The Cartan Model for Equivariant Cohomology

Xu Chen *

Abstract

In this article, we will discuss a new operator d_C on $W(\mathfrak{g}) \otimes \Omega^*(M)$ and to construct a new Cartan model for equivariant cohomology. We use the new Cartan model to construct the corresponding BRST model and Weil model, and discuss the relations between them.

1 Introduction

The standard Cartan model for equivariant cohomology is construct on the algebra $W(\mathfrak{g}) \otimes \Omega^*(M)$ with operator

$$d_C \phi^i = 0, \phi^i \in S(\mathfrak{g}^*), i = 1, \cdots, n;$$

$$d_C \eta = (1 \otimes d - \sum_{b=1}^n \phi^b \otimes \iota_b) \eta, \eta \in \Omega^*(M),$$

where ι_b is ι_{e_b} (see [4],[5],[7],[8]). We can also introduce a new operator on $W(\mathfrak{g}) \otimes \Omega^*(M)$ by

$$d_C \phi^i = 0, \phi^i \in S(\mathfrak{g}^*), i = 1, \cdots, n;$$

$$d_C \eta = (1 \otimes d - \sum_{b=1}^n \phi^b \otimes (\iota_b + \sqrt{-1} f_b^a \iota_a)) \eta, \eta \in \Omega^*(M) \otimes \mathbb{C},$$

where ι_b is ι_{e_b} . In this article we construct the new model for equivariant cohomology which also called Cartan model. The idea comes form the article [3]. We also use the new Cartan model to construct the corresponding BRST model and Weil model.

2 Cartan model

Let G ba a compact Lie group with Lie algebra \mathfrak{g} , \mathfrak{g}^* be the dual of \mathfrak{g} . We known the Weil algebra is

$$W(\mathfrak{g}) = \wedge (\mathfrak{g}^*) \otimes S(\mathfrak{g}^*).$$

The contraction i_X and the exterior derivative d_W on $W(\mathfrak{g})$ defined as follow:

Choose a basis e_1, \dots, e_n for \mathfrak{g} and let e_1^*, \dots, e_n^* be the dual basis of \mathfrak{g}^* . Let $\theta^1, \dots, \theta^n$ be the dual basis of \mathfrak{g}^* generating the exterior algebra $\wedge(\mathfrak{g}^*)$ and let ϕ^1, \dots, ϕ^n be the dual basis of \mathfrak{g}^* generating the symmetric algebra $S(\mathfrak{g}^*)$. Let c_{jk}^i be the structure constants of

^{*}Email: xiaorenwu08@163.com. ChongQing, China

 $\mathfrak{g}(\text{see }[6])$, that is $[e_j, e_k] = \sum_{i=1}^n c_{jk}^i e_i$. We kown that $S(\mathfrak{g}^*)$ is identified with the polynomial ring $\mathbb{C}[\phi^1, \cdots, \phi^n]$.

Define the contraction i_X on $W(\mathfrak{g})$ for any $X \in \mathfrak{g}$ by

$$i_{e_r}(\theta^s) = \delta_r^s, \ i_{e_r}(\phi^s) = 0$$

for all $r, s = 1, \dots, n$ and extending by linearity and as a derivation.

Define d_W by

$$d_W \theta^i = -\frac{1}{2} \sum_{i,k} c^i_{jk} \theta^j \wedge \theta^k + \phi^i$$

and

$$d_W \phi^i = -\sum_{j,k} c^i_{jk} \theta^j \phi^k$$

and extending d_W to $W(\mathfrak{g})$ as a derivation.

The Lie derivative on $W(\mathfrak{g})$ is defined by

$$L_X = d_W \cdot i_X + i_X \cdot d_W.$$

Lemma 1. $L_{e_i}\theta^j = -\sum_k c_{ik}^j \theta^k$ and $L_{e_i}\phi^j = -\sum_k c_{ik}^j \phi^k$.

Proof. Because

$$L_{e_i}\theta^j = (d_W \cdot i_{e_i} + i_{e_i} \cdot d_W)\theta^j = i_{e_i}(-\frac{1}{2}\sum_{i,k} c_{ik}^j \theta^i \wedge \theta^k + \phi^j) = -\sum_k c_{ik}^j \theta^k,$$

$$L_{e_i}\phi^j = (d_W \cdot i_{e_i} + i_{e_i} \cdot d_W)\phi^j = i_{e_i}(-\sum_{i,k} c_{ik}^j \theta^i \phi^k) = -\sum_k c_{ik}^j \phi^k$$

Lemma 2. The operators i_X, d_W, L_X on $W(\mathfrak{g})$ satisfy the following identities:

- (1) $d_W^2 = 0$;
- (2) $L_X \cdot d_W d_W \cdot L_X = 0$, for any $X \in \mathfrak{g}$;
- (3) $i_X i_Y + i_Y i_X = 0$, for any $X, Y \in \mathfrak{g}$;
- **(4)** $L_X i_Y i_Y L_X = i_{[X,Y]}$, for any $X, Y \in \mathfrak{g}$;
- (5) $L_X L_Y L_Y L_X = L_{[X,Y]}$, for any $X, Y \in \mathfrak{g}$;
- (6) $d_W i_X + i_X d_W = L_X$, for any $X \in \mathfrak{g}$.

Proof. see [4].

So, there is a complex $(W(\mathfrak{g}), d_W)$, the cohomology of $(W(\mathfrak{g}), d_W)$ is trivial (see [5]), i.e. $H^*(W(\mathfrak{g})) \cong \mathbb{R}$.

Let M be a smooth closed manifold with G acting smoothly on the left. Let X^M be the vector field generated by the Lie algebra element $X \in \mathfrak{g}$ given by

$$(X^M f)(x) = \frac{d}{dt} f(\exp(-tX) \cdot x) \mid_{t=0}.$$

Set $d, \iota_{X^M}, \mathcal{L}_{X^M}$ be the exterior derivative, contraction and Lie derivative on $\Omega^*(M)$. Denote $\iota_X = \iota_{X^M}$ and $\mathcal{L}_X = \mathcal{L}_{X^M}$ acting on $\Omega^*(M)$.

Definition 1. The Cartan model is defined by the algebra

$$S(\mathfrak{g}^*)\otimes\Omega^*(M)$$

and the differential

$$d_C \phi^i = 0, \phi^i \in S(\mathfrak{g}^*), i = 1, \cdots, n;$$

$$d_C \eta = (1 \otimes d - \sum_{i=1}^n \phi^i \otimes (\iota_i + \sqrt{-1} f_i^j \iota_j)) \eta, \eta \in \Omega^*(M) \otimes \mathbb{C},$$

where ι_i is ι_{e_i} and $f_i^j \in \mathbb{R}$. The operator d_C is called the equivariant exterior derivative.

Its action on forms $\alpha \in S(\mathfrak{g}^*) \otimes \Omega^*(M)$ is

$$(d_C\alpha)(X) = (d - \iota_{X^M} - \sqrt{-1}\iota_{Y^M})(\alpha(X))$$

where $X^M = c^i X_i^M$ is the vector field on M generated by the Lie algebra element $X = c^i e_i \in \mathfrak{g}, Y^M = f_j^i c^j X_i^M$ (see [2]). In the artile [3] we use the operator $d + \iota_{X^M} + \sqrt{-1}\iota_{Y^M}$ to construct an complex $(\Omega^*(M) \otimes \mathbb{C}, d + \iota_{X^M} + \sqrt{-1}\iota_{Y^M})$ and cohomology group $H^*_{X+\sqrt{-1}Y}(M)$, we can do it in the same way by the operator $d - \iota_{X^M} - \sqrt{-1}\iota_{Y^M}$.

Lemma 3.

$$d_C^2 = -\sum_{i=1}^n \phi^i \otimes (\mathcal{L}_i + \sqrt{-1} f_i^j \mathcal{L}_j)$$

Proof. By the lemma 2. we have

$$d_C^2 = (1 \otimes d - \sum_{i=1}^n \phi^i \otimes (\iota_i + \sqrt{-1} f_i^j \iota_j))(1 \otimes d - \sum_{i=1}^n \phi^i \otimes (\iota_i + \sqrt{-1} f_i^j \iota_j))$$

$$= -\sum_{i=1}^n \phi^i \otimes [d(\iota_i + \sqrt{-1} f_i^j \iota_j)) + (\iota_i + \sqrt{-1} f_i^j \iota_j))d]$$

$$= -\sum_{i=1}^n \phi^i \otimes (\mathcal{L}_i + \sqrt{-1} f_i^j \mathcal{L}_j)$$

Let $(S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}}$ be the subalgebra of $S(\mathfrak{g}^*) \otimes \Omega^*(M)$ which satisfied

$$\left(\sum_{i=1}^{n} \phi^{i} \otimes (\mathcal{L}_{i} + \sqrt{-1} f_{i}^{j} \mathcal{L}_{j})\right) \alpha = 0, \forall \alpha \in \left(S(\mathfrak{g}^{*}) \otimes \Omega^{*}(M)\right)^{\widetilde{G}}$$

So we get the complex $((S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}}, d_C)$. The equivariantly closed form is $\forall \alpha \in (S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}}$ with $d_C \alpha = 0$, the equivariantly exact form is $\forall \alpha \in (S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}}$ there is $\beta \in (S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}}$ with $\alpha = d_C \beta$.

As in [8] we can define the equivariant connection

$$\nabla_{\mathfrak{g}} = 1 \otimes \nabla - \sum_{i=1}^{n} \phi^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j})$$

and the equivariant curvature of the connection

$$F_{\mathfrak{g}} = (\nabla_{\mathfrak{g}})^2 + \sum_{i=1}^n \phi^i \otimes (\mathcal{L}_i + \sqrt{-1} f_i^j \mathcal{L}_j)$$

3 BRST model

This section is inspired by [5]. First, we will to construct the BRST differential algebra. The algebra is

$$B = W(\mathfrak{g}) \otimes \Omega^*(M).$$

The BRST operator is

$$\delta = d_W \otimes 1 + 1 \otimes d + \sum_{i=1}^n \theta^i \otimes (\mathcal{L}_i + \sqrt{-1} f_i^j \mathcal{L}_j) - \sum_{a=1}^n \phi^a \otimes (\iota_a + \sqrt{-1} f_a^b \iota_b) + \frac{1}{2} \sum_{j,k} c_{jk}^i \theta^j \theta^k \otimes (\iota_i + \sqrt{-1} f_i^j \iota_j)$$
$$- \sum_{j \leq k} \theta^j \theta^k \otimes ((\mathcal{L}_j + \sqrt{-1} f_j^h \mathcal{L}_h) (\iota_k + \sqrt{-1} f_k^g \iota_g) - (\iota_j + \sqrt{-1} f_j^h \iota_h) (\mathcal{L}_k + \sqrt{-1} f_k^g \mathcal{L}_g))$$

where \mathcal{L}_i is \mathcal{L}_{e_i} and ι_a is ι_{e_a} .

Lemma 4. On the algebra $W(\mathfrak{g}) \otimes \Omega^*(M)$, we have $\delta^2 = 0$.

Proof. By computation, we have

$$\delta = \exp(\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1}f_{i}^{j}\iota_{j}))(d_{W} \otimes 1 + 1 \otimes d) \exp(-\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1}f_{i}^{j}\iota_{j}))$$

where ι_a is ι_{e_a} . So we have

$$\delta^{2} = \exp(\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j}))(d_{W} \otimes 1 + 1 \otimes d) \exp(-\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j})) \cdot \exp(\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j}))(d_{W} \otimes 1 + 1 \otimes d) \exp(-\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j}))$$

$$= \exp(\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j}))(d_{W} \otimes 1 + 1 \otimes d)^{2} \exp(-\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j}))$$

=0

So we get the BRST differential algebra $(W(\mathfrak{g}) \otimes \Omega^*(M), \delta)$.

Lemma 5. Fixing the index i and k

$$(\theta^i \otimes (\iota_i + \sqrt{-1}f_i^j\iota_i))(\theta^k \otimes (\iota_k + \sqrt{-1}f_k^l\iota_l)) = (\theta^k \otimes (\iota_k + \sqrt{-1}f_k^l\iota_l))(\theta^i \otimes (\iota_i + \sqrt{-1}f_i^j\iota_i))$$

Proof. If i = k, we have

$$(\theta^i \otimes (\iota_i + \sqrt{-1}f_i^j \iota_i))(\theta^k \otimes (\iota_k + \sqrt{-1}f_k^l \iota_l)) = 0 = (\theta^k \otimes (\iota_k + \sqrt{-1}f_k^l \iota_l))(\theta^i \otimes (\iota_i + \sqrt{-1}f_i^j \iota_i))$$

If $i \neq k$, then because

$$(\theta^{i} \otimes \iota_{i})(\theta^{k} \otimes \iota_{k}) = -\theta^{i} \wedge \theta^{k} \otimes \iota_{i}\iota_{k} = -\theta^{k} \wedge \theta^{i} \otimes \iota_{k}\iota_{i} = (\theta^{k} \otimes \iota_{k})(\theta^{i} \otimes \iota_{i})$$

$$(\theta^{i} \otimes (\sqrt{-1}f_{i}^{j}\iota_{j}))(\theta^{k} \otimes \iota_{k}) = -\theta^{i} \wedge \theta^{k} \otimes (\sqrt{-1}f_{i}^{j}\iota_{j})\iota_{k} = -\theta^{k} \wedge \theta^{i} \otimes \iota_{k}(\sqrt{-1}f_{i}^{j}\iota_{j}) = (\theta^{k} \otimes \iota_{k})(\theta^{i} \otimes (\sqrt{-1}f_{i}^{j}\iota_{j}))$$
So we get the result.

4

Let $\psi: W(\mathfrak{g}) \otimes \Omega^*(M) \to W(\mathfrak{g}) \otimes \Omega^*(M)$ be the map

$$\psi = \prod_{i} (1 - \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j})).$$

By computation

$$(1 - \theta^1 \otimes (\iota_1 + \sqrt{-1}f_1^j\iota_i))(1 - \theta^2 \otimes (\iota_2 + \sqrt{-1}f_2^j\iota_i)) \cdots (1 - \theta^n \otimes (\iota_n + \sqrt{-1}f_n^j\iota_i))$$

we have

$$\psi = \exp(-\sum_{i=1}^{n} \theta^{i} \otimes (\iota_{i} + \sqrt{-1} f_{i}^{j} \iota_{j})).$$

In the section 5. we will discuss the map ψ .

4 Weil model

The exterior derivative operator on $W(\mathfrak{g}) \otimes \Omega^*(M)$ is defined by

$$D \doteq d_W \otimes 1 + 1 \otimes d,$$

the contraction operator is defined by

$$\widetilde{i}_X \doteq i_X \otimes 1 + 1 \otimes \iota_X$$

and Lie derivative be defined by

$$\widetilde{L}_X \doteq L_X \otimes 1 + 1 \otimes \mathcal{L}_X$$

Lemma 6. The operators $\widetilde{i}_X, D, \widetilde{L}_X$ on $W(\mathfrak{g}) \otimes \Omega^*(M)$ satisfy the following identities:

- (1) $D^2 = 0$;
- (2) $\widetilde{L}_X \cdot D D \cdot \widetilde{L}_X = 0$, for any $X \in \mathfrak{g}$;
- (3) $\widetilde{i}_X \widetilde{i}_Y + \widetilde{i}_Y \widetilde{i}_X = 0$, for any $X, Y \in \mathfrak{g}$;
- (4) $\widetilde{L}_X \widetilde{i}_Y \widetilde{i}_Y \widetilde{L}_X = \widetilde{i}_{[X,Y]}$, for any $X, Y \in \mathfrak{g}$;
- (5) $\widetilde{L}_X\widetilde{L}_Y \widetilde{L}_Y\widetilde{L}_X = \widetilde{L}_{[X,Y]}$, for any $X, Y \in \mathfrak{g}$;
- (6) $\widetilde{L}_X = D \cdot \widetilde{i}_X + \widetilde{i}_X \cdot D$, for any $X \in \mathfrak{g}$.

Proof. see [4]. \Box

Set

$$\widetilde{i}_{X+\sqrt{-1}Y} \doteq i_X \otimes 1 + 1 \otimes (\iota_X + \sqrt{-1}\iota_Y)$$

be the contraction operator on $W(\mathfrak{g}) \otimes \Omega^*(M)$ induced by the contraction of $X + \sqrt{-1}Y$. Set

$$\widetilde{L}_{X+\sqrt{-1}Y} \doteq L_X \otimes 1 + 1 \otimes (\mathcal{L}_X + \sqrt{-1}\mathcal{L}_Y)$$

be the Lie derivative on $W(\mathfrak{g}) \otimes \Omega^*(M)$ about $X + \sqrt{-1}Y$.

Lemma 7.

$$\widetilde{L}_{X+\sqrt{-1}Y} = D \cdot \widetilde{i}_{X+\sqrt{-1}Y} + \widetilde{i}_{X+\sqrt{-1}Y} \cdot D$$

for any $X, Y \in \mathfrak{g}$.

Proof.

$$D \cdot \widetilde{i}_{X+\sqrt{-1}Y} + \widetilde{i}_{X+\sqrt{-1}Y} \cdot D = (d_W \otimes 1 + 1 \otimes d) \cdot \widetilde{i}_{X+\sqrt{-1}Y} + \widetilde{i}_{X+\sqrt{-1}Y} \cdot (d_W \otimes 1 + 1 \otimes d)$$

$$= d_W i_X \otimes 1 + i_X d_W \otimes 1 + 1 \otimes d(\iota_X + \sqrt{-1}\iota_Y) + 1 \otimes (\iota_X + \sqrt{-1}\iota_Y) d$$

$$= L_X \otimes 1 + 1 \otimes (\mathcal{L}_X + \sqrt{-1}\mathcal{L}_Y)$$

$$= \widetilde{L}_{X+\sqrt{-1}Y}$$

Definition 2. An element $\eta \in W(\mathfrak{g}) \otimes \Omega^*(M)$ is **basic** if it satisfies $\widetilde{i}_{X+\sqrt{-1}Y}\eta = 0$, $\widetilde{L}_{X+\sqrt{-1}Y}\eta = 0$ for any $X,Y \in \mathfrak{g}$. Set $(W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}$ be the set of basic elements.

Lemma 8. The operator D preserves $(W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}$.

Proof. Set $\eta \in (W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}$, then $\widetilde{i}_{X+\sqrt{-1}Y}\eta = 0$ and $\widetilde{L}_{X+\sqrt{-1}Y}\eta = 0$ for any $X,Y \in \mathfrak{g}$. So by Lemma 7., we have

$$(\widetilde{i}_{X+\sqrt{-1}Y} \cdot D)\eta = \widetilde{i}_{X+\sqrt{-1}Y}(D\eta) = \widetilde{L}_{X+\sqrt{-1}Y}\eta - D(\widetilde{i}_{X+\sqrt{-1}Y}\eta) = 0$$

for any $X, Y \in \mathfrak{g}$.

And

$$\widetilde{L}_{X+\sqrt{-1}Y}(D\eta) = D(\widetilde{i}_{X+\sqrt{-1}Y} \cdot D)\eta + \widetilde{i}_{X+\sqrt{-1}Y}(D^2)\eta = 0$$

for any $X, Y \in \mathfrak{g}$.

Then we get

$$D\eta \in (W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}.$$

Now we can construct the cohomology group as following:

By the complex $((W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}, D)$, we can define the cohomology group as follow,

$$H_G^*(M) \doteq \frac{\mathrm{KerD}|_{(\mathrm{W}(\mathfrak{g}) \otimes \Omega^*(\mathrm{M}))_{\mathrm{bas}}}}{\mathrm{ImD}|_{(\mathrm{W}(\mathfrak{g}) \otimes \Omega^*(\mathrm{M}))_{\mathrm{bas}}}}.$$

Definition 3. The cohomology group $H_G^*(M)$ is called the equivariant cohomology groups of M. The equivariant cohomology construct by this way is called **Weil model**.

5 The main results

In this section we explain the precise relation between the Weil model and the Cartan model for equivariant cohomology defined earlier.

Theorem 1. ψ is an isomorphism of differential algebra, i.e., the diagram

$$W(\mathfrak{g}) \otimes \Omega^*(M) \xrightarrow{\psi} W(\mathfrak{g}) \otimes \Omega^*(M)$$

$$\delta \downarrow \qquad \qquad \downarrow D$$

$$W(\mathfrak{g}) \otimes \Omega^*(M) \xrightarrow{\psi} W(\mathfrak{g}) \otimes \Omega^*(M)$$

commutes.

Proof. By computation in lemma 4., we have

$$\delta = \psi \cdot D \cdot \psi^{-1}$$

Theorem 2. We have the following commutative diagram:

$$(W(\mathfrak{g}) \otimes \Omega^*(M), \delta) \xrightarrow{\psi} (W(\mathfrak{g}) \otimes \Omega^*(M), D)$$

$$id \uparrow \qquad \qquad \uparrow id$$

$$(S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\tilde{G}} \xrightarrow{\psi} (W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}$$

Proof. For $\forall \alpha \in (S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}}$, by

$$\prod_a (1-\theta^a \otimes (\iota_a + \sqrt{-1} f_a^b \iota_b)) \cdot (i_k \otimes 1) = (i_k \otimes 1 + 1 \otimes (\iota_k + \sqrt{-1} f_k^j \iota_j)) \cdot \prod_a (1-\theta^a \otimes (\iota_a + \sqrt{-1} f_a^b \iota_b))$$

we have

$$(i_k \otimes 1 + 1 \otimes (\iota_k + \sqrt{-1} f_k^j \iota_j))(\psi(\alpha)) = 0.$$

Because

$$[\delta, i_k \otimes 1] = L_k \otimes 1 + 1 \otimes (\mathcal{L}_k + \sqrt{-1} f_k^j \mathcal{L}_j)$$

and

$$\prod_{a} (1 - \theta^{a} \otimes (\iota_{a} + \sqrt{-1} f_{a}^{b} \iota_{b})) \cdot (L_{k} \otimes 1 + 1 \otimes (\mathcal{L}_{k} + \sqrt{-1} f_{k}^{j} \mathcal{L}_{j}))$$

$$= (L_{k} \otimes 1 + 1 \otimes (\mathcal{L}_{k} + \sqrt{-1} f_{k}^{j} \mathcal{L}_{j})) \cdot \prod_{a} (1 - \theta^{a} \otimes (\iota_{a} + \sqrt{-1} f_{a}^{b} \iota_{b}))$$

so we have

$$(L_k \otimes 1 + 1 \otimes (\mathcal{L}_k + \sqrt{-1} f_k^j \mathcal{L}_i))(\psi(\alpha)) = 0$$

Then we get $\psi(\alpha) \in (W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}$. So we get the commutative diagram.

The theorem 2. tell us the relation about BRST model and Cartan model.

Theorem 3.

$$(S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}} \xrightarrow{\psi} (W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}$$

is a isomorphism.

Proof. For
$$\forall \eta \in (W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}$$
, $\psi^{-1}\eta = \prod_a (1 + \theta^a \otimes (\iota_a + \sqrt{-1}f_a^b\iota_b))\eta$. By

$$\prod_{a} (1 + \theta^a \otimes (\iota_a + \sqrt{-1} f_a^b \iota_b))|_{(W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}} = \prod_{a} (1 - \theta^a i_a \otimes 1)|_{(W(\mathfrak{g}) \otimes \Omega^*(M))_{bas}}$$

and

$$Im(1 - \theta^a i_a \otimes 1) = Ker(i_a \otimes 1)$$

So

$$\psi^{-1}\eta \in (S(\mathfrak{g}^*) \otimes \Omega^*(M))_{bas}.$$

Then

$$(\sum_{i=1}^{n} \phi^{i} \otimes (\mathcal{L}_{i} + \sqrt{-1} f_{i}^{j} \mathcal{L}_{j})) \psi^{-1} \eta = 0$$

i.e., $\psi^{-1}\eta \in (S(\mathfrak{g}^*) \otimes \Omega^*(M))^{\widetilde{G}}$. And by the proof in theorem 2.we get that ψ is a isomorphism.

The theorem 3. tell us the relation about Cartan model and Weil model.

References

- [1] M. Atiyah, R. Bott. The moment map and equivariant cohomology. Topology 23, 1, 1984.
- [2] N. Berline, E. Getzler and M. Vergne. *Heat Kernels and Dirac Operators*. Germany: Springer-Verlag, 1992.
- [3] X. Chen. Localization formulas about two Killing vector Fields. http://arxiv.org/abs/1304.3806v1
- [4] V. W. Guillemin and S. Sternberg. Supersymmetry and equivariant de Rham theory. Springer-Verlag, Berlin, 1999.
- [5] J. Kalkman. BRST Model for Equivariant Cohomology and Representatives for the Equivariant Thom Class. Commun. Math. Phys., 153: 447-463, 1993.
- [6] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. I. John Wiley and Sons, New York(1963).
- [7] V. Mathai, D. Quillen. Thom classes, superconnections and equivariant differential forms. Topology 25, 85, 1986.
- [8] Richard J. Szabo. Equivariant cohomology and localition of Path Integrals. Springer-Verlag, Berlin, 2000.