1vj(k) ≤ γ, (14.1)

where vj(k) = ẑ(k) − zj(k) is the difference between the predicted position ẑ(k)
and the j − th validated measurement zj(k), S is the innovation covariance matrix,
γ is a threshold constant defined from the table of the chi-square distribution [3].
Once all the validated measurements have been defined for the surveillance region,
a clustering procedure defines the clusters of the tracks with shared observations.
Further the decision about observation-to-track associations within the given cluster
with n existing tracks and m received measurements is considered. The Converted
Measurement Kalman Filter (CMKF) [5] coupled with a classical Interacting Multiple
Models (IMM) [1, 4, 8] for maneuvering target tracking is used to update the targets’
state vectors.

When CMKF is used, one advantage and one drawback arise. Receiving measure-
ments in (x, y) coordinates allows us to continue our tracking with a simple Linear
Kalman Filter (KF) instead of more complicated Extended Kalman Filter (EKF).
The more sophisticated calculation of the measurement matrix in EKF is replaced
with a more sophisticated calculation of converted measurement covariance at each
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recursion of the filter. The drawback is that CMKF accuracy strongly depends not
only on the original measurement accuracy but on scenario geometry, as well. In
some cases the mean of the errors is significant and unbiased compensation is needed.
In [11], a limit of validity is derived when classical linearized conversion in CMKF

is used - (
rσ2

θ
σr

< 0.4), where σθ and σr are the standard deviations for azimuth and
distance measurements respectively. The quantity from the left-hand side in our sce-
narios is most often less than 0.01 and, hence, the validity limit is fully satisfied. The
GDA-MTT improves data association process by adding attribute measurements, like
amplitude information or RCS (radar cross section) [16], or eventually [6], target type
decision coupled with the confusion matrix to classical kinematic measurements in
order to increase the performance of the MTT system. When attribute data is avail-
able, the generalized (kinematic and attribute) likelihood ratios are used to improve
the assignment. The Global Nearest Neighbor (GNN) approach is used in order to
make a decision for data association on an integral criterion base. The used GDA ap-
proach consists in choosing a set of assignments {χij} for i = 1, ..., n and j = 1, ..., m
, that assures maximum of the total generalized likelihood ratio sum by solving the
classical assignment problem min

Pn
i=1

Pm
j=1 aijχij , where aij = −log(LRgen(i, j))

with

LRgen(i, j) = LRk(i, j)LRa(i, j). (14.2)

LRk(i, j) and LRa(i, j) are kinematic and attribute likelihood ratios respectively, and

χij =

(

1 if measurement j is assigned to track i,

0 otherwise.

When the assignment matrix A[aij ] is constructed its elements aij take the following
values [12]:

aij =

(

∞ if d2
ij > γ,

− log(LRk(i, j)LRa(i, j)) if d2
ij ≤ γ.

The solution of the assignment matrix is the one that minimizes the sum of
the chosen elements. We solve the assignment problem by realizing the extension of
Munkres algorithm, given in [9]. As a result one obtains the optimal measurements-to-
tracks association. Once the optimal assignment is found, i.e. the correct association
is available, the standard tracking filter is used depending on the dynamics of the
tracked targets.

14.2.1 Kinematic likelihood ratios for GDA

The kinematic likelihood ratios LRk(i, j) involved into aij are easily to obtain because
they are based on the classical statistical models for spatial distribution of false alarms
and for correct measurements [5]. LRk(i, j) is evaluated as:

LRk(i, j) = LFtrue(i, j)/LFfalse
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where LFtrue(i, j) is the likelihood function that the measurement j originates from
a target (track) i and LFfalse is the likelihood function that the measurement j
originates from a false alarm. At any given time k, LFtrue is defined as:

LFtrue =

r
X

l=1

μl(k)LFl(k)

where r is the number of the models used for CMKF-IMM (in our case of two nested
models r = 2). μl(k) is the probability (weight) of the model l for the scan k, LFl(k)
is the likelihood function that the measurement j originates from target (track) i
according to the model l, i.e.

LFl(k) = (1/
q

|2πSi
l (k)|) · exp

−d2
l (i, j)

2
.

LFfalse is defined as LFfalse =
Pfa

Vc
, where Pfa is the false alarm probability and

Vc is the resolution cell volume chosen in [6] as Vc =
Qnz

i=1

√
12Rii . In our case,

nz = 2 is the measurement vector size and Rii are sensor error standard deviations
for azimuth β and distance D measurements.

14.2.2 Attribute likelihood ratios for GDA

The major difficulty to implement GDA-MTT depends on the correct derivation of co-
efficients aij , and more specifically the attribute likelihood ratios LRa(i, j) for correct
association between measurement j and target i based only on attribute information.
When attribute data are available and their quality is sufficient, the attribute like-
lihood ratio helps a lot to improve MTT performance. In our case, the target type
information is utilized from RCS attribute measurement through a fuzzification inter-
face. A particular confusion matrix is constructed to model the sensor’s classification
capability.

The approach for deriving LRa(i, j) within DSmT [10, 14, 15] is based on relative
variations of pignistic probabilities for the target type hypotheses, Hj (j = 1 for
Fighter, j = 2 for Cargo), included in the frame Θ2 conditioned by the correct
assignment. These pignistic probabilities are derived after the fusion between the
generalized basic belief assignments of the track’s old attribute state history and
the new attribute/ID observation, obtained within the particular fusion rule. It is
proven that this approach outperforms most of the well known ones for attribute data
association. It is defined as :

δi(P
∗) �

˛

˛

˛

Δi(P
∗|Z) − Δi(P

∗|Ẑ = Ti)
˛

˛

˛

Δi(P ∗|Ẑ = Ti)
, (14.3)
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where
8

>

<

>

:

Δi(P
∗|Z) =

P2
j=1

˛

˛

˛

P∗
TiZ(Hj)−P∗

Ti
(Hj)

˛

˛

˛

P∗
Ti

(Hj)

Δi(P
∗|Z = Ti) =

P2
j=1

˛

˛

˛

P∗
TiZ=Ti(Hj)−P∗

Ti
(Hj)

˛

˛

˛

P∗
Ti

(Hj)

i.e. Δi(P
∗|Ẑ = Ti) is obtained by forcing the attribute observation mass vec-

tor to be the same as the attribute mass vector of the considered real target, i.e.
mZ(.) = mTi(.) . The decision for the right association relies on the minimum
of expression (14.3). Because the generalized likelihood ratio LRgen is looking for
the maximum value, the final form of the attribute likelihood ratio is defined to be
inversely proportional to the δi(P

∗) with i defining the number of the track, i.e.
LRa(i, j) = 1/δi(P

∗).

14.3 Scenario of simulations and results

14.3.1 Scenario of simulations

For the simulations, we use an extension of the program package TTLab developed
under MATLABTM for target tracking [13]. This extension takes into account the
attribute information. A friendly human-computer interface facilitates the changes
of the design parameters of the algorithms.

The simulation scenario consists of twenty five air targets (Fighter and Cargo)
moving in three groups from North-West to South-East with constant velocity of
170 m/sec. The stationary sensor is at the origin with Tscan = 5 sec, measurement
standard deviations 0.3 deg and 100 m for azimuth and range respectively. The head-
ings of the central group are 135 deg from North and for the left and right groups are
150 deg and 120 deg respectively. During the scans from 15th to 17th and from 48th
to 50th the targets of the left and right groups perform maneuvers with transversal
acceleration 4.4 m/sec2. The targets are closely spaced especially in the middle part
of their trajectories. The scenario is shown on figure 14.1.

The typical tracking performances for KDA-MTT and GDA-MTT algorithms are
shown on figures 14.2 and 14.3 respectively. The Track Purity performance metrics
is used to examine the fraction/percent of the correct associations. Track purity is
defined as a ratio of the number of correct observation-to-track associations to total
number of all possible associations during the process of tracking. Track purity met-
rics concerns every single target and could be averaged over all targets in the scenario
as well as over all Monte Carlo runs.

Our aim in these simulations is to investigate what level of classifier accuracy we
need in a particular scenario with the given separation between the closely spaced
targets. We have performed consecutive simulations starting with a confusion matrix
(CM) corresponding to the highest (prior) accuracy and ending with a matrix close
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Figure 14.1: Multitarget scenario with 25 targets.

to what is expected in pratice with common classifiers.

Before this, we did several simulations with highest accuracy CM and different
separations of the targets starting with prohibitively close separation (approximately
d = 1.5 σresid; here σresid is the residual standard deviation, ranging from 260 m at
the beginning of the trajectory to 155 m) [2]. From these simulations, we try to find
out the particular target’s separation which insures good results in term of tracks’
purity metrics.

14.3.2 Numerical results

We started our experiments with series of runs with different target separation and
confusion matrix

CM =

»

0.995 0.005
0.005 0.995

–

Hereafter, because of symmetry we will show the first row of the matrix only.
All the values in the next tables are averaged over the 50 Monte Carlo runs. At a
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Figure 14.2: Typical performance with KDA-MTT.
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Figure 14.3: Typical performance with GDA-MTT.
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distance of 300 m between targets the results are extremely discouraging for both
the kinematic only and kinematic and attribute data used (the first row of the Table
14.1). There is no surprise because this separation corresponds to less than 1.5 σresid.
This row stands out with remarkable ratio of ’attribute’ to ’kinematic’ percents of
tracks’ purity. In the ’kinematic’ case, less than one tenth of tracks are processed
properly while with using the attribute data almost two thirds of targets are not lost.
Nevertheless, the results are poor and unacceptable from the practical point of view.
In the next rows ot the table, we have increased gradually the distance between the
targets until reaching a separation of 600 m. This distance corresponds to 2.5 σresid

and the results are good enough especially for the DSmT based algorithm.

Distance in m Track purity [%]
GDA(PCR5 ) KDA

300 57.99 8.65
350 74.47 12.43
400 87.45 21.17
450 93.24 35.47
500 95.94 56.12
550 96.74 74.74
600 97.76 86.40

Table 14.1: Pd = 0.995, CM(0.995, 0.005).

The next step is to choose this medium separation size which ensures highly
acceptable results. We take the distance of 450 m because it is in the middle of
the table and its results are very close to that of larger distances. Now we start
our runs with confusion matrix (0.995;0.005) corresponding to highest accuracy and
gradually change its elements to more realistic values according to the Table 14.2. In
this table, the tracks’ purity for the pure data kinematic-based algorithm are omitted
because they do not depend on the confusion matrix values. Then we have chosen the
threshold of 85% for tracks’ purity value since this threshold provides results which
are considered as satisfying enough.

Actually, the choice of threshold is a matter of an expert assessment and strongly
depends on the particular implementation. It can be seen from the Table 14.2 that
the last row from the top with tracks’ purity value above the chosen threshold is
the row with CM(0.96;0.04). So that, if our task is to track targets separated at
normalized distance approximately 1.5σresid to 3σresid, we have to ensure a classifier
with mentioned above confusion matrix. We recall that the value of the tracks’ purity
ratio for the pure data kinematic-based algorithm for this separation is only 35.47%.

More simulations have been performed by degrading the quality of the classi-
fier/CM for trying to find the values of CM which does not influence the value of
tracks’ purity ratio, i.e. when the ’attribute’ algorithm gives the same results as



Chapter 14: Performance evaluation of a tracking algorithm . . . 419

Distance d = 450 m
Confusion Matrix Track Purity
0.995 0.005 93.24
0.99 0.01 91.51
0.98 0.02 89.53
0.97 0.03 86.83
0.96 0.04 85.26
0.95 0.05 82.48
0.94 0.06 79.41
0.93 0.07 75.38
0.92 0.08 75.25
0.91 0.09 74.27
0.90 0.10 70.69

Table 14.2: Track purity with different CM for a scenario with d = 450 m.

’kinematic’ one for the chosen targets separation. The results we have obtained are
given in Table 14.3.

Distance d = 450 m
Confusion Matrix Track Purity
0.995 0.005 93.24
0.95 0.05 82.48
0.90 0.10 70.69
0.80 0.20 52.04
0.70 0.30 46.90
0.60 0.40 43.01
0.55 0.45 42.20

Table 14.3: Distance = 450 m, PCR5 algorithm.

We can see that even for the values of elements of CM close to the probability
mass limit values of (0.5;0.5) the investigated ratio remains slightly better (the last
row of table 14.3) than that of ’kinematic’ algorithm.

Once the data association is made, the classical IMM Kalman filtering algorithm
is used for target state estimation and to reduce position errors. The figures 14.4
and 14.5 show the errors along axes X and Y with and without filtering. It can be
seen a significant reduction of the sensor errors after filtering. The figure 14.4 shows
the result of the more precise model (model 1), and in the figure 14.2 the result of
model 2 with bigger values for errors is presented. The figure 14.6 shows the result
for distance errors for the two models. We can verify that we naturally obtain lower
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errors when using the most precise model.
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Figure 14.4: Monte Carlo estimation of errors allong axes x and y for model 1.
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Figure 14.5: Monte Carlo estimation of errors allong axes x and y for model 2.
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Figure 14.6: Monte Carlo estimation of distance errors for first and second
models.

14.4 Conclusions

In this work, we have proposed and evaluated a multiple target tracking algorithm
called GDA-MTT dealing with both kinematic and atrribute data. GDA-MTT is
based on a global nearest neighbour alike approach which uses Munkres algorithm to
solve the generalized data association problem. The PCR5 combination rule devel-
oped in Dezert-Smarandache Theory has been used for managing efficiently attribute
data which allows to improve substantially the tracking performances. Our sim-
ulation results show that, even in dense target scenarios and realistic accuracy of
attribute data classifier, the GDA-MTT algorithm’s performance meets requirements
concerning its practical implementation. Our results highlight the advantage of using
a tracking algorithm exploiting both kinematic and attribute data over a classical
tracking approach based only on kinematic data.
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