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Abstract

In this article, we will discuss a new operator dC on W (g)⊗Ω∗(M) and to construct
a new Cartan model for equivariant cohomology. We use the new Cartan model to
construct the corresponding BRST model and Weil model, and discuss the relations
between them.

1 Introduction

The standard Cartan model for equivariant cohomology is construct on the algebra W (g)⊗
Ω∗(M) with operator

dCφ
i = 0, φi ∈ S(g∗), i = 1, · · · , n;

dCη = (1⊗ d−
n∑
b=1

φb ⊗ ιb)η, η ∈ Ω∗(M),

where ιb is ιeb(see [4],[5],[7],[8]). We can also introduce a new operator on W (g)⊗Ω∗(M) by

dCφ
i = 0, φi ∈ S(g∗), i = 1, · · · , n;

dCη = (1⊗ d−
n∑
b=1

φb ⊗ (ιb +
√
−1fab ιa))η, η ∈ Ω∗(M)⊗ C,

where ιb is ιeb . In this article we construct the new model for equivariant cohomology which
also called Cartan model. The idea comes form the article [3]. We also use the new Cartan
model to construct the corresponding BRST model and Weil model.

2 Cartan model

Let G ba a compact Lie group with Lie algebra g, g∗ be the dual of g. We known the
Weil algebra is

W (g) = ∧(g∗)⊗ S(g∗).

The contraction iX and the exterior derivative dW on W (g) defined as follow:
Choose a basis e1, · · · , en for g and let e∗1, · · · , e∗n be the dual basis of g∗. Let θ1, · · · , θn

be the dual basis of g∗ generating the exterior algebra ∧(g∗) and let φ1, · · · , φn be the dual
basis of g∗ generating the symmetric algebra S(g∗). Let cijk be the structure constants of
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g(see [6]), that is [ej, ek] = Σn
i=1c

i
jkei. We kown that S(g∗) is identified with the polynomial

ring C[φ1, · · · , φn].
Define the contraction iX on W (g) for any X ∈ g by

ier(θ
s) = δsr , ier(φ

s) = 0

for all r, s = 1, · · · , n and extending by linearity and as a derivation.
Define dW by

dW θ
i = −1

2

∑
j,k

cijkθ
j ∧ θk + φi

and
dWφ

i = −
∑
j,k

cijkθ
jφk

and extending dW to W (g) as a derivation.
The Lie derivative on W (g) is defined by

LX = dW · iX + iX · dW .

Lemma 1. Leiθ
j = −

∑
k c

j
ikθ

k and Leiφ
j = −

∑
k c

j
ikφ

k.

Proof. Because

Leiθ
j = (dW · iei + iei · dW )θj = iei(−

1

2

∑
i,k

cjikθ
i ∧ θk + φj) = −

∑
k

cjikθ
k,

Leiφ
j = (dW · iei + iei · dW )φj = iei(−

∑
i,k

cjikθ
iφk) = −

∑
k

cjikφ
k

Lemma 2. The operators iX , dW , LX on W (g) satisfy the following identities:

(1) d2
W = 0;

(2) LX · dW − dW · LX = 0, for any X ∈ g;

(3) iXiY + iY iX = 0, for any X, Y ∈ g;

(4) LXiY − iYLX = i[X,Y ], for any X, Y ∈ g;

(5) LXLY − LYLX = L[X,Y ], for any X, Y ∈ g;

(6) dW iX + iXdW = LX , for any X ∈ g.

Proof. see [4].

So, there is a complex (W (g), dW ), the cohomology of (W (g), dW ) is trivial (see [5]), i.e.
H∗(W (g)) ∼= R.

Let M be a smooth closed manifold with G acting smoothly on the left. Let XM be the
vector field generated by the Lie algebra element X ∈ g given by

(XMf)(x) =
d

dt
f(exp(−tX) · x) |t=0 .

Set d, ιXM ,LXM be the exterior derivative, contraction and Lie derivative on Ω∗(M). Denote
ιX = ιXM and LX = LXM acting on Ω∗(M).

2



Definition 1. The Cartan model is defined by the algebra

S(g∗)⊗ Ω∗(M)

and the differential
dCφ

i = 0, φi ∈ S(g∗), i = 1, · · · , n;

dCη = (1⊗ d−
n∑
i=1

φi ⊗ (ιi +
√
−1f ji ιj))η, η ∈ Ω∗(M)⊗ C,

where ιi is ιei and f ji ∈ R. The operator dC is called the equivariant exterior derivative.

Its action on forms α ∈ S(g∗)⊗ Ω∗(M) is

(dCα)(X) = (d− ιXM −
√
−1ιYM )(α(X))

where XM = ciXM
i is the vector field on M generated by the Lie algebra element X = ciei ∈

g,Y M = f ijc
jXM

i (see [2]). In the artile [3] we use the operator d+ ιXM +
√
−1ιYM to construct

an complex (Ω∗(M)⊗ C, d+ ιXM +
√
−1ιYM ) and cohomology group H∗

X+
√
−1Y

(M), we can

do it in the same way by the operator d− ιXM −
√
−1ιYM .

Lemma 3.

d2
C = −

n∑
i=1

φi ⊗ (Li +
√
−1f ji Lj)

Proof. By the lemma 2. we have

d2
C = (1⊗ d−

n∑
i=1

φi ⊗ (ιi +
√
−1f ji ιj))(1⊗ d−

n∑
i=1

φi ⊗ (ιi +
√
−1f ji ιj))

= −
n∑
i=1

φi ⊗ [d(ιi +
√
−1f ji ιj)) + (ιi +

√
−1f ji ιj))d]

= −
n∑
i=1

φi ⊗ (Li +
√
−1f ji Lj)

Let (S(g∗)⊗ Ω∗(M))G̃ be the subalgebra of S(g∗)⊗ Ω∗(M) which satisfied

(
n∑
i=1

φi ⊗ (Li +
√
−1f ji Lj))α = 0,∀α ∈ (S(g∗)⊗ Ω∗(M))G̃

So we get the complex ((S(g∗) ⊗ Ω∗(M))G̃, dC). The equivariantly closed form is ∀α ∈
(S(g∗) ⊗ Ω∗(M))G̃ with dCα = 0, the equivariantly exact form is ∀α ∈ (S(g∗) ⊗ Ω∗(M))G̃

there is β ∈ (S(g∗)⊗ Ω∗(M))G̃ with α = dCβ.
As in [8] we can define the equivariant connection

∇g = 1⊗∇−
n∑
i=1

φi ⊗ (ιi +
√
−1f ji ιj)

and the equivariant curvature of the connection

Fg = (∇g)
2 +

n∑
i=1

φi ⊗ (Li +
√
−1f ji Lj)

3



3 BRST model

This section is inspired by [5]. First, we will to construct the BRST differential algebra.
The algebra is

B = W (g)⊗ Ω∗(M).

The BRST operator is

δ = dW⊗1+1⊗d+
n∑
i=1

θi⊗(Li+
√
−1f ji Lj)−

n∑
a=1

φa⊗(ιa+
√
−1f baιb)+

1

2

∑
j,k

cijkθ
jθk⊗(ιi+

√
−1f ji ιj)

−
∑
j<k

θjθk ⊗ ((Lj +
√
−1fhj Lh)(ιk +

√
−1f gk ιg)− (ιj +

√
−1fhj ιh)(Lk +

√
−1f gkLg))

where Li is Lei and ιa is ιea .

Lemma 4. On the algebra W (g)⊗ Ω∗(M), we have δ2 = 0.

Proof. By computation, we have

δ = exp(
n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))(dW ⊗ 1 + 1⊗ d) exp(−

n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))

where ιa is ιea . So we have

δ2 = exp(
n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))(dW ⊗ 1 + 1⊗ d) exp(−

n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))·

exp(
n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))(dW ⊗ 1 + 1⊗ d) exp(−

n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))

= exp(
n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))(dW ⊗ 1 + 1⊗ d)2 exp(−

n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj))

= 0

So we get the BRST differential algebra (W (g)⊗ Ω∗(M), δ).

Lemma 5. Fixing the index i and k

(θi ⊗ (ιi +
√
−1f ji ιj))(θ

k ⊗ (ιk +
√
−1f lkιl)) = (θk ⊗ (ιk +

√
−1f lkιl))(θ

i ⊗ (ιi +
√
−1f ji ιj))

Proof. If i = k, we have

(θi ⊗ (ιi +
√
−1f ji ιj))(θ

k ⊗ (ιk +
√
−1f lkιl)) = 0 = (θk ⊗ (ιk +

√
−1f lkιl))(θ

i ⊗ (ιi +
√
−1f ji ιj))

If i 6= k, then because

(θi ⊗ ιi)(θk ⊗ ιk) = −θi ∧ θk ⊗ ιiιk = −θk ∧ θi ⊗ ιkιi = (θk ⊗ ιk)(θi ⊗ ιi)

(θi⊗(
√
−1f ji ιj))(θ

k⊗ιk) = −θi∧θk⊗(
√
−1f ji ιj)ιk = −θk∧θi⊗ιk(

√
−1f ji ιj) = (θk⊗ιk)(θi⊗(

√
−1f ji ιj))

So we get the result.
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Let ψ : W (g)⊗ Ω∗(M)→ W (g)⊗ Ω∗(M) be the map

ψ =
∏
i

(1− θi ⊗ (ιi +
√
−1f ji ιj)).

By computation

(1− θ1 ⊗ (ι1 +
√
−1f j1 ιj))(1− θ2 ⊗ (ι2 +

√
−1f j2 ιj)) · · · (1− θn ⊗ (ιn +

√
−1f jnιj))

we have

ψ = exp(−
n∑
i=1

θi ⊗ (ιi +
√
−1f ji ιj)).

In the section 5. we will discuss the map ψ.

4 Weil model

The exterior derivative operator on W (g)⊗ Ω∗(M) is defined by

D
.
= dW ⊗ 1 + 1⊗ d,

the contraction operator is defined by

ĩX
.
= iX ⊗ 1 + 1⊗ ιX

and Lie derivative be defined by

L̃X
.
= LX ⊗ 1 + 1⊗ LX

Lemma 6. The operators ĩX , D, L̃X on W (g)⊗ Ω∗(M) satisfy the following identities:

(1) D2 = 0;

(2) L̃X ·D −D · L̃X = 0, for any X ∈ g;

(3) ĩX ĩY + ĩY ĩX = 0, for any X, Y ∈ g;

(4) L̃X ĩY − ĩY L̃X = ĩ[X,Y ], for any X, Y ∈ g;

(5) L̃XL̃Y − L̃Y L̃X = L̃[X,Y ], for any X, Y ∈ g;

(6) L̃X = D · ĩX + ĩX ·D, for any X ∈ g.

Proof. see [4].

Set
ĩX+

√
−1Y

.
= iX ⊗ 1 + 1⊗ (ιX +

√
−1ιY )

be the contraction operator on W (g)⊗ Ω∗(M) induced by the contraction of X +
√
−1Y .

Set
L̃X+

√
−1Y

.
= LX ⊗ 1 + 1⊗ (LX +

√
−1LY )

be the Lie derivative on W (g)⊗ Ω∗(M) about X +
√
−1Y .
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Lemma 7.
L̃X+

√
−1Y = D · ĩX+

√
−1Y + ĩX+

√
−1Y ·D

for any X, Y ∈ g.

Proof.

D · ĩX+
√
−1Y + ĩX+

√
−1Y ·D = (dW ⊗ 1 + 1⊗ d) · ĩX+

√
−1Y + ĩX+

√
−1Y · (dW ⊗ 1 + 1⊗ d)

= dW iX ⊗ 1 + iXdW ⊗ 1 + 1⊗ d(ιX +
√
−1ιY ) + 1⊗ (ιX +

√
−1ιY )d

= LX ⊗ 1 + 1⊗ (LX +
√
−1LY )

= L̃X+
√
−1Y

Definition 2. An element η ∈ W (g) ⊗ Ω∗(M) is basic if it satisfies ĩX+
√
−1Y η = 0,

L̃X+
√
−1Y η = 0 for any X, Y ∈ g. Set (W (g)⊗ Ω∗(M))bas be the set of basic elements.

Lemma 8. The operator D preserves (W (g)⊗ Ω∗(M))bas.

Proof. Set η ∈ (W (g)⊗Ω∗(M))bas, then ĩX+
√
−1Y η = 0 and L̃X+

√
−1Y η = 0 for any X, Y ∈ g.

So by Lemma 7., we have

(̃iX+
√
−1Y ·D)η = ĩX+

√
−1Y (Dη) = L̃X+

√
−1Y η −D(̃iX+

√
−1Y η) = 0

for any X, Y ∈ g.
And

L̃X+
√
−1Y (Dη) = D(̃iX+

√
−1Y ·D)η + ĩX+

√
−1Y (D2)η = 0

for any X, Y ∈ g.
Then we get

Dη ∈ (W (g)⊗ Ω∗(M))bas.

Now we can construct the cohomology group as following:
By the complex ((W (g)⊗ Ω∗(M))bas, D), we can define the cohomology group as follow,

H∗G(M)
.
=

KerD|(W(g)⊗Ω∗(M))bas

ImD|(W(g)⊗Ω∗(M))bas

.

Definition 3. The cohomology group H∗G(M) is called the equivariant cohomology groups of
M . The equivariant cohomology construct by this way is called Weil model.

5 The main results

In this section we explain the precise relation between the Weil model and the Cartan
model for equivariant cohomology defined earlier.

Theorem 1. ψ is an isomorphism of differential algebra, i.e., the diagram

W (g)⊗ Ω∗(M)
ψ−−−→ W (g)⊗ Ω∗(M)

δ

y yD
W (g)⊗ Ω∗(M) −−−→

ψ
W (g)⊗ Ω∗(M)

commutes.
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Proof. By computation in lemma 4., we have

δ = ψ ·D · ψ−1

Theorem 2. We have the following commutative diagram:

(W (g)⊗ Ω∗(M), δ)
ψ−−−→ (W (g)⊗ Ω∗(M), D)

id

x xid
(S(g∗)⊗ Ω∗(M))G̃ −−−→

ψ
(W (g)⊗ Ω∗(M))bas

Proof. For ∀α ∈ (S(g∗)⊗ Ω∗(M))G̃,by∏
a

(1−θa⊗(ιa+
√
−1f baιb))·(ik⊗1) = (ik⊗1+1⊗(ιk+

√
−1f jk ιj))·

∏
a

(1−θa⊗(ιa+
√
−1f baιb))

we have
(ik ⊗ 1 + 1⊗ (ιk +

√
−1f jk ιj))(ψ(α)) = 0.

Because
[δ, ik ⊗ 1] = Lk ⊗ 1 + 1⊗ (Lk +

√
−1f jkLj)

and ∏
a

(1− θa ⊗ (ιa +
√
−1f baιb)) · (Lk ⊗ 1 + 1⊗ (Lk +

√
−1f jkLj))

= (Lk ⊗ 1 + 1⊗ (Lk +
√
−1f jkLj)) ·

∏
a

(1− θa ⊗ (ιa +
√
−1f baιb))

so we have
(Lk ⊗ 1 + 1⊗ (Lk +

√
−1f jkLj))(ψ(α)) = 0

Then we get ψ(α) ∈ (W (g)⊗ Ω∗(M))bas. So we get the commutative diagram.

The theorem 2. tell us the relation about BRST model and Cartan model.

Theorem 3.

(S(g∗)⊗ Ω∗(M))G̃
ψ−−−→ (W (g)⊗ Ω∗(M))bas

is a isomorphism.

Proof. For ∀η ∈ (W (g)⊗ Ω∗(M))bas, ψ
−1η =

∏
a(1 + θa ⊗ (ιa +

√
−1f baιb))η. By∏

a

(1 + θa ⊗ (ιa +
√
−1f baιb))|(W (g)⊗Ω∗(M))bas =

∏
a

(1− θaia ⊗ 1)|(W (g)⊗Ω∗(M))bas

and
Im(1− θaia ⊗ 1) = Ker(ia ⊗ 1)

So
ψ−1η ∈ (S(g∗)⊗ Ω∗(M))bas.

Then

(
n∑
i=1

φi ⊗ (Li +
√
−1f ji Lj))ψ−1η = 0

i.e.,ψ−1η ∈ (S(g∗)⊗Ω∗(M))G̃. And by the proof in theorem 2.we get that ψ is a isomorphism.

The theorem 3. tell us the relation about Cartan model and Weil model.
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