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Summary 

 

This text develops various identities for Hamilton's quaternions. The results are presented in order of 

difficulty. Results are organized as Axioms, Vectors, Quaternions, and Matrices. There are also sections 

for Octonions and Pentuples. Axioms are presented first and are largely without rigorous proof. 

Subsequent identities are constructed from prior identities. When complex conjugates are discussed, 

the author's thinking is biased towards the original quaternion having a positive vector portion and the 

conjugate having a negative vector portion. To genuinely understand what is presented, it is 

recommended that the reader should visualize the concepts in addition to manipulating them 

algebraically. The algebra is certainly true, but the visual understanding is more elegant and intuitive. 

This text will likely be updated occasionally. 
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0 - Axioms 

 

This section includes a few basic concepts from other areas of mathematics and it includes the concepts 

that Hamilton added as a basis for quaternions. Scalars are denoted by lower-case letters in regular font. 

Vectors are denoted by lower-case letters in bold font. Quaternions are denoted by UPPER-CASE letters 

in bold font. The symbols i, j, and k denote unit vectors in the principle directions x, y, and z respectively.  

A scalar is a real number with no direction. A scalar may have units of measurement such as length, 

mass, or time. 

0.0: 

��  ∈ � 

It follows that addition of scalars is associative. 

0.0.1: 

���  + ��	  +  
� =  ��  +  ���  + 
�	 =  ��  + ��  +  
� 

It also follows that addition of scalars is commutative. 

0.0.2: 

��  +  ��  =  ��  +  �� 

 

A vector in three dimensions is the sum of the vectors in the three principle directions. 

0.1: 

� =  �� +  ��� +  ��� ; � ,  ��,  ��  ∈ � 

The author thinks that units of measure such as length, mass, and time can be associated with the 

coefficients of a vector but that the unit vectors i, j, and k themselves do not have units of measure. 

Instead, they represent direction only. This is best understood by thinking of an arbitrary vector as being 

equal to the length of the vector multiplied by a unit vector in the direction of the arbitrary vector. The 

length would then contain the units of measurement and the unit vector represents direction only. This 

is consistent with 0.0. 

Vector addition is "head-to-tail". It follows that addition of vectors is associative. 

0.1.1: 

�� +  �	 +  � =  � +  �� +  �	  =  �� +  � + 
	� + ��� + �� + 
��� + ��� +  �� +  
�	� 
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It also follows that addition of vectors is commutative. 

0.1.2: 

� +  � =  � +  � =  ��  + �	� +  ���  +  ���� +  ���  + ��	� 

The length of a vector is the square root of the sum of the squares. 

0.1.3: 

‖�‖ =  ��� +  ��� +  ��� 

This is essentially the Theorem of Pythagoras. 

A unit vector in the direction of any arbitrary non-zero vector can be produced by dividing the vector by 

its length. 

0.1.3.1: 

�� =  1‖�‖ � =  1‖�‖ ��� +  ��� +  ���� 

It follows that: 

0.1.3.1.1: 

‖�‖��  =  ��� +  ��� +  ���� 

 

Multiplication by a unit vector twice or by each unit vector in order once will reverse the direction. 

0.2:  

��  =  ��  =  ��  =  ��� =  −1 

It follows that: 

0.2.1: 

1� =  −� ;  1� =  −� ;  1� =  −� 

 

Multiplication of the principle unit vectors is anti-commutative. This is one of the most important 

features of Hamilton's work. 
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0.3: 

�� =  −�� ; �� =  −�� ; �� =  −�� 
Since k

2
 = -1 = (ij)k, it follows that: 

0.3.1: 

� =  �� 
Since i

2
 = -1 = i(jk), it follows that: 

0.3.2: 

� =  �� 

Since j
2
 = -1 = -(ik)j, it follows that: 

0.3.3: 

� =  −�� = �� 

 

A quaternion is defined as the ratio between two arbitrary vectors. It is the sum of a scalar and a 

"vector". The "vector" portion of a quaternion is typically not a vector in the normal meaning of the 

word. 

0.4: 

  =   !"  =   #�  +  #� + #�� +  #�� =  #�  +  $ ;  #�,  #,  #�,  #�  ∈ � 

As presented here, since y and x are both spatial vectors which have dimensional units of length, it 

follows that the coefficients of Q have no dimensional units. The Q coefficients are dimensionless 

because the units of vector length cancel each other in the division. This implies that quaternion Q is an 

operator rather than an object. For quaternion Q to be an object, 0.4 must be applicable to dissimilar 

vectors. For example, vector y might represent force and vector x might represent acceleration. 

Quaternion Q would then be an object and it would represent mass. 

It follows from 0.0.1 and 0.1.1 that addition of quaternions is associative. 

0.4.1: 

�% +  &	  +  ' =  % + �& +  '	  =  % +  & +  ' 

It follows from 0.0.2 and 0.1.2 that addition of quaternions is commutative. 
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0.4.2: 

% +  & =  & +  % 

The magnitude of a quaternion is the square root of the sum of the squares. 

0.4.3: 

‖ ‖ =  �#��  +  #�  +  #��  +  #�� =  �#��  +  ‖$‖� 

A unit quaternion in the direction of any arbitrary non-zero quaternion can be produced by dividing the 

quaternion by its magnitude. 

0.4.3.1: 

() =  1‖ ‖   =  1‖ ‖ � #�  +  #� + #�� +  #���  =  1‖ ‖ � #�  +  $	 

The complex conjugate of a quaternion has the same scalar value but the opposite vector value. 

0.4.4: 

 ∗  =  #�  −  �#�  + #�� +  #���  =  #�  −  $ =    −  2$ ;  #�,  # ,  #�,  #�  ∈ � 

The author's thinking is biased towards the original quaternion having a positive vector portion and the 

conjugate having a negative vector portion. A quaternion and its complex conjugate can be combined as 

a sum or a difference to produce a scalar or a vector. 

0.4.4.1: 

  +  ∗  =  �#�  +  $	  +  �#�  −  $	  =  2#� 

0.4.4.2: 

  −   ∗  =  �#�  +  $	  −  �#�  −  $	  =  2$ 
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1 - Vectors 

 

Now let us multiply two arbitrary vectors together. 

�� =  ��� +  ��� +  ��� ���� +  ��� +  ��� � 

1.1: 

�� =  −��� +  ���� + ����� +  �����  −  ������ + ����  − ���	� +  ����  −  ����� 

The dot product of two vectors is defined as: 

1.1.1: 

� ∙ � =  �� + ���� +  ���� 

The dot product is a scalar. It follows that: 

1.1.1.1: 

� ∙ � = � ∙ � 

The dot product of a vector with itself is the square of the length of the vector. 

1.1.1.2: 

� ∙ � =  ��  + ���  +  ���  =  ‖�‖� 

The cross product of two vectors is defined as: 

1.1.2: 

� × � =  �����  −  ������  +  ����  −  ���	�  +  ����  −  ����� 

The cross product is a vector. It follows that: 

1.1.2.1: 

� × � = −� × � 

It also follows from 1.1.2 that the cross product of a vector with itself is the zero vector. 

� × � =  �����  − ������  +  ����  −  ���	�  +  ����  − ����� 

1.1.2.2: 

� × � =  0�  +  0�  +  0� =  / 
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Substitution of 1.1.1 and 1.1.2 into 1.1 produces: 

1.1.3: 

�� =  −�� ∙ �	  +  �� × �	 

This relation is easily applied to the unit vectors i,, j, and k. It is completely consistent with Hamilton's 

definitions from Axioms. 

It follows that a vector multiplied by itself produces the opposite of the square of the length. 

��  =  �� =  −�� ∙ �	  +  �� × �	  =  −‖�‖�  +  / 

1.1.3.1: 

��  =  −‖�‖� 

and also 

1.1.3.2: 

��∗ =  −�� =  ‖�‖� 

Reversing the order of the multiplication produces the conjugate. 

�� =  ��� +  ��� +  ��� ���� + ��� + ��� � =  −�� ∙ �	  +  �� × �	 

1.1.4: 

�� =  −�� ∙ �	  − �� × �	  =  ���	∗ 

It follows that ab and ba can be combined as a sum and difference as follows: 

1.1.5: 

�� +  �� =   −2�� ∙ �	 

1.1.6: 

�� −  �� =   2�� × �	 

 

Next let us consider the question of association as applied to the multiplication of three vectors. Is the 

following expression true? 

1.2: 

���	� =  ����	 ;  01 ���	� −  ����	 = 0 +  / ; ? ? ? ? ? 
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The details of this multiplication are very tedious. Therefore, the author will break it into portions to 

describe the left-hand side and right-hand side respectively. 

���	� = 3−�� ∙ �	  +  �� × �	4� 

���	� = 3−�� ∙ �	� +  �� × �	�4 

The part of this that is difficult is (axb)c. Therefore, the author will expand upon that. 

�� × �	� = 3−�� × �	 ∙ � + �� × �	 × �4 

Therefore: 

1.2.1: 

���	� = 3−�� ∙ �	�  − �� × �	 ∙ �  +  �� × �	 × �4 

A similar treatment for the right-hand side of 1.2 gives: 

����	  =  �3−�� ∙ �	  +  �� × �	4 

����	  =  3−��� ∙ �	  +  ��� × �	4 

1.2.2: 

����	  =  3−��� ∙ �	  −   � ∙ �� × �	  +  � × �� × �	 4 

It is not obvious to the author that 1.2.1 and 1.2.2 are equivalent. There is still some question 

concerning the cross product terms. 

Let u = axb. 

� =  � × � =  �����  −  ������  +  ����  −  ���	�  +  ����  −  ����� 

�� × �	 × � = � × � =  �5�
�  − 5�
���  + �5�
  −  5
�	�  +  �5
�  −  5�
�� 

The next step substitutes the coefficients of u from two lines above into the equation immediately 

above. 

�� × �	 × � =  6����  − ���	
�  − ����  − ����
�7 �  + 6����  − ����
  −  �����  − �����
�7 �  + 6�����  −  �����
�  −  ����  − ���	
7 � 

Let u = bxc. 

� =  � × � =  ���
�  −  ��
���  +  ���
  −  �
�	�  + ��
�  − ��
�� 

� × �� × �	 = � × � =  ���5�  −  ��5���  +  ���5  −  �5�	�  +  ��5�  −  ��5�� 
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The next step substitutes the coefficients of u from two lines above into the equation immediately 

above. 

� × �� × �	  =  6����
�  − ��
�  − �����
  −  �
�	7 �  +  6�����
�  −  ��
�� − ���
�  −  ��
�7 �  +  6����
  −  �
�	  − �����
�  − ��
��7 � 

These two expressions still do not appear to be equivalent. Therefore, a term by term comparison is 

required. 

�� × �	 × � =  6����
�  −  ���
�	  −  ����
�  −  ���
��7 �  +  6����
  −  ���
�  − �����
�  −  ����
��7 �  +  6�����
�  − ����
�� −  ����
  −  ���
	7 � 

� × �� × �	  =  6����
�  −  ����
�  − �����
  − ���
�	7 �  + 6�����
�  − ����
��  −  ���
�  − ���
�7 �  + 6����
  −  ��
�	  −  �����
�  −  ����
��7 � 

The author can now state that in general, these two cross product expressions are not equal. 

1.2.3: 

�� × �	 × � ≠  � × �� × �	 

There are some shared terms between these expressions. It is still possible that the difference between 

these two forms of the cross product will offset the other differences in 1.2.1 and 1.2.2 to cause 1.2 to 

be true. Essentially, the question is "Does 1.2.1 minus 1.2.2 equal zero?". 

�� × �	 × � −  � × �� × �	=  �−���
� − ���
� + ����
 +  ����
�� +  �−���
 − ����
� +  ����
� + ��
� �� +  �−����
� − ���
 +  ��
� +  ����
��� 

1.2.4: 

�� × �	 × � −  � × �� × �	=  �−����
� + ��
� �  +  ����� +  �����
�� +  �−����
 +  ��
�	  +  ����� +  ��	
��� +  �−�����
� +  �
� +  ��� +  �����
��� 

This looks promising. Notice that the terms inside the inner parentheses are similar to vector dot 

products. Next, let us compare the scalar terms. 
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� ∙ �� × �	  −  �� × �	 ∙ � = ? ? ? ? ? 

Let u = bxc. 

� =  ���
�  −  ��
���  +  ���
  −  �
�	�  + ��
�  − ��
�� 

� ∙ �� × �	  =  � ∙ � =  ����
�  −  ��
��  +  �����
  −  �
�	  + ����
�  − ��
� 

Let u = axb. 

� =  �����  −  ������  +  ����  −  ���	�  +  ����  −  ����� 

�� × �	 ∙ � = � ∙ � =  �����  −  �����
  +  ����  −  ���	
�  + ����  − ����
�  

Let us rearrange the right-hand side of this equation. 

�� × �	 ∙ � =  ����
� − ��
��  +  �����
 −  �
�	  + ����
� −  ��
� 

Therefore, the scalar terms are equal. 

1.2.5: 

� ∙ �� × �	  =  �� × �	 ∙ �  
The next task is to compare the remaining vector terms. 

��� ∙ �	  −  �� ∙ �	� = ? ? ? ? ? ? 

��� ∙ �	 =  ���
 +  ��
� +  ��
��� + ����
 +  ��
� +  ��
��� + ����
 +  ��
� +  ��
��� 

�� ∙ �	� =  ��� +  ���� + �����
� + ��� + ���� +  �����
�� +  ��� +  ���� +  �����
�� 

1.2.6: 

��� ∙ �	  − �� ∙ �	� =  �����
�  + ��
��  −  �����  +  �����
�� +  �����
  + ��
�	  −  ���  +  ����	
��� +  �����
  + ��
��  −  ���  + �����
��� 

Now, compare 1.2.4 with 1.2.6. It should be noted that: 

1.2.7: 

�� × �	 × � −  � × �� × �	  =  −3��� ∙ �	  −  �� ∙ �	� 4 

or 
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1.2.7.1: 

−�� ∙ �	� +  �� × �	 × �  =  −��� ∙ �	  +   � × �� × �	 

Therefore, 1.2.5 combined with 1.2.7 result in 1.2 being true. Vector multiplication is associative. 

1.2.8: 

���	� =  ����	  =  ��� 

 

Next let us consider some identities involving vector dot products and vector cross products. Since scalar 

multiplication is associative and commutative, the following identities are obviously true: 

1.3.1: 

���� ∙ �	  =  �� ∙ �	��  =  ���� ∙ �	  =  �� ∙ ���	 

1.3.2: 

���� × �	  =  �� × �	��  =  ���� × �	  =  �� × ���	 
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2 - Quaternions 

 

Now let us multiply two arbitrary quaternions together. 

%& =  ���  +  �	���  +  �	 =  ����  +  ��� +  ��� + �� 

%& =  ���  +  �	���  +  �	 =  ����  +  ��� +  ��� + 3−�� ∙ �	  +  �� × �	4 

%& =  ���  +  �	���  +  �	 =  �����  −  � ∙ �	  + ���� + ��� +  � × �	 

When two vectors were multiplied together in 1.1.3, the result was the negative of the vector dot 

product plus the vector cross product. The author desires to maintain symmetry between vector 

multiplication and quaternion multiplication. Therefore, the author will revise the above relation for AB 

to introduce the quaternion dot product and the quaternion cross product. To do so, subtract 2a0b0 

from the scalar group and add 2a0b0 to the vector group. 

%& =  ���  +  �	���  +  �	 =  �−2����  +  ����  −  � ∙ �	 +  �2����  + ��� +  ��� +  � × �	 

%& =  ���  +  �	���  +  �	 =  �−����  −  � ∙ �	  +  3�����  +  �	  +  �����  +  �	  +  � × �4 

2.1: 

%& =  ���  +  �	���  +  �	 =  −�����  +  � ∙ �	  +  ���% +  ��& +  � × �	  =  −% ∙ & +  % × & 

It is worth mentioning that if vector a and vector b are not collinear, then 2.1 creates a space since a x b 

is orthogonal to the plane created by (b0a + a0b). 

The dot product between two quaternions can now be defined as: 

2.1.1: 

% ∙ & =  ����  +  ��  +  ����  + ���� =  ����  +  � ∙ � 

The dot product is a scalar. Therefore, it follows that: 

2.1.1.1: 

% ∙ & = & ∙ % 

The dot product of a quaternion with itself is the square of the magnitude of the quaternion. 

2.1.1.2: 

% ∙ % =  ���  + ��  +  ���  +  ��� =  ‖%‖� =  ���  +  ‖�‖� 

The cross product between two quaternions can now be defined as: 
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2.1.2: 

% × & =  ��% + ��& +  � × � 

It follows that: 

& × % =  ��& +  ��% +  � × � 

& × % =  ��% + ��& −  � × � 

2.1.2.1: 

& × % =  % × & −  2�� × �	 

It also follows from 2.1.2 that the cross product of a quaternion with itself is: 

2.1.2.2: 

% × % =  ��% + ��% +  � × � =  2��% 

Substitution of 2.1.1 and 2.1.2 into 2.1 produces: 

2.1.3: 

%& =  ���  +  �	���  +  �	 =  −�% ∙ &	  + �% × &	 

It follows that a quaternion multiplied by itself produces: 

%�  =  %% =  −�% ∙ %	  +  �% × %	 

2.1.3.1: 

%� =  − ‖%‖�  +  2��% 

A quaternion multiplied by its conjugate produces a scalar equal to the square of the magnitude of the 

quaternion. This is also equal to the dot product of A with itself. See 2.1.1.2 for A dot A. 

%%∗  =  ���  +  �	���  −  �	  =  ���  − �� =  ���  −  �−�� ∙ �	  +  �� × �	� 

2.1.3.2: 

%%∗  =  ���  +  � ∙ � =  ���  +  ���  +  ���  +  ����  =  ‖%‖�  = ‖%∗‖�  =  %∗% =  % ∙ % =  %∗ ∙ %∗ 

 

Reversing the order of multiplication produces the following: 

&% =  ���  +  �	���  +  �	 =  −�& ∙ %	  + �& × %	 

&% =  −�% ∙ &	  + 3�% × & 	 −  2�� × �	4 
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2.1.4: 

&% =  %& − 2�� × �	 

Reversing the order of multiplication does NOT produce the negative of the prior multiplication (i.e., BA 

≠ -AB) NOR does it produce the conjugate (i.e., BA ≠ (AB)*). 

The products AB and BA can also be combined as a sum and a difference. 

2.1.5: 

%& +  &% =  2�%& −  � × �	  =  2�−% ∙ & +  ��% + ��&	 

2.1.6: 

%& −  &% =  2�� × �	 

A product such as AB can be multiplied by A* or B* to produce a scalar multiplied by either B or A. 

2.1.7.1: 

�%∗	%& =  �%∗%	& =  ‖%‖�& 

2.1.7.2: 

%&�&∗	  =  %�&&∗	  =  %‖&‖� 

The conjugate of AB is determined as follows: 

%& =  ���  +  �	���  +  �	 =  −�% ∙ &	  + �% × &	 

%& =  �2����  −  % ∙ &	  +  ���� +  ��� +  � × �	 

�%&	∗ =  �2����  −  % ∙ &	  −  ���� +  ��� +  � × �	 

�%&	∗ =  �4����  −  % ∙ &	  −  �2���� +  ��� +  ��� +  � × �	 

�%&	∗ =  �4����  −  % ∙ &	  −  ���% +  ��& +  � × �	 

2.1.8: 

�%&	∗ =  �4����  −  % ∙ &	  −  �% × &	 

The terms AB and (AB)* can now be combined as a sum and a difference. 

2.1.8.1: 

%& + �%&	∗  =  2�2����  −   % ∙ &	 
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2.1.8.2: 

%& −  �%&	∗  =  −2�2����  −  % × &	 

 

Next let us consider the question of association as applied to the multiplication of three quaternions. Is 

the following expression true? 

2.2: 

�%&	' =  %�&'	 ;  �%&	' −  %�&'	 = 0 +  / ; ? ? ? ? ? 

Fortunately, this question is essentially answered by the equivalent question for vectors in 1.2. The 

author will break the problem into two parts representing the left-hand side and the right-hand side 

respectively.  

The left-hand side is: 

�%&	' =  3��� +  �	��� +  �	4�
� +  �	 =  3���� +  ��� +  ��� + ��4�
� +  �	 

�%&	' =  3����
�  +  ��
�� +  ��
�� + 
���4  +  3����� +  ���� + ���� + ���	�4 

2.2.1: 

�%&	' =  ����
�  +  ���
�� + ��
�� + �����	 + �
��� +  ���� + ����	 + ���	� 

The right-hand side is: 

%�&'	 =  ��� +  �	3��� +  �	�
� +  �	4 =  ��� +  �	3��
� +  
�� +  ��� + ��4 

%�&'	 =  3����
� + �� 
�� +  ����� + ����4 +  3��
�� +  
��� +  ���� + ����	4 

2.2.2: 

%�&'	  =  ����
�  +  ���
�� +  �� 
�� +  ����� 	 + �
��� +  ���� + ����	 +  ����	  
All of the terms in 2.2.1 and 2.2.2 are equal with the possible exception of the final term of each. Since 

1.2 showed that (ab)c  = a(bc), it follows that 2.2.1 and 2.2.2 are equal. Therefore, the multiplication of 

quaternions is associative. 

 

Hamilton's original use for quaternions was as the ratio between two non-collinear vectors. 

2.3: 

 =  !" 
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This can be written as: 

2.3.1: 

 " = ! ; " ∗ = ! 

It was shown above that the square of a vector is equal to the opposite of the square of the length of 

the vector (see 1.1.3.2). This allows 2.3.1 to be solved fairly easily. 

 "�"∗	 = !�"∗	 ; �"∗	" ∗ =  �"∗	! 

 ‖"‖� = !"∗ ;  ‖"‖� ∗ =  �"∗	! 

 =  1‖"‖� �!"∗	 ;  ∗ =  1‖"‖� �"∗!	 

2.3.1.1: 

 =  1‖"‖� �" ∙ ! +  " × !	 ;  ∗ =  1‖"‖� �" ∙ ! −  " × !	 

These are conjugates. 

If the two vectors are collinear (i.e., x x y = 0) then 2.3.1.1 simplifies to the following scalar expression: 

2.3.1.2: 

 =  " ∙ ! ‖"‖� 

Now let us consider three very useful mappings. Suppose that it is desired to map one of the principle 

unit vectors i, j, or k onto an arbitrary vector y. This can be done fairly easily simply by using 2.3.1.1 

directly. Refer to 1.1.2 for the cross products.  

For the i vector this is: 

   =  !�  =  1‖�‖ �� ∙ ! +  � × !	 ;   ∗  =  !�  =  1‖�‖ �� ∙ ! −  � × !	 

2.3.2.1: 

   =  :  +  �−:�� +  :��� ;   ∗  =  :  −  �−:�� +  :��� 

For the j vector this is: 

 �  =  !�  =  1‖�‖ �� ∙ ! +  � × !	 ;   �∗  =  !�  =  1‖�‖ �� ∙ ! −  � × !	 
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2.3.2.2: 

 �  =  :�  + �:�� −  :�	 ;   �∗  =  :�  −  �:�� − :�	 

For the k vector this is: 

 �  =  !�  =  1‖�‖ �� ∙ ! +  � × !	 ;  ∗  =  !�  =  1‖�‖ �� ∙ ! −  � × !	 

2.3.2.3: 

 �  =  :�  + �−:�� +  :�� ;   �∗  =  :�  −  �−:�� +  :�� 

It is of course possible to reverse these mappings to go from arbitrary vector y to one of the unit vectors 

by using the inverse quaternion. 

 

Now let us solve for the general quaternion Q that is the ratio between two arbitrary quaternions. 

2.4: 

  =   ;<  =   #�  + #� +  #�� +  #�� 

Both of the following two relationships will satisfy this equation: 

2.4.1: 

 < = ; ; < = ; 

This can be solved by multiplying by the conjugate and then dividing by the square of the length. 

� <	<∗ = ;�<∗	 ; <∗�< 	 = �<∗	; 

 ‖<‖� = ;�<∗ 	; ‖<‖� =  �<∗	; 

 =  1‖<‖� ;�<∗	 ;  =  1‖<‖� �<∗	; 

 = 1‖<‖� 3−�; ∙ <∗	 + �=�; + :�<∗ + ! × "∗	4 ;  = 1‖<‖� 3−�<∗ ∙ ;	 + �:�<∗ + =�; + "∗ × !	4 

2.4.1.1: 

 = 1‖<‖� 3−�<∗ ∙ ;	 + �:�<∗ + =�; + " × !	4 ;  = 1‖<‖� 3−�<∗ ∙ ;	 + �:�<∗ + =�; − " × !	4 

In general, these two quaternions are not conjugates. The scalar terms are equal. The cross product 

terms are opposites. But the vector terms associated with the (-y0x  + x0y) term are the same (not 
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opposites) for both quaternions. Therefore, these two quaternions are conjugates only if the term (-y0x  

+ x0y) = 0. This requires that either x0 and y0 are both equal to zero or that x and y are collinear (i.e., y0x 

= x0y). If x and y are collinear, then their cross-product is zero and 2.4.1.1 simplifies to the following 

scalar value: 

 = 1‖<‖� 3−�<∗ ∙ ;	  +  2=�:�4 

 = 1‖<‖� 3−�=�:� − " ∙ !	  +  2=�:�4 =  1‖<‖� 3=�:� + " ∙ ! 4 

2.4.1.2: 

 = < ∙ ;‖<‖� 

 

Quaternions exhibit an interesting behavior when repeatedly multiplied by one of the principle vectors i, 

j, or k. The quaternion will toggle between one of four forms with the coefficients forming pairs that 

swap positions with each other. Consider the following examples: 

� = ��#� +  #� +  #�� +  #��� 

2.5.1.1: 

� =  −#  + #�� −  #�� + #�� 

Multiply by i again. 

�� = ��−#  + #�� −  #�� + #��� 

2.5.1.2: 

�� =  −#�  − #� −  #�� −  #�� 

Multiply by i again. 

�> = −��#�  + #� +  #�� +  #��� 

2.5.1.3: 

�> =  #  −  #�� +  #�� − #�� 

Multiplication by i a fourth time returns the original quaternion Q (i.e., i
4
 = 1). In this example, the scalar 

coefficient and the i coefficient have formed a pair. Also, the j coefficient and k coefficient have formed 

a pair. The members of each pair swap positions within the quaternion each time the quaternion is 

multiplied by i. 
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Similar identities can be developed for successive multiplication by j and by k. 

2.5.2.1: 

�  =  −#�  +  #�� +  #�� −  #� 

2.5.2.2: 

��  =  −#�  −  #� −  #�� − #�� 

2.5.2.3: 

�>  =  #�  −  #�� −  #�� +  #� 

2.5.3.1: 

�  =  −#�  −  #�� + #� +  #�� 

2.5.3.2: 

��  =  −#�  −  #� −  #�� − #�� 

2.5.3.3: 

�>  =  #�  +  #�� − #� −  #�� 
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3 - Matrices 

 

The quaternion multiplication AB can also be written as the following matrix multiplication: 

3.1: 

%& =  ?+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��
@ ABB

C�������DEE
F =  �����  −  � ∙ �	  +  ���� +  ��� +  � × �	 

The color coding is included to make it easier to recognize how the multiplication produces the result. 

The scalar and vector terms are the same color with the scalar terms being a lighter shade and the 

vector terms being either a darker shade or bold. The top row of the coefficient matrix produces a scalar 

value. The term in red gives the a0b0 term. The terms in dark red give the negative of the vector dot 

product. The dark blue terms in column one give b0 multiplied by the a vector. The blue terms along the 

diagonal produce a0 multiplied by the b vector. The terms in green produce the vector cross product of 

vector a with vector b. 

Given the interesting simplification using 2a0b0 in 1.2 above, it also seems appropriate to express the 

coefficient matrix as follows: 

?+�� −�+� +��
−�� −��−�� +��+�� +��+�� −�� +�� −�+� +��

@  =  ?−�� −�0 0 −�� −��−�� +��0 +��0 −�� 0 −�+� 0 @ + ?+�� 0+� 0 0 00 0+�� 0+�� 0 0 00 0@ + ?+�� 00 +�� 0      00      00      00      0 +�� 00 +��
@ 

The cross product terms could also have been segregated into a separate matrix, or they could have 

been placed in either of the other two matrices. Each of the cells on the right-hand side is populated 

with a non-zero value only once, except for the cell at row one and column one. The value a0 appears in 

each of the matrices. It seems that a0b0 is literally the key to this problem. 

Let us take a moment to examine the internal structure of the coefficient matrix in 3.1 carefully. The 

quaternion characteristics (i.e., 1, i, j, and k) are contained in the column matrix [b]. The coefficient 

matrix [a] is constructed of four 2x2 scalar matrices as follows: 

G+3
4 −3H4I+3H4 +3
4 J ;  3
4 =  K+�� −�+� +��L  �MH 3H4 =  G+�� +��+�� −�� J 

The superscript T on the –[d] indicates transpose.  

Let us also define two additional matrices as follows: 

3N4 =  G��� J  �MH 3O4 = G����J 
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We can now express 3.1 more compactly as: 

3.1.1: 

%& =  G+3
4 −3H4I+3H4 +3
4 J G3N43O4J =  3
43N4  −  3H4I3O4  +  3H43N4  +  3
43O4 

The matrix products on the right-hand side of 3.1.1 do not exactly correspond with the terms on the 

right-hand side of 3.1 because there are 5 terms for 3.1 but only four terms for 3.1.1.  

For a generic matrix [m], the matrix multiplied by its inverse produces the identity matrix. For the 

specific case of a 4x4 matrix, this becomes: 

3.2.1: 

3P4QR3P4  =  S1 00 1 0 00 00 00 0 1 00 1T 

The inverse of a quaternion type matrix is easily found by multiplying the quaternion matrix by its 

transpose matrix. This produces a diagonal matrix with a value along the diagonal that is equal to the 

sum of the four squares. The inverse matrix is then determined by dividing the transpose matrix by the 

sum of the four squares. See 2.1.3.2 in the section on Quaternions. 

?+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��
@ ?+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��

@ =  ���� + �� + ��� + ���� S1 00 1 0 00 00 00 0 1 00 1T 

3.2.2: 

1���� + �� + ��� + ���� ?+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��
@ ?+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��

@  =  S1 00 1 0 00 00 00 0 1 00 1T 

Comparison of 3.2.1 with 3.2.2 leads to the conclusion that the inverse matrix is as follows: 

3.2.3: 

?+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��
@

QR
 =  1���� + �� + ��� + ���� ?+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��

@ 

In 3.1.1, the matrix multiplication was expressed as a group of smaller matrix multiplications. If those 

same smaller matrices are used, the inverse of the 4x4 coefficient matrix is: 
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3.2.3.1: 

G+3
4 −3H4I+3H4 +3
4 JQR  =  1���� + �� + ��� + ���� G+3
4I +3H4I−3H4 +3
4I J 

There are subtleties here that should be mentioned. In the discussion of multiplication by complex 

conjugates, it was shown that: 

%∗% =  ‖%‖�  =  ���  + ��  +  ���  +  ��� 

Essentially, this means that the conjugate is equivalent to the transpose matrix. If this is treated as a 

matrix multiplication (see 3.1 above), the result is: 

?+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��
@ S�������

T =  ����  + ��  +  ���  +  ���� S1000T  =  ����  + ��  +  ���  +  ���� 

This is a 4x4 matrix multiplied by a column matrix. The result is a 4x1 column matrix. However, 3.2.2 is 

based upon the multiplication of a pair of 4x4 matrices. The result is a 4x4 matrix. Yet the operations 

appear to be equivalent. The resulting 4x1 column matrix appears to be equivalent to the resulting 4x4 

square matrix because the non-diagonal terms of the square matrix are zero. The only reason that this 

works correctly is the internal structure of the 4x4 quaternion matrix. A quaternion can be represented 

as either a 4x1 column matrix or a 4x4 square matrix. The choice is determined by whether the 

quaternion is the right term or the left term in 3.1. 
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4 - Octonions 

 

In Part 1 of this work, octonions were briefly mentioned. It was shown that the quaternions could be 

extended by multiplication by Euler's Equation containing the complex i.  

4.1: 

U =  VWV  =  VWXYZX$  =  VWVYZV$ =  V[;  [ =  \] +    

Expression 4.1 is a very general wave function. In principle, it can be used as a solution to the various 

differential equations of QM. It conforms perfectly to the separation of variables method.  

It is interesting that this expression cannot be equal to zero. The exponential of iω is never zero because 

the sine and cosine terms cannot both be zero at the same time. The exponential of q0 also cannot be 

zero. It can be as large or as small as desired, but it cannot be zero. Also, the exponential of the vector q 

cannot be zero. This was demonstrated in Part 1 of this work. Therefore, 4.1 can never be zero. Of 

course, it is possible to add it to its opposite and their sum would be zero. 

Also, in Part 1 of this work, it was shown that the exponential of Q can be expressed as: 

4.2: 

V = VYZ ?cos a�sin asin a�sin a�
@ =  VYZ ?cos # − sin #sin # cos # 0           00           00             00             0 cos # − sin #sin # cos #

@ ABB
BC cos #� 00 cos #�

− sin #� 00 sin #�sin #� 0    0 − sin #�
cos #�     00 cos #� DEE

EF Scos #�00sin #�
T 

where: 

4.2.1: 

?cos a�sin asin a�sin a�
@  =  cos a�  +  sin a  � +  sin a�  � +  sin a�  �  

Since 4.2 is a quaternion with four terms and the complex i form of Euler’s Equation has two terms, it 

follows that multiplication of 4.2 by the complex i form of Euler's Equation in 4.1 will produce 8 terms as 

follows: 

4.3: 

U =  VWV  =  3cos�]	 + sin�]	\4VYZ ?cos a�sin asin a�sin a�
@ 
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The author is using red to designate terms associated with the quaternion. 

Therefore, the author proposes to represent an octonion as follows: 

4.3.1: 

[ =  % + \& ;  % =  cos�]	VYZ ?cos a�sin asin a�sin a�
@  ; & =  sin�]	VYZ ?cos a�sin asin a�sin a�

@ 

4.3.1.1: 

% =  ��  + �� +  ��� + ��� ;  & =  ��  +  �� + ��� +  ��� 

An octonion function based upon 4.3 will be differentiable by the same rules as a quaternion function. 

The author thinks that 4.3 represents a subset of the generalized octonions because there do not appear 

to be 8 independent dimensions. Instead, there appear to be only five (i.e., the three unit vectors, the 

complex i, and the scalar q0). The scalar term is used to adjust the length. In polar coordinates and 

spherical coordinates, the vector length is counted as a dimension to completely specify the space. 

Otherwise, the vectors would only map to a surface rather than to a space. In 4.3, the complex vector 

portion is linked to the real vector portion by the complex phase angle ω. This accounts for the missing 

three dimensions (i.e., 8-5=3). The missing dimensions are the complex unit vectors ii, ij, and ik. 

In 2.1.3.2 in Quaternions, it was shown that multiplication of a quaternion by its conjugate produces a 

scalar that is equal in value to the square of the length of the quaternion. This was then used as a 

method of finding the inverse of the quaternion matrix. Something similar can be done based upon 4.3, 

but it requires two steps. First, pre-multiply by the conjugate of the complex i terms. 

3cos�]	 −  sin�]	\43cos�]	 + sin�]	\4VYZ ?cos a�sin asin a�sin a�
@ 

3
0d��]	  +  d\M��]	4VYZ ?cos a�sin asin a�sin a�
@ 

314VYZ ?cos a�sin asin a�sin a�
@ 

Next, post-multiply by the conjugate of the quaternion. The quaternion matrix form must be used. 
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VYZ
AB
BC+ cos a� − sin a+ sin a + cos a� − sin a� − sin a�− sin a� + sin a�+ sin a� + sin a�+ sin a� − sin a� + cos a� − sin a+ sin a + cos a�DE

EF ?+ cos a�− sin a− sin a�− sin a�
@  =  VYZ S1000T  =  VYZ  

A scalar value is produced by pre-multiplying an octonion in form 4.3.1 by its complex conjugate and by 

post-multiplying the octonion by its quaternion conjugate.  

4.3.2: 

VYZ  =  3cos�]	 −  sin�]	\4U ?+ cos a�− sin a− sin a�− sin a�
@  

The result of multiplication of a pair of octonions is: 

4.4: 

U =  �% +  \&	�' +  \e	  =  �%' −  &e	 +  \�&' +  %e	 

Note: The results presented in 4.4 contain the assumption that the complex i commutes normally with 

the unit vectors. However, this might not be true. 

The multiplication of 4.4 can also be expressed as a matrix multiplication. The author will restrict this 

discussion to octonions that are based upon 4.3. It should be possible to determine an inverse 

coefficient matrix easily since these octonions have “conjugates” as defined by 4.3.2. For now, the 

author will assume that the complex i commutes normally. 

A coefficient matrix can be produced by expanding each of the quaternions into four terms and then 

performing the multiplication and rearranging the terms. A less tedious method is to expand each 

quaternion into a scalar and vector and then multiply and rearrange. This takes advantage or the natural 

structure of the system. 

U =  3���  +  �	  +  \���  +  �	43�
�  +  �	  +  \�H�  +  f	4 

The result is the sum of the following four groups: 

���  +  �	
�  +  \���  +  �	
� + 

���  +  �	� +  \���  +  �	� + 

���  +  �	\H�  +  \���  +  �	\H� + 

���  +  �	\f +  \���  +  �	\f 



Page 26 of 39 

 

Since the result is the sum of these terms, they can be added together in any sequence that is desired. 

The third and fourth groups need to be re-arranged so that their real and complex parts are consistent 

with groups one and two.  

���  +  �	
�  +  \���  +  �	
� 

���  +  �	� +  \���  +  �	� 

\���  +  �	\H�  +  ���  +  �	\H� 

\���  +  �	\f +  ���  +  �	\f 

Now some terms need to be swapped between row one and row 3 and between row two and row four. 

���  +  �	
�  +  \���  +  �	\H� 

���  +  �	� +  \���  +  �	\f 

\���  +  �	
�  +  ���  +  �	\H� 

 \���  +  �	� + ���  +  �	\f 

This is a useful reference form because these terms do not yet contain any assumption regarding the 

commutivity of the complex i.  

Now let us assume that the complex i commutes normally. 

���  +  �	
�  + −���  +  �	H� 

���  +  �	� +  −���  +  �	f 

\���  +  �	
�  +  \���  +  �	H� 

 \���  +  �	� +  \���  +  �	f 

The terms in red are the quaternion multiplication AC. The terms in green are the quaternion 

multiplication BD. The terms in blue are the quaternion multiplication BC. The terms in black are the 

quaternion multiplication AD. This agrees with 4.4. 

Refer to 3.2.1 for the coefficient matrix of a quaternion multiplication. The matrix multiplication that 

results from 4.4 is as follows: 

 

 

 

 



Page 27 of 39 

 

 

4.4.1: 

U =  VYZ

AB
BB
BB
BB
C+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��

−�� +�−� −��
+�� +��+�� −��−�� −��−�� +�� −�� +�−� −��+�� −�+� +��

−�� −��−�� +��+�� +��+�� −�� +�� −�+� +��

+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��DE
EE
EE
EE
F

AB
BB
BB
BC+
�+
+
�+
�+H�+H+H�+H�DE

EE
EE
EF
 

The exponential term has been factored out of the coefficients. The "a" and "b" coefficients in 4.4.1 are 

now simply combinations of sines and cosines. 

Based upon 4.3.2 and the coefficient matrix in 4.4.1, the inverse of the coefficient matrix should be 

similar to the following: 

VQYZ

AB
BB
BB
BB
C+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��

+�� +�−� +��
+�� +��+�� −��−�� −��−�� +�� +�� +�−� +��−�� −�+� −��

−�� −��−�� +��+�� +��+�� −�� −�� −�+� −��

+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��DE
EE
EE
EE
F

 ∝  3P4QR 

This is also the transpose. Multiplying them gives (the exponentials cancel each other): 

AB
BB
BB
BB
C+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��

+�� +�−� +��
+�� +��+�� −��−�� −��−�� +�� +�� +�−� +��−�� −�+� −��

−�� −��−�� +��+�� +��+�� −�� −�� −�+� −��

+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��DE
EE
EE
EE
F

AB
BB
BB
BB
C+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��

−�� +�−� −��
+�� +��+�� −��−�� −��−�� +�� −�� +�−� −��+�� −�+� +��

−�� −��−�� +��+�� +��+�� −�� +�� −�+� +��

+�� −�+� +�� −�� −��−�� +��+�� +��+�� −�� +�� −�+� +��DE
EE
EE
EE
F
 

=  
ABB
BBB
BC d 00 d 0 00 00 00 0 d 00 d

0 hh 0 h hh hh hh h 0 hh 00 hh 0 h hh hh hh h 0 hh 0
d 00 d 0 00 00 00 0 d 00 d DEE

EEE
EF ;  d =  ‖%‖�  + ‖&‖� ;  h = M0MiV10 VjVPVMk? 
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It "appears" that the matrix inversion has failed. The various X terms are each equal to twice the sum of 

four mixed sinusoids. In truth, the X terms are equal to zero. However, this is not apparent until the 

terms are examined closely. 

column 1, row 6: 

h = 2�cos ] cos a� sin ] sin a −  cos ] sin a sin ] cos a� −  cos ] sin a� sin ] sin a� +  cos ] sin a� sin ] sin a�� 

column 1, row 7: 

h = 2�cos ] cos a� sin ] sin a� +  cos ] sin a sin ] sin a� −  cos ] sin a� sin ] cos a� −  cos ] sin a� sin ] sin a� 

column 1, row 8: 

h = 2�cos ] cos a� sin ] sin a� −  cos ] sin a sin ] sin a� +  cos ] sin a� sin ] sin a −  cos ] sin a� sin ] cos a�� 

column 2, row 7: 

h = 2�− cos ] sin a sin ] sin a� + cos ] cos a� sin ] sin a� − cos ] sin a� sin ] cos a� + cos ] sin a� sin ] sin a� 

column 2, row 8: 

h = 2�− cos ] sin a sin ] sin a� − cos ] cos a� sin ] sin a� + cos ] sin a� sin ] sin a + cos ] sin a� sin ] cos a�� 

column 3, row 8: 

h = 2�− cos ] sin a� sin ] sin a� + cos ] sin a� sin ] sin a� + cos ] cos a� sin ] sin a − cos ] sin a sin ] cos a�� 

As complicated as these expressions may appear to be, they each sum to zero. The X terms are anti-

symmetric about the b0 diagonals (but they are still equal to zero). Also, by symmetry the X values in the 

upper right quadrant are also zero. 

Therefore, the inverse of the coefficient matrix of 4.4.1 is: 

4.4.2: 

3P4QR =  1VYZ�‖%‖� + ‖&‖�	
AB
BB
BB
BB
C+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��

+�� +�−� +��
+�� +��+�� −��−�� −��−�� +�� +�� +�−� +��−�� −�+� −��

−�� −��−�� +��+�� +��+�� −�� −�� −�+� −��

+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��DE
EE
EE
EE
F
 

If the exponential term is factored out of the matrix, then the two quaternions will have unit length and 

the various "a" and "b" coefficients will be mixed sinusoids only. 
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4.4.2.1: 

3P4QR =  VQYZ2
AB
BB
BB
BB
C+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��

+�� +�−� +��
+�� +��+�� −��−�� −��−�� +�� +�� +�−� +��−�� −�+� −��

−�� −��−�� +��+�� +��+�� −�� −�� −�+� −��

+�� +�−� +�� +�� +��+�� −��−�� −��−�� +�� +�� +�−� +��DE
EE
EE
EE
F
 

Note: If the assumption is made that the complex i anti-commutes with the unit vectors, a coefficient 

matrix results which the author has been unable to invert. 

The result of multiplication of a pair of octonions expressed in exponential form is: 

U =  VlV%VmV& 

4.5: 

U =  VlV%VmV& =  V�lXm	V�%X&	 

 

Now let us consider associativity as it applies to this subset of octonions. Is the following statement 

true? 

4.6: 

3�% + \&	�' + \e	4�n + \o	  =  �% + \&	3�' + \e	�n + \o	4 ; ? ? ? ? ? ? 

3�%' − &e	 +  \�&' + %e	4�n + \o	 =  �% + \&	3�'n − eo	 +  \�en + 'o	4 

3�%' − &e	n − �&' + %e	o4 + \3�&' + %e	n + �%' − &e	o4 = 3%�'n − eo	 − &�en + 'o	4 + \3&�'n − eo	 + %�en + 'o	4 
�%'n − &en − &'o − %eo	 + \�&'n + %en + %'o − &eo	 = �%'n − %eo − &en − &'o	 + \�&'n − &eo + %en + %'o	 

Since addition of quaternions is commutative and since multiplication of quaternions is associative, it 

follows that multiplication of this subset of octonions is also associative. Unfortunately, this is a direct 

contradiction of what is accepted to be true for octonions in general. Multiplication of octonions is 

generally considered to be non-associative. An assumption here is that the complex i commutes 

normally with the various quaternions. 

Now let us consider a simple multiplication where only the complex phase angle between the octonions 

differs. 
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U =  p�cos q  +  \ sin q	VYZ ?cos a�sin asin a�sin a�
@r p�cos s  +  \ sin s	VYZ ?cos a�sin asin a�sin a�

@r 

U =  �cos q  +  \ sin q	�cos s  +  \ sin s	V�YZ ?cos a�sin asin a�sin a�
@

�
 

U =  �cos q cos s  −  sin q sin s  +  \ cos q sin s  +  \ sin q cos s	V�YZ ?cos a�sin asin a�sin a�
@

�
 

4.7: 

U =  3cos�q +  s	  +  \ sin�q +  s	4V�YZ ?cos a�sin asin a�sin a�
@

�
 

 

Now let us consider the octonion problem as a natural logarithm rather than as an exponential. The first 

relationship presented in this section was 4.1: 

U =  VWV  =  VWXYZX$  =  VWVYZV$ =  V[;  [ =  \] +    

Take the natural logarithm of Z: 

4.8: 

ln�U	  =  [ =  \] +    =  \] +  #�  +  $ 

It is very tempting to compare this to a four-vector from Special Relativity by equating ω with ct and 

setting q0 equal to 0. However, that would be incorrect because the units for ω and for the coefficients 

of Q must be radians since they were in the exponential. Instead, a four-vector can be produced as 

follows: 

4.8.1: 

Mu2v 3ln�U	 −  #�4  =  Mu2v �\] +  $	  =  \
k +  �=� +  :� +  i�	 ; Mu2v ] = 
k ; Mu2v $ =  �=� +  :� +  i�	 

or 
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4.8.2: 

ln�U	  =  \] +    =  2vMu 3\
k +  �=� +  :� +  i�	4  + #� 

The value λ is a length that is used to convert between the octonion form and the four-vector form. The 

λ value is essentially a wavelength. The “n” term is simply the number of wavelengths. Therefore, the 

quantity nλ is the length associated with one cycle of 2π radians. In principle, "n" should be an integer. 

However, there is no rigid mathematical requirement that this be true. The q0 term must be added to 

the angular form of the four-vector to produce an object or structure that fits into the octonion format. 

Therefore, to be compatible with the wave function presented in 4.1, both SR and GR should be written 

using a four-vector combined with a scalar term. Of course, the scalar term can be zero. The author will 

speculate that the scalar term is related to the vacuum energy and/or the cosmological constant. The 

author will also speculate that it is possible for the scalar term to be a function of time. For example, 

consider the confusion that would result if the following speculation were true: 

jVk #� =  2vMu 
k 

The concepts of scalar time and complex time would be completely confused!!! Nature would never be 

so devious - or would it? 

 

Now, let us consider the octonion multiplication problem as the sum of four-vectors. Begin with 4.5 and 

apply 4.8.2: 

U =  VlV%VmV& =  V�lXm	V�%X&	 

4.9: 

ln�U	  =  \�q +  s	  +  �% +  &	  =  2vMu 3\
k +  �=� +  :� +  i�	4  + ��� +  ��	 
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5 - Pentuples 

 

The concepts in this section are very radical. Thus far in the discussion of octonions, the author has 

argued that multiplication of the unit vectors by the complex i creates a complex vector space. This is a 

fairly conventional way of thinking. The author has also argued that this subset of octonions is a five 

dimensional space with four of these dimension having direction (the unit vectors and the complex i) 

and the fifth dimension being a scalar with no direction. These two arguments seem to be in conflict. 

Specifically, in what direction do the complex vectors point if there are only four directions from which 

to choose? 

As an example, let us consider the complex i and the unit vector i. Here is the first radical concept. The 

complex vector ii points back into regular vector space. There is no other place for it to point. For the 

case given immediately above, ii must be somewhere in the j-k plane since it must be perpendicular to 

both the complex i and the unit vector i. It follows that the other complex vectors must also point back 

into regular vector space.  The difficulty with this concept is that these complex vectors could be 

anywhere in the plane that is perpendicular to the real vector. For the example here, ii could be 

anywhere in the j-k plane. These “vector products” are not unique. They are not vector products in the 

same sense as is presented in section 1 – Vectors. 

Prior to developing these concepts further, let us attempt to visualize the space created by these five 

dimensions. The five unit dimensions are the scalar value one, the complex i, and the three unit vectors 

i, j, and k. To visualize the space created by these dimensions, it is necessary to go back several hundred 

years to when mathematicians first attempted to represent a two-dimensional plane. They placed scalar 

values along the x-axis. They then associated the y-axis with the complex i and thereby created the 

complex plane. The geometry presented here places an arbitrary unit vector u at the origin of the 

complex plane. This arbitrary unit vector is oriented perpendicular to the complex plane in accordance 

with the right-hand rule. These five axes now constitute a five-dimensional space. This is represented as 

Figure 1 below. 
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Looking at Figure 1 above, it is easy to visualize a 3-D space with the i axis at the location of the scalar 

axis, the j axis at the location of the complex i axis, and the k axis at the location of the u axis. Therefore, 

it seems reasonable to wonder if there is an identity similar to jk = i such as iu = 1. Therefore, let us set 

the problem up as follows: 

\� = \�5� + 5�� +  5��� = 1 ; w10w0dVH \HVMk\k: 

\� =  ��  +   ��� +  ��� 

\� =  ��  +   �� + ��� 

\� =  
�  +   
� + 
�� 
Combining these produces the following: 

d
�j�1: 5��  +  5���  + 5�
�  = 1 

yV
k01 �: 5��  +  5�
  = 0 

yV
k01 �: 5��  + 5�
�  = 0 

yV
k01 �: 5��  +  5���  = 0 

This system has four equations and 12 unknown coefficients. Therefore, there are eight degrees of 

freedom. In the author’s opinion, the simplest way to resolve this system is first to specify the three 

terms in the unit vector u. At least one of the u coefficients must be non-zero. Next, specify two of the 

remaining three terms in the scalar relationship. The third term in the scalar relationship will then be 

determined by the equality. Lastly, specify one of the remaining two coefficients in each of the three 

vector relationships. The other term in each vector relationship will be determined from the equalities. 

Obviously, the various coefficients must be selected such that it is possible to satisfy the equalities. 

As an example let us consider u = i. It is certain that ui = 1, and that uj = uk = 0. Now let us consider the 

scalar equation. Since both uj and uk are zero, if b0 and c0 are real numbers then both ujb0 and ukc0 are 

zero. Therefore, a0 must be one. Next let us consider the vector i equation. Since uj and uk are both zero, 

it follows that bi and ci can each have any real value. From the vector j and vector k equations, it follows 

that aj and ak are both zero and that cj and bk can each have any real value. 

Therefore: 

\� = 1 

\� =  1 

\� =  ��  +   �� + ��� 

\� =  
�  +   
� + 
�� 
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The author will offer one caveat to the above concepts. There is a trigonometric relationship that could 

be applied to the above problem: 

: =  sin ==  ;  lim{→��:	 =  lim{→� }sin == ~ = 1 

This is potentially significant because sin(x)/x is a solution to the spherical wave equation. 

Now let us repeat the exercises from 4 – Octonions using only five terms instead of eight. Let us begin 

by multiplying two of these pentuples. Let us multiply a pentuple and its conjugate. This should produce 

a scalar value and will provide some clarity. It is very convenient here to use the more compact vector 

form of the multiplication. This will also help to provide an understanding of the geometric meaning of 

this relation several steps below. 

���  +  �\ +  � 	���  −  �\ −  � 	 = 

����  +  �\��  + ���  +  
−���\ −  ��\	�  −  ��\ + 

−��� −  �\� −  ��  
The red terms cancel and the green terms cancel since the scalar value commutes normally. This 

simplifies to the following: 

���  +  ��  −  ��  −  �\� −  ��\ 

Notice the order of multiplication between the complex i and the unit vectors contained within the two 

blue a terms. The author will now invoke the second radical concept. If the complex i anti-commutes 

with the unit vectors, then the two blue terms will sum to zero! The above expression will then simply 

be a scalar equal to the sum of the five squares.  

The original form presented as a basis for the octonions was: 

5.1: 

U =  VWV  =  3cos�]	 + sin�]	\4VYZ ?cos a�sin asin a�sin a�
@ 

Let us re-write this as follows: 

5.1.1: 

U =  3cos�]	 +  sin�]	 \4VYZ3cos�a�	  +  �� 4 

where 
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5.1.1.1: 

�� =  sin�a	 � + sin�a���  +  sin�a�	� ; � =  �d\M��a	  + d\M��a��  +  d\M��a�	 

Here, L is the length of the vector portion of 5.1 and u is a unit vector in the direction of the vector 

portion of 5.1. 

Therefore, 5.1 is the sum of a line segment in the complex plane plus a rectangle in the 5-D space of 

Figure 1. The line segment is equal to Euler’s Equation in the complex plane multiplied by the scalar 

portion of the quaternion. The rectangle is perpendicular to the complex plane. Its edges are specified 

by Euler’s Equation in the complex plane and by the quaternion’s vector portion along the other edge. 

This is illustrated in Figure 2. 

 

 

The author will now introduce a new structure that will alter the presentation of this subset of octonions 

O.   

[ =  % + \& ; % ∈  , & ∈   

% =  ��  + �� +  ��� + ��� ;  & =  ��  +  �� + ��� +  ��� 

[ =  ���  +  �� + ��� + ���� + \���  +  �� + ��� +  ���� 

[ =  ���  +  ��\	  + ��  +  �\	� +  ���  +  ��\�� + ���  + ��\	� 
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5.2: 

A� =  G�� − ∆�� ∆��∆�� �� − ∆��J K1\ L ; A =  G� − ∆� ∆�∆� � − ∆�J K1\ L  
A� =  ��� − ∆�� ∆��∆�� �� − ∆��� K1\ L ; A� =  G�� − ∆�� ∆��∆�� �� − ∆��J K1\ L  

5.2.1: 

�%  =  A� +  A� +  A�� + A�� = [ 

Equation 5.2.1 contains all of the information of the octonion. The only assumption that is built into 

5.2.1 is that the various “a” and “b” scalar values commute normally with the complex i. The column 

matrix composed of [1 + i] now represents the complex plane. Multiplication of this column matrix by 

one of the unit vectors i, j, or k produces a quasi 3-D building block. Therefore, 5.2.1 represents a 

method of constructing a five-dimensional space using 3 quasi 3-D building blocks (Aii, Ajj, Akk) and the 

complex plane (A0). 5.2.1 is essentially a Hamilton style quaternion based upon the complex plane rather 

than real numbers. To be consistent with the form of the wave-function, the various AX terms must be 

the following: 

5.2.2: 

�� = cos�]	 VYZ cos�a�	 ;  � = cos�]	 VYZ sin�a	 ;  �� = cos�]	 VYZ sin�a�� ; �� = cos�]	 VYZ sin�a�	 

�� = sin�]	 VYZ cos�a�	 ;  � = sin�]	 VYZ sin�a	 ;  �� = sin�]	 VYZ sin�a�� ; �� = sin�]	 VYZ sin�a�	 

The obvious next step is to produce a coefficient matrix based upon multiplication of two pentuples as 

defined by 5.2 and 5.2.1.  

Let us define a second pentuple as follows: 

[ =  ' + \e 

' =  
�  +  
� +  
�� + 
�� ;  e =  H�  +  H� + H�� + H�� 

C� =  G
� − ∆
� ∆H�∆
� H� − ∆H�J K1\ L ; C =  G
 − ∆
 ∆H∆
 H − ∆HJ K1\ L  
C� =  �
� − ∆
� ∆H�∆
� H� − ∆H�� K1\ L ; C� =  G
� − ∆
� ∆H�∆
� H� − ∆H�J K1\ L  

�'  =  C� + C� +  C�� + C�� 

Multiplication of two pentuples is therefore: 

�%�'  =  �A� +  A� +  A�� +  A����C� +  C� + C�� + C��� 
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The coefficient matrix should be similar to that of a quaternion multiplication as presented in section 3 – 

Matrices, but there will be differences. It must be remembered that the complex i anti-commutes with 

the unit vectors. Let us carefully review each of the 16 terms. In the terms below, Cx* represents the 

complex conjugate of Cx. For example: 

C� =  G
� 00 H�J K1\ L ;  C�∗ =  G
� 00 −H�J K1\ L ; kℎV ∆ kV1Pd ℎ�yV �VVM dVk V#5�j k0 iV10 

The A0 terms are simple: 

A�C�  =  A�C� 

A�C� =  A�C� 
A�C�� =  A�C�� 

A�C�� =  A�C�� 

The Ai, Aj, and Ak terms are more difficult because of the complex i anti-commutation. 

A�C�  =  +AC�∗� ;  C� �V
0PVd C�∗  

A�C� =  −AC∗ ;  C �V
0PVd C∗ 

A�C�� =  +AC�∗� ; C� �V
0PVd C�∗ 

A�C�� =  −AC�∗ � ;  C� �V
0PVd C�∗  

 

A��C�  =  +A�C�∗� ;  C� �V
0PVd C�∗ 

A��C� =  −A�C∗� ; C �V
0PVd C∗ 

A��C�� =  −A�C�∗ ;  C� �V
0PVd C�∗ 

A��C�� =  +A�C�∗ � ;  C�  �V
0PVd C�∗  

 

A��C�  =  +A�C�∗� ; C� �V
0PVd C�∗  

A��C� =  +A�C∗� ;  C �V
0PVd C∗ 

A��C�� =  −A�C�∗� ;  C� �V
0PVd C�∗ 

A��C�� =  −A�C�∗  ;  C�  �V
0PVd C�∗  
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Please note that the A0 terms are multiplied by the Cx terms. However, the other Ax terms are multiplied 

by the Cx* terms. This is a HUGE problem. It means that a pentuple multiplication with complex i anti-

commutation cannot be represented by a single matrix multiplication. Instead, the following is 

proposed: 

5.3: 

�%�' =  ?+A� 00 +A� 0       00       00       00       0 +A� 00 +A�
@ ?C�CC�C�

@   +   ABB
BC 0 −A+A 0 −A� −A�−A� +A�+A� +A�+A� −A� 0 −A+A 0 DEE

EF
ABB
BCC�∗C∗C�∗C�∗ DEE

EF
 

After a few moments of consideration, the following identity becomes clear: 

5.3.1: 

�%�'  +  �%�'∗  =  ABB
BC+A� −A+A +A� −A� −A�−A� +A�+A� +A�+A� −A� +A� −A+A +A�DEE

EF ?C�CC�C�
@  +   ABB

BC+A� −A+A +A� −A� −A�−A� +A�+A� +A�+A� −A� +A� −A+A +A�DEE
EF

ABB
BCC�∗C∗C�∗C�∗ DEE

EF
 

Furthermore, the complex i terms associated with Cx will cancel out in 5.3.1 leaving two copies of 

pentuple A multiplied by the real portion of pentuple C. 

The author is not yet prepared to state the inverse of this relationship. In section 4 – Octonions, the 

author demonstrated that the octonion coefficient matrix could be inverted by pre-multiplying by the 

complex conjugate and by post-multiplying by the quaternion conjugate. Something similar might be 

applicable here. The problem is complicated by the anti-commutation of the complex i and by the 

question of the validity of multiplication associativity. 

It is noteworthy that if the various Δ terms in 5.2 are zero, then 32 of the 64 cells of these coefficient 

matrices would be empty (zero valued). It would therefore be conceivable that a second wave-function 

could be included in this equation. This sparseness gives the illusion that information has been lost or is 

missing from the coefficient matrices. The sparseness of the coefficient matrices is actually the result of 

the fact that the various Cx terms each contain two (or four) coefficients. This is an active area of study 

for the author. 

When the various Ax and Cx terms above are multiplied, it is necessary to use the following relationship: 

K� 00 �L K1\ L K
 00 HL K1\ L =  �� + �\	�
 + H\	 =  ��
 − �H	 +  ��
 + �H	\ =  K �
 �
−�H �HL K1\ L 
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