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Abstract

As seen from a spaceship accelerating towards a star, the star ap-
proaches the ship at a speed that can exceed c, the speed of light in
vacuum. For the particular case of constant acceleration with given
final speed kc at the star this speed is calculated as a function of the
ship’s proper time. It is found that the upper bound of this speed is
1,5c.

1 Introduction

According to Special Relativity a material body cannot be accelerated to or
above c, the speed of light in vacuum. This is as measured from an iner-
tialsystem. A well-known case of superluminal speed is furnished by distant
galaxies, receeding from us at higher speed than c. This is caused by the
expansion of space and goes beyond Special Relativity. According to General
Relativity the local speed is still bounded by c. A lesser known case seems to
be that the speed of material bodies, such as stars, can exceed c as measured
from an accelerated system, such as a spaceship.

Qualitatively this is an obvious implication of Lorentz contraction in combi-
nation with time dilatation. If, for example, a spaceship accelerates towards
a star in a short time to the speed c

√
3/2 ≈ 0.87c then the distance to the

star as measured from the spaceship will be slightly less than half the re-
maining rest distance. Due to time dilatation the proper time elapsed in the
spaceship can be very small. Consequently, the sped of the approaching star
must have been larger than c. In what follows we calculate the speed for the
case of uniform acceleration. – Essential is that we represent an accelerated
reference system by a sequence of momentary rest systems.
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2 General results
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Figure 1: Spaceship moving towards a star at distance L0

Speed of the star as measured from the spaceship:

|v∗(τ)| =
∣∣∣∣dL′(τ)

d τ

∣∣∣∣ (1)

where

L′(τ) = L(t)
√

1− v(t)2/c2

L(t) = L0 −
∫ t

0
v(ξ) dξ = L0 − s(t)

τ =

∫ t

0

√
1− v(ξ)2/c2 dξ (2)

Total time S is denoted T , the final speed kc, 0 < k < 1 and the velocity
v(t) in S is assumed positive (v(t) > 0), and the acceleration non-negative
(dv(t)/dt) for all t, 0 < t ≤ T . Also, of course, L0 ≥ s(t).

v∗ =
dL′(τ)

d τ
=

dL′(τ)

d t
·
(

d τ

d t

)−1
=

=
d

d t
{L(t)

√
1− v(t)2/c2} · 1√

1− v(t)2/c2
=

= − v(t)

1− v(t)2/c2

{
1− v(t)2/c2 + [L0 − s(t)] ·

1

c2
· d v(t)

d t

}
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|v∗| =
v(t)

1− v(t)2/c2

{
1− v(t)2/c2 + [L0 − s(t)] ·

1

c2
· d v(t)

d t

}

= v(t) +
1

c2
[L0 − s(t)] ·

v(t)

1− v(t)2/c2
d v(t)

d t
=

= v(t)− 1

2
[L0 − s(t)] ·

d

d t
ln(1− v(t)2/c2)

3 Constant acceleration

We will now apply this to the case of constant acceleration a = kc/T > 0 as
measured from S. The speed of the spaceship in S is v(t) = a · t, 0 ≤ t ≤
T, v(T ) = kc, 0 < k < 1.

v(t) = at =
kc

T
t , 0 < k < 1 , 0 ≤ t ≤ T

s(t) =
1

2
at2 =

kc

2T
t2

s(T ) = L0 =
kc

2T
T 2 =

1

2
kcT

|v∗(τ)| =
at

1− (at)2/c2

{
(1− (at)2/c2) +

1

c2
· (L0 −

1

2
at2) · a

}
(3)

(4)

= c · at/c

1− (at/c)2

{
1 +

1

2
k2 − 3

2
(at/c)2

}
(5)

By the time dilatation, equation (2), t is implicitly defined as a function of
τ .
Thus

|v∗(τ)| = c · f(at/c) = c · f(kt/T )

where

f(x) =
x

1− x2
·
(

1 +
1

2
k2 − 3

2
x2
)
.

Since 0 ≤ at ≤ aT = kc, then 0 ≤ x < 1.
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Calculation of the maximal speed:

d

dx

{
x

1− x2
·
(

1 +
1

2
k2 − 3

2
x2
)}

= 0 ,

x =
1√
6
·
√
−
√
k4 − 26k2 + 25− k2 + 7 .

Maximal speed of the star:

|v∗(τ)|max =

√
6

4
·(
√
k4 − 26k2 + 25 + 3(k2 − 1))

√
−
√
k4 − 26k2 + 25− k2 + 7√

k4 − 26k2 + 25 + k2 − 1

Below is shown |v∗(τ)| as a function of time in the Earth’s system for k =
0.95. At t = T the spaceship arrives at the star with speed kc and then |v∗|
has the same value as it should since the spaceship and the star are then at
the same location. When k = 0.95, |v∗|max ≈ 1.13 så the speed exceeds the
speed of ligt by around 13%. Also limk→1− = 3/2 så the upper bound of |v∗|
is 50% above the speed of light.

 

Figure 2: Speed of the star in unit c as measured from the spaceship as a
function of time/speed in the outside system; at/c on the horizontal axis.

Relation between τ and t:

τ =
c

2a
· g(at/c)

where

4



g(x) = arcsinx+ x
√

1− x2 .

at = g−1
(

2aτ

c

)
(6)

|v∗(τ)| = c · f(ξ)

τ =
c

2a
g(ξ)

and 
L′(τ) = L0 −

1

2a
ξ2
√

1− ξ2

τ =
1

2a
g(ξ)

4 Non-constant acceleration I

v(t) =
2kct2

t2 + T 2
, 0 < k < 1 , 0 ≤ t ≤ T

v(T ) = kc

s(t) = 2kcT ·
(
t

T
− arctan

t

T

)
s(T ) = L0 = 2kcT ·

(
1− π

4

)
|v∗(τ)| = c · 2x2

1 + x2
·
{

1 + 2k2x · 4− π − 4x+ 4 arctanx

(1 + x2)2 − 4k2x4

}
(7)

where x = t/T, 0 ≤ x ≤ 1.

Ex: x = tan
2π

9
≈ 0.84, k = 0.95

|v∗| = c · 2 · 0.95 · tan2(2π/9)

1 + tan2(2π/9)

·
{

1 + 2 · 0.952 tan(2π/9) · 4− π − 4 tan(2π/9) + 8π/9

(1 + tan2(2π/9))2 − 4 · 0.952 tan4(2π/9)

}
≈ 1.09c .
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Största |v∗(τ)| ≈ 1.14c för t ≈ 0.91T , motsvarande τ ≈ 0.80T .

 

Figure 3: Speed of the star in unit c as measured from the spaceship as a
function of time in the outside system; t/T on the horizontal axis.

5 Non-constant acceleration II

v(t) = ce−λT/t, λ > 0, 0 ≤ t ≤ T

v(T ) = ce−λ = kc, 0 < k < 1, e−λ = k, λ = − ln k

s(t) = c ·
∫ t>0

0
e−λT/ξ dξ =

s(T ) = L0 = c ·
∫ T

0
e−λT/ξ

a = c · λT e
−λT/t

t2

|v∗(τ)| = c · e−λT/t ·
{

1 +
1

c
· λT
t2
· 1

sinh(λT/t)
·
∫ T

t
e−λT/ξ dξ

}

|v∗(τ)| = c · e−λ/x ·
{

1 +
λ

2
· 1

x2 sinh(λ/x)
·
∫ 1

x
e−λ/ξ dξ

}
where x = t/T, 0 ≤ x ≤ 1.

Ex:
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Figure 4: Speed v∗ of the star in unit c as measured from the spaceship as
a function of time/speed in the outside system; t/T on the horizontal axis.

6 Non-constant acceleration III

v(t) = c sin(λt/T ), λ > 0, 0 ≤ t ≤ T

v(T ) = = c sin(λ) = kc, 0 < k < 1; λ = arcsin k

s(t) =
cT

λ
(1− cos(λt/T ))

s(T ) = L0 =
cT

λ
(1−

√
1− k2)

|v∗(τ)| = c ·
{

2 sin(λt/T )−
√

1− k2 tan(λt/T )
}

(8)

(9)

= c ·
{

2 sin(λx)−
√

1− k2 tan(λx)
}

(10)

where x = t/T, 0 ≤ x ≤ 1.

Ex:

k = 0.95
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Figure 5: Speed of the star in unit c as measured from the spaceship as a
function of time/speed in the outside system; t/T on the horizontal axis.

d

dx
|v∗(τ)| = 0 gives

x =

(
2 arcsin

243751/6

10
− π

)
·
(

4 arctan
1√
39
− π

)−1
≈ 0.800

and the maximal value of |v∗(τ)| is

√
4− 195(1/3)

5
− 1

20

(
2374281− 365040 · 195(1/3) + 18252 · 195(2/3)

)
≈ 1.20

that is 20% above c.

7 Non-constant acceleration IV – hyperbolic mo-
tion

In this case the world-line of the spaceship is (s+λcT )2−c2t2 = (λcT )2, λ, T >
0, which for 0 ≤ t ≤ T is a part of a hyperbola.
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 s 

ct 

Figure 6: Worldline for hyperbolic motion with an asymptote

s(t) = c
√
λ2T 2 + t2 − cλT

v(t) = c ·
(

1 +
λ2T 2

t2

)−1/2

v(T ) = kc where 0 < k < 1 gives

kc = c ·
(
1 + λ2

)−1/2
, so k = 1/

√
1 + λ2 or λ =

√
1− k2/k .

Further,

L0 = s(T ) = c
√
λ2T 2 + T 2 − cλT = cT (

√
1 + λ2 − λ)

The acceleration is

v̇(t) = c · λ2T 2

(
√
λT 2 + t2)3

and the speed is
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|v∗| = c ·
(

1 +
λT 2

t2

)−1/2
− 1

2
(L0 − s(t)) ·

d

d t
ln

(
1−

(
1 +

λ2T 2

t2

)−1)

= c ·
(

1 +
λT 2

t2

)−1/2
− 1

2
(L0 − s(t)) ·

d

d t
ln

λ2T 2

λ2T 2 + t2

= c · t√
λ2T 2 + t2

+
1

2

(
cT
√

1 + λ2 − cT
√
λ2 + t2/T 2

)
· d

d t
ln(λ2 + t2/T 2)

=
1

2

(
cT
√

1 + λ2
)
· 2t

λ2T 2 + t2
= c · T

√
1 + λ2 · t

λ2T 2 + t2

Now, let t = xT where 0 ≤ x ≤ 1. Then v(t) = c ·
(

1 +
λ2

x2

)−1/2
=

c · x/
√
x2 + λ2 and

|v∗| = c · x
√

1 + λ2

x2 + λ2
= c · kx

1− k2(1− x2)
.

k = 0.9, λ =
√

19/9, maximal |v∗| = 5/
√

19 ≈ 1, 15c for x = λ.

 

Figure 7: Speed of the star in unit c as measured from the spaceship as a
function of time/speed in the outside system; t/T on the horizontal axis.

In hyperbolic motion the acceleration as measured in the accelerated system
i constant. This follows from the Lorentz transformation of acceleration,
a′ = a · γ(v)2, in combination with a = c2/(cλT ) · γ(v)−3.

8 A voyage to Arcturus

For a numerical example example let’s consider a voyage to the giant star
Arcturus1, 36.66 light years from Earth.

1Idea from the science fiction novel A Voyage to Arcturus by David Lindsay, [1].
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We assume constant acceleration g ≈ 9.81m/s2 as measured from the space-
ship, i e hyperbolic motion during the first half of the voyage.

Like in the previous section we set s(t) =
√
λ2c2T 2 + c2t2 − λct where now

T is the time for half voyage to a distance L0/2. Then from L0/2 = s(T ) =
cT (
√
λ2 + 1− λ) and g = c/(λT ) we get

λ =
1√

gL0/(2c2)
√
gL0/(2c2) + 2

≈ 0.050243

1

λ
=

√
gL0/(2c2)

√
gL0/(2c2) + 2 ≈ 19.903

T =
c

g

√
gL0/(2c2)

√
gL0/(2c2) + 2 ≈ 19.27 years

Then, from v(t) = c/
√

1 + (λT/t)2 = c/
√

1 + ( cgt)
2, we get

γ(v) =

√
1 +

(
gt

c

)2

and the proper time for the entire voyage

τ = 2 ·

∫ T

0

dt

γ(v(t))
= 2 ·

∫
T

0

dt√
1 +

(
gt

c

)2

= 2 · c
g
·

∫ gT/c

0

dξ√
1 + ξ2

= 2 · c
g
· ln

gTc +

√
1 +

(
gT

c

)2


= 2λT ·

 1

λ
+

√
1 +

(
1

λ

)2
 ≈ 6.19 years

Arcturus speed as measured from the space-ship:

|v∗| = c · T (2
√

1 + λ2 − λ) · t
λ2T 2 + t2

= c · x(2
√

1 + λ2 − λ)

x2 + λ2

where λ = t/T .
Maximal speed, at t = λT ≈ 0, 97 years corresponding to x = λ:

|v∗|max = c · λ(2
√

1 + λ2 − λ)

λ2 + λ2
= c · 2

√
1 + λ2 − λ

2λ
≈ 19.43c
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9 Conclusion

As mentioned in the introduction it is easy to realize qualitatively that the
speed of a material body as measured from an accelerated/non-inertial ref-
erence system can exceed c. This is particulaly convincing in extreme sit-
uations like interstellar travel as in the section ”A voyage to Arcturus”. In
this article we have derived a general quantitative formula, and applied it to
some particular cases. To keep things easy we have used the well-known for-
mulas for length contraction and time dilatation although a direct use of the
Lorentz transformation is ”safer” and should be preferred in more complex
situations; se appendix below.

Everything rest upon the interpretation of the concept of an accelerated refer-
nce system. We have understood this to mean a sequence of local inertial
systems. This means that the results are unrefutable, just being mathe-
matical consequences. However there is no reason to doubt that the results
correpond to what should be measured in a real situation. For example, the
same interpretation is used in the usual derivations of the time dilatation
in a more or less arbitrary motion, and these results agree with experiment.
A more complicated interpretation, developed by Møller is aimed at under-
standing a rigid accelerated frame of reference; see [2].

We have considered the speed of material bodies as measured from an ac-
celerated system. It may be of interest to consider the speed of light and,
in connection with this, how the motion of the material body is seen from
the accelerated system. Further, similar considerations may give some new
insights into the erroneously named twin paradox.2, at least pedagogically.

10 Appendix

An alternative derivation of v∗

We have derived the expression for v∗, the velocity of a star as measured from
an accelerated spsce-ship heading straight towards the star. The concept of
accelerated refence system was then interpreted as a sequence of momentary
inertial rest system. The well-known expressions for time dilatation and
Lorentz contraction were then combined. However, it is safer to use the
Lorentz transformation from scratch since all effects are then automatically
taken care of. A well-known example of possible mistakes when not doing
this is the ”paradox of a falling bar”. In that case a contradiction is obtained,
using length contraction but forgeting about the relativity of simultaneity.
– So we will rederive v∗ from the Lorentz transformation.

2In fact, it is just a mistake!
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tP = t, sP = s(t)

tP ′ = t+ ∆t = t+
v

c2
∆s

∆s = L0 − s(t)

L0 = sP ′ = s(t) + ∆s

(
∆s
∆t

)
= γ

(
1 v

v/c2 1

)(
∆s̃
0

)


∆s = γ(v)∆s̃

∆t = γ(v)
v

c2
∆s̃

∆s̃ =
1

γ(v)
∆s = [L0 − s(t)]

√
1− v2/c2

v∗ =
d

dt

{
[L0 − s(t)]

√
1− ṡ2/c2

}
· 1√

1− ṡ2/c2

= · · · = −ṡ
{

1 +
1

c2
· s̈ · (L0 − s)

1− ṡ2/c2

}
The factor

1√
1− ṡ2/c2

is the time dilatation, and follows from the Lorentz

transformation dt = γ(ṡ)(dτ − ṡ/c2 · 0.
So, we get the same result as before!
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