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Abstract

A formula giving the n:th number of a sequence defined by a recur-
sion formula plus initial value is deduced using generating functions.
Of particular interest is the possibility to get an exact expression for
the nth term by means a recursion formula of the same type as the
original one. As for the sequence itself it is of some interest that the
original recursion is non-linear and the fact that the sequence grows
very fast, the number of digits increasing more or less exponentially.
Other sequences with the same rekursion span can be treated similarly.

The numbers are denoted an, n = 0, 1, 2, ... and are defined by

an+3 = an+2 · an

and a0 = 1, a1 = 2, a2 = 3. With other initial values we get similar se-
quences. The ”span” of the recursion, in this case [n, n + 3], is essential
since it determines the degree of a polynomial whose roots occur in the for-
mula for the nth term in the sequence.

The sequence grows very fast. As an example we present the first 15 terms
and the 20th, calculated by brute force from the defining recursion relation
using the CAS Derive1 to take care of the many digits.

1Derive is a symbol handling software, developed by Soft Warehouse on Hawaii and
taken over by Hewlett-Packard who unfortunately stopped maintance.
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a0 − a14:

1, 2, 3, 3, 6, 18, 54, 324, 5832,314928,102036672,595077871104,
187406683791040512, 19122354324594117261656064,
11379289901975835088948428694571974656,
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a19:

40355115689415229911776335471083161526375224235958675590564116402
22972891112867883288097096709484155916317024983814628771564740313
41700466532124498258165138396370160723936446677131795900233889842
71721403167027070264796258196638075360510963802490011648,

or, approximately,

4, 0355115689415229911776335 · 10250 .

To find a formula for an, let bn = ln an. Then we get a linear recursion

bn+3 = bn+2 + bn (1)

and initial values b0 = 0, b1 = ln 2, b2 = ln 3.

1 Generating function

A generating function for the sequence {bn}∞n=0 is f(x) =
∑∞

n=0 bnx
n. Some

manipulation of indices and use of the recursion formula yields (the second
and third terms are denoted α and β, i e b1 = α (= ln 2) and b2 = β (= ln 3)
and the first term b0 = 0)

f(x) =
∞∑
n=0

bn+3x
n+3 + αx+ βx2 (2)

f(x) =
∞∑
n=0

bn+2x
n+2 + αx (3)

Next, we use the recursion relation in (2).

f(x) =

∞∑
n=0

(bn+2 + bn)xn+3 + αx+ βx2

= x ·
∞∑
n=0

bn+2x
n+2 + x3 ·

∞∑
n=0

bnx
n + αx+ βx2 .

Inserting the sum from (3) we get

f(x) = x(f(x)− αx) + x3f(x) + αx+ βx2
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from which f(x) is found in closed form,

f(x) =
αx+ (β − α)x2

1− x− x3

Now, let

r(n, x) =
1

n!
· dn

dxn
αx+ (β − α)x2

1− x− x3
.

Then bn = r(n, 0) and an = exp(bn).

Expansion of the expression for f(x) into partial fractions gives

αx+ (β − α)x2

1− x− x3
=

3∑
k=1

rk
x− xk

.

Here x1, x2, x3 are the zeros of the polynomial x3 + x − 1 and rk = g(xk)
where

g(x) =
αx+ (β − α)x2

d
dx(1− x− x3)

=
x · [x · (α− β)− α]

3x2 + 1

so

rk =
xk · [(α− β)xk − α]

3x2k + 1
.

The differentiation can now be performed which gives

r(n, x) =
1

n!
·

3∑
k=1

{
(−1)n · n!

(x− xk)n+1
· rk
}

and so

r(n, 0) = −
3∑

k=1

rk

xn+1
k

=

=
3∑

k=1

1

xn−1k

· α+ (β − α)xk
3x3k + xk

=

3∑
k=1

α+ (β − α)xk

(3− 2xk)xn−1k

,

since x3n + xn − 1 = 0.
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Zeroes of the polynomial x3 + x− 1:

x1 = δ

x2 = −1

2
δ + i · σ

x3 = −1

2
δ − i · σ

where δ and σ are real, so δ is the one real zero.

Now, let

Dn =

3∑
k=1

1

(3− 2xk)xnk
. (4)

Then

r(n, 0) = αDn−1 + (β − α)Dn−2 . (5)

Using the connection between roots and coefficients,
x1 + x2 + x3 = 0

x1x2 + x2x3 + x3x1 = 1

x1x2x3 = 1

,

we can calculate the LCD2 in the sum (4) for Dn,

3∏
k=1

(3− 2xk)xnk = (3− 2x1)(3− 2x2)(3− 2x3)(x1x2x3)
n

= 27− 18x1 − 18x2 − 18x3 + 12x1x2 + 12x1x3 + 12x2x3 − 8x1x2x3

= 27 + 12 · 1− 8 · 1 = 31 , ie

3∏
k=1

(3− 2xk)xnk = 31 .

2Least Common Divisor (or Denominator).
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Then,

31Dn = (3− 2x2)(3− 2x3)(x2x3)
n + (3− 2x3)(3− 2x1)(x3x1)

n

+ (3− 2x1)(3− 2x2)(x1x2)
n

= (9− 6x2 − 6x3 + 4x2x3)(x2x3)
n + (9− 6x3 − 6x1 + 4x3x1)(x3x1)

n

+ (9− 6x1 − 6x2 + 4x1x2)(x1x2)
n

= 9(x2x3)
n − 6xn+1

2 xn3 − 6xn2x
n+1
3 + 4(x2x3)

n+1

+ 9(x3x1)
n − 6xn+1

3 xn1 − 6xn3x
n+1
1 + 4(x3x1)

n+1

+ 9(x1x2)
n − 6xn+1

1 xn2 − 6xn1x
n+1
2 + 4(x1x2)

n+1 , ie

31Dn = 9pn + 4pn+1 − 6qn ,

where we have defined two quantities pn and qn,
pn = xn1x

n
2 + xn2x

n
3 + xn3x

n
1

qn = xn+1
1 xn2 + xn1x

n+1
2 + xn+1

2 xn3 + xn2x
n+1
3 + xn+1

3 xn1 + xn3x
n+1
1

We will need

pn+1 = pn + pn−2 (6)

qn = −pn−1 (7)

which are proved using the connection between roots and coefficients and
1/xk = x2k + 1 from x3k + xk − 1 = 0:

pn+1 = (x1x2)
n · 1

x3
+ (x2x3)

n · 1

x1
+ (x3x1)

n · 1

x2
= (x1x2)

n · (x23 + 1) + (x2x3)
n · (x21 + 1) + (x3x1)

n · (x22 + 1)

= (x1x2)
n · (x1x2)−2 + (x2x3)

n · (x2x3)−2 + (x3x1)
n · (x3x1)−2

+(x1x2)
n + (x2x3)

n + (x3x1)
n = pn−2 + pn

and

qn = (x1x2)
n(x1 + x2) + (x2x3)

n(x2 + x3) + (x3x1)
n(x3 + x1)

= (x1x2)
n(−x3) + (x2x3)

n(−x1) + (x3x1)
n(−x2)

= −(x1x2)
n · 1

x1x2
− (x2x3)

n · 1

x2x3
− (x3x1)

n · 1

x3x1
= −(x1x2)

n−1 − (x2x3)
n−1 − (x3x1)

n−1 = −pn−1 .
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Finally, from (5),

an = 2Bn · 3Cn , (8)

where we have introduced the notation
Bn = Dn−1 −Dn−2

Cn = Dn−2

,

2 Exact calculation of Bn and Cn

We will need some identities following from the defining ekvation for δ (x3 +
x = 1 and δ real), mostly

δ3 = 1− δ , δ4 = δ − δ2 , δ2 + 1 = 1/δ .

Consider

(δ2 + 1)n = knδ
2 + lnδ +mn

where the coefficients kn, ln, mn are integers. Further,

(δ2 + 1)n+1 = (δ2 + 1)n · (δ2 + 1) = mnδ
2 + knδ + (ln +mn) .

But we also have

(δ2 + 1)n+1 = kn+1δ
2 + ln+1δ +mn+1

and, thus, 
kn+1 = mn

ln+1 = kn

mn+1 = ln +mn

From this,

kn+3 = mn+2 = ln+1 +mn+1 = kn + kn+2 , ie
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kn+3 = kn+2 + kn . (9)

The recursion formula (9) is exactly the same as (1) for bn so the same
techique using generating function can be used, just observing the different
initial values:

k0 = 0, k1 = 1, k2 = 1

Just the coefficients of δ2, i e the kn, will be needed.

h(x) =
∞∑
n=0

cnx
n =

∞∑
n=0

cn+3x
n+3 + x+ x2 ,

h(x) =
x

1− x− x3
,

kn =
1

n!
· dn

dxn
x

1− x− x3
∣∣∣
x=0

,

kn =

3∑
k=1

1

(3− 2xk)xn−1k

.

Thus kn = Dn−1 from which we get relations between Bn, Cn, and kn:

Bn + Cn = kn

Cn = kn−1

Bn = kn − kn−1
Cn = kn−1

(10)

3 Examples

1. a9:

We need kn for n = 8, 9. To get these we expand (δ2 + 1)n using δ3 = 1− δ
and δ4 = δ−δ2 which gives a second-degree polynomial where the coefficients
are the numbers kn (and ln, mn which we do not need).
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(δ2 + 1)2 = δ2 + δ + 1

(δ2 + 1)4 = (δ2 + δ + 1)2 = 2δ2 + δ + 13

(δ2 + 1)8 = (2δ2 + δ + 13)2 = 9δ2 + 6δ + 13

(δ2 + 1)9 = (9δ2 + 6δ + 13)(δ2 + 1) = 13δ2 + 9δ + 19

The coefficients of δ2 in the last two results give k8 = 9, k9 = 13 .
Inserting this into (10) we get B9 = 13− 9 = 4, C9 = 9 ,
and so

a10 = 24 · 39 = 314928 .

in accordance with the value given at the beginning.

2. a19:

We need kn for n = 18, 19.

(δ2 + 1)18 = (13δ2 + 9δ + 19)2 = 406δ2 + 277δ + 595

(δ2 + 1)19 = (406δ2 + 277δ + 595)(δ2 + 1) 595δ2

where, in the last term, we just kept δ2-terms.

The coefficients of δ2 in the last two results give k18 = 406, k19 = 595 .
Inserting this into (10) we get B19 = 595− 406 = 189, C19 = 406 ,
and so

a19 = 2189 · 3406.

Expanding this we will get the digits shown at the beginning.
The number of digits equals blg a20c+ 1 = 251.

3. a49:

We just give the main points.

The coefficients kn needed are k48 = 38789712, k49 = 56849086, and we get

a49 = 218059374 · 338789712 .
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The number of digits is blg a49c+ 1 = 23943810.

4. a41:

Just for fun we mention that the first term having more than 1 million dec-
imal digits when written out in full is a41 with 1124962 digits.

5. a609:

The first term having more than 1 googol (10100) digits is a609 with
1025796070121477282014076737779472715918010553956063662897382761810734
8560001693953375691105965265292≈ 1.03 · 10100 digits.

6. a999:

Number of digits ∼ 10165.

The number of digits grows more or less exponentially.
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