
1 

 

ATOMIC ELECTRON SHELLS FORMATION LAWS. 

 

© Verin O.G. 

Contact the author verinOG@list.ru 

 

The analysis based on experimental characteristics of atoms shows, that the 

theory of electron "movement" in atom in its modern state is essentially erroneous. It is 

impossible to consider electrons in atoms as separate particles because in each 

electron shell they form a Bose-condensate. Therefore real electron "collectives" 

absolutely not resemble drawn by the theory stochastic orbital "spread" in space.    

Recently published my article [1], devoted to atom theory, has caused many 

positive responses, but the significant part of readers considers, that because of great 

volume of article and its general orientation on the examination of atom physics, not 

enough attention was given to the description of actually electron shells (in the second 

half of article).  

Answering these remarks, I completely devote this article to the analysis of 

electron shells (used as the general term) of atoms. 

In the article physical characteristics data of atoms repeatedly confirmed by 

experiments are used. Therefore disclosed laws, undoubtedly, have objective character 

and will be a reliable basis for further researches. 

  

 

1.   The Resonant nature of electron shells of atoms 

 

Properties and structure of atomic electron shells are naturally determined by 

reliably proven electron wave-corpuscle properties distinctly revealed in the most 

different experiments.   

Therefore, proceeding from electron wave properties, the known Bohr postulate 

on quantization of angular momentum actually is more logical to consider as a 

resonance condition: the integer number of electron wave-lengths h/p should go into 

length of an orbit (though mathematically it is one and the same): 
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The integer number n is the principal quantum number, R - radius of an orbit, p - 

electron momentum, h - Planck's constant. 

Formula (1) actually shows the "permissible" resonant values of spatial phase 

factor for an electron shell 
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Such «practical approach», without appealing to the "high" theory as we shall 

see, is quite sufficient and effective for research of experimental data and has enabled 

to reveal the most important electron shell features.  
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Electron shells nearest to atom nucleus 

 

Consideration of the most simple electron shells shows the exact conformity of 

calculations based on usual resonant conditions (1) to available experimental data. 

As is known, first of all it relates to the atom of hydrogen [2]. 

In an electron shell of hydrogen there is only one electron which undergoes the 

force of nucleus attraction and as a counterbalance - centrifugal force.  

This equality of forces determines the electron kinetic energy: 
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In consideration of (1) and (3) probable values of orbit radius are determined 
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At n=1 the radius has the minimum value equal to Bohr radius.  

In conformity with the virial theorem kinetic energy (3) is equal to the half of 

absolute value of electron negative potential energy. Therefore total energy of electron 

is also negative and numerically equal to kinetic energy  
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In view of (4) total electron energy possesses discrete values: 

.
1

8 222

4

nh

me
W


                                                                                       (6) 

This result in due time has enabled to understand the spectrum of hydrogen. The 

minimum energy (6) at n=1 has appeared precisely equal to the known value of 

ionization potential of atom of hydrogen 13,6 eV. 

Such simple and exact calculations are possible in some other cases. 

In particular, complete concordance of calculated value of ionization potential for 

the last electron with experimental data occurs in all atoms (nucleus charge ze) 
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For example, experimental value of ionization potential of the last (tenth) electron 

of neon is about 1360,2 eV [3]. 

As contrasted with atom of hydrogen where electron is located in one of the two 

antinodes of a resonance, in atom of helium the electron shell also has one period 

n=1, but contains two electrons which occupy both antinodes of a resonance, being on 

the opposite sides from a nucleus (fig. 1). 

Let's notice, that properties of helium as inert gas are determined just by this 

circumstance - in an electron shell of helium there is no vacant place for other electrons 

(both antinodes of a resonance are occupied by electrons). 
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Fig. 1. The schematic image of helium atom. 

 

The radius of the electron shell of helium is almost twice less, than of hydrogen 

atom, because its electrons undergo greater attracting force of helium atom nucleus 

which charge is equal to two electron charges.  

Let's analyze, proceeding from forces applied to electrons of the shell - 

electrostatic (centripetal) force and centrifugal force  
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Whereas a resonance condition (n=1)  
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and equating differently directed forces (8), we derive: 
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Electrons are symmetrically located in regard to the nucleus and consequently 

have identical energy. However in process of ionization when as a result of external 

action one of two electrons leaves atom, the second electron simultaneously comes 

nearer to a nucleus and gives some energy to the first electron. Hence the ionization 

potential of the first electron decreases accordingly. But when there is a second act of 

ionization (removal from atom of the second electron) expenditures of energy increase 

on the same amount which has been given to the first electron. 

Therefore, not to be engaged in such "redistribution" of energy, comparison of 

calculations output with experimental data is convenient to make using accumulative 

value of ionization potentials. 

Analyzing hydrogen atom, we ascertained, that the ionization potential 

numerically corresponds to kinetic energy of electron. Taking it into consideration, from 

(9) and (10) we obtain value of electron kinetic energy (conditional magnitude of 

ionization potential): 
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Hence, the double magnitude (11) should be equal to the sum of two real 

ionization potentials (at consecutive removal of the first electron and then - of the 
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second electron). The total sum of two ionization potentials, thus, has to be 83,3 eV, 

and the sum of experimental values is 24,58+54,4≈79 eV. 

Such computational accuracy of elementary approach is more than satisfactory, 

but not "ideal" as it was in cases with only one electron in the atomic shell. 

But maybe it is casual result? 

We have an opportunity to verify it, as electron shells closest to a nucleus of 

all other atoms as well as the electron shell of helium, also have two electrons (n=1).  

Calculations analogous with those of electron shell of helium, but assuming the 

charge of a nucleus equal zе, give formulas for electron shell radius and for the sum of 

ionization potentials: 
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Computing results and experimental data [3] are shown in table 1. 
 

Table 1 

Parameters of the electron shell (two electrons) nearest to a nucleus  

Atom Calc. φ1+φ2, eV Exper. φ1+φ2, eV Calc/Exper. R / RB 

2  (He) 83,3 79 1,0544 0,571 

3  (Li) 205,7 198 1,0389 0,364 

4  (Be) 382,5 371,51 1,0296 0,267 

5  (B) 613,7 599,43 1,0238 0,211 

6  (C) 899,3 881,83 1,0198 0,174 

7  (N) 1239,3 1218,76 1,0168 0,148 

8  (O) 1633,7 1610,23 1,0146 0,129 

9  (F) 2082,5 2057,6 1,0121 0,114 

10 (Ne) 2585,7 2555,6 1,0118 0,102 

 

Table 1 (the column computation/experiment) makes it evident that at increase of 

a nucleus charge relative difference between computing results of ionization potentials 

and corresponding experimental data decreases (from 5,44 % to 1,18 %). That is, 

computing results become closer to actual values. 

It is noteworthy that atomic shells containing two electrons are very close to a 

nucleus (already the tenth element of a periodic table - atom of neon has the nearest to 

nucleus shell radius of about 0,054 Ǻ). 

 

Facts and intermediate conclusions:  

- Along with atom of hydrogen, calculations based on the model of resonant 

electron shells give close fit to experimental data for electron shells nearest to a nucleus 

(n=1) of all kinds of atoms. 

- Electron in atom, being on the closed trajectory, figuratively speaking, «gets a 

self-resonance». If two electrons are on one common trajectory they form (and are built-

in) the common resonance being in different antinodes of resonance.  
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Resonant electron shells of hydrogen-like atoms 

 

R. Feynman in well-known "Lectures" repeatedly affirmed that the solution of a 

problem is useful to begin with the analysis of simple special cases as the general 

solution may be a combination of such special cases.  

But the principal advantage of such approach is the opportunity to receive exact 

results and not to miss important regularities which can "be lost" in errors and 

complexities of the general solution.  

Such "special case" convenient for obtaining the most exact results, are 

hydrogen-like atoms. 

Let's begin with atom of lithium. The charge of lithium nucleus is equal to three 

electron charges and, thus, the second (external) shell is presented by only one 

electron (fig. 2). 

 

 
 

Fig. 2. Diagrammatic representation of lithium atom. 

 

External electron is rather wide apart from a nucleus and from two electrons of 

internal shell – i.e. from the atomic core. The dimensions of this atomic core as it was 

found earlier are rather small - about 0,364RB (table 1). Therefore it is possible to 

consider, that valent electron is in the field of a total positive unit charge of atomic core. 

In this respect such atoms are hydrogen-like.  

It would seem that this external electron should completely replicate the behavior 

of electron in atom of hydrogen and satisfy formulas (3-6).  

But it is not exactly so. 

If radius of the external electron shell of lithium atom is as one of hydrogen (n=1) 

so its ionization potential would be equal to the ionization potential of hydrogen (13,6 

eV). But lithium ionization potential is only 5,39 eV and specifies that the radius of 

external electron shell of atom of lithium is essentially (in 2,523 times) more, than of 

hydrogen. It follows from formula (5), which shows interdependence of electron energy 

in atom of hydrogen (numerically equal to potential of ionization) and radius of its 

electron orbit: 
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It means that external shell of lithium atom should contain more than one spatial 

period, and number n should be more then 1.  

But assuming n=2, we obtain too big distance R equal to four Bohr radiuses. The 

ionization potential with such distance should be equal 3,4 eV, that mismatches actual 

value 5,39 eV. 

Nevertheless, this situation has the logical settlement.  

Let's determine wave length of electron proceeding from its kinetic energy which, 

as we saw, numerically corresponds to ionization potential. Hence 
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So we receive wave length of electron and corresponding radius  
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Substituting in (15) ionization potential of lithium 5,39 eV, we get: 

.593,110843,0,10296,5 1010
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Here we used new notation R λ for conditional radius (spatial phase factor), 

parameter characterizing rate of spatial wave change. Actually this parameter was used 

already in formula (2).  

As we expected, the external electron shell of lithium atom is characterized 

by number (n=1,593) which, unlike hydrogen (n=1), is not integer and is in an 

interval between 1 and 2! 

However actually the external electron shell of lithium atom also is resonant and 

is characterized by the integral number of wave-lengths. It is achieved due to 

excitation of higher harmonic.  

That is, some unknown to us the integer number of wave-lengths N1, describing a 

shell resonance, should be result of multiplication of number 1,593 by other number N2 - 

number of harmonic. Therefore we should make some simple calculations and select 

suitable numbers. 

 For example, having divided number N1=8 by n=1,593, we receive N2=5,02, that 

is, the fifth harmonic enables to obtain eight wave-lengths resonance of electron shell of 

lithium atom. Moreover the formula (4) for real shell radius appears valid when n is not 

an integer number 
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This value really meets actual magnitude of external electron shell radius of 

lithium atom, starting from formula (13)  
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There are many atoms similar to lithium with one electron on the external 

electron shell, so we have an opportunity to make analogous calculations in these 

cases too. Results of all calculations are shown in table 2. 
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We attach such importance to these calculations to be convinced of natural 

character of results. Data represented in table 2 let us make a conclusion on validity of 

hypothesis.  

The nature, really, uses resonances generated on multiple harmonics, therefore 

atoms become more compact and in electron shells meanwhile can be "placed" greater 

number of electrons!  

 

Table 2 

Atom φ1, eV n n2 R/RБ n≈ N1/N2 

3 (Li) 5,39 1,593 2,54 2,52 8/5,02 

11 (Na) 5,138 1,632 2,66 2,65 5/3,06 

19 (K) 4,339 1,775 3,15 3,13 7/3,94 

55 (Cs) 3,893 1,875 3,51 3,49 15/8,00 

37 (Rb) 4,176 1,81 3,27 3,26 9/4,97 

47 (Ag) 7,574 1,342 1,8 1,79 4/2,98 

78 (Pt) 8,96 1,236 1,53 1,52 5/4,04 

81 (Tl) 6,106 1,498 2,24 2,23 3/2,00 

 

Here it is necessary to stipulate, that figures in the right column of table 2 were 

obtained by trial-and-error method and should be confirmed by further researches (for 

example, by studying spatial symmetry of chemical compounds with these atoms). In 

particular, numbers N1 and N2, obviously, can have values multiple of the numbers 

specified in the table.  

However it is not so important, whether there will be numbers multiple or 

commensurable as in any case these findings are extremely important for atom 

structure understanding.   

Similar laws became apparent in characteristics of the excited states of atoms, 

and, hence, they can be used for the analysis and systematization of atoms spectra. 

As an example let us examine spectrum of lithium atom. On fig. 3 there is 

Grotrian diagram of lithium atom [4] which represents excited states (energy levels) and 

transitions between them. 

It is necessary to make some additional calculations to ease analysis of the 

diagram.  

First, energy levels in this case are more suitable for measuring not from the 

lowest level corresponding ionization energy (as it is on the diagram), but from 

"absolute" zero (that is, from energy level at infinite separation from atom). 

Secondly, we will need to calculate all the same electron characteristics at 

excited levels, as it was done in table 2. 

Final table 3 includes also the principal quantum number n (the first column) 

which is attributed to each excited level on the diagram (fig. 3). It was made to have 

opportunity of comparison with the results of calculating n (relation N1/N2). 

Displayed in table 3 data are rather eloquent. Calculated values of the principal 

quantum number (n calc.) in most cases with good accuracy coincide with integer 
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figures in the first column by which the corresponding excited levels on Grotrian 

diagram are marked.  

 

 
 

Fig. 3. Grotrian diagram of lithium atom [4]. 

 

However in six cases (almost each third excited level) authors of the diagram, 

probably, could not be sure with the principal quantum number because it should be 

fractional (N1/N2), instead of integer as it is specified on the diagram. Thus numbers N1 

and N2 are detected with good accuracy by means of simple calculations. 

Impressive also is the remoteness (R/RB) of external electron from atom nucleus 

at high excited levels (large n). 
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Table 3 

n 

diagr. 

W, eV 

diagr. 

W, eV 

absol. 

n 

calc. 

n2 

calc. 

R/RB n≈N1/N2 

2 1,848 3,544 1,963578 3,85564 3,837472 2 

3 3,373 2,019 2,601519 6,7679 6,736008 13/4,997 

3 3,834 1,558 2,961498 8,770468 8,72914 3 

3 3,879 1,513 3,005216 9,031321 8,988764 3 

4 4,341 1,051 3,605735 13,00132 12,94006 18/4,998 

4 4,522 0,87 3,963104 15,70619 15,63218 4 

4 4,541 0,851 4,007101 16,05686 15,9812 4 

4 4,542 0,85 4,009458 16,07575 16 4 

5 4,749 0,643 4,60988 21,25099 21,15086 23/4,99 

5 4,837 0,555 4,961907 24,62052 24,5045 5 

5 4,847 0,545 5,007222 25,07227 24,95413 5 

5 4,848 0,544 5,011822 25,11836 25 5 

6 4,958 0,434 5,611129 31,48477 31,33641 28/4,99 

6 5,008 0,384 5,965262 35,58435 35,41667 6 

6 5,014 0,378 6,012419 36,14918 35,97884 6 

7 5,079 0,313 6,607284 43,6562 43,45048 33/4,99 

7 5,11 0,282 6,960983 48,45528 48,22695 7 

7 5,114 0,278 7,010883 49,15248 48,92086 7 

8 5,156 0,236 7,609202 57,89995 57,62712 38/4,99 

 

In more complex atoms spectra thousands excited levels are observed, and to 

analyze them is much more difficult task. Besides fractional principal quantum numbers 

there are also other "complicating" factors. In particular, energy of the excited level is 

influenced by disturbing factor in the form of various mutual spin states of atomic core 

and external electron. 

Naturally, greater work to detail parameters of all electron shells of atoms is 

needed. These extremely interesting and important questions, undoubtedly, will attract 

attention of many researchers.  
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Facts and intermediate conclusions: 

- External shells of hydrogen-like atoms (with one-electron external shell) in not 

excited state have fractional principal quantum number. It means, that shells "resonate" 

on multiple harmonics.  

- The excited energy levels of lithium atom approximately in 2/3 cases 

correspond to integer (usual) numbers n, and in 1/3 cases - to fractional values of the 

principal quantum number. These last excited energy levels on Grotrian diagram are 

«forced» marked by the nearest integer number. 

 

2. Model of spherical atom electron shells  

 

Let's look at atom electron shells from one more not less interesting point of view. 

The carried out analysis makes it clear that electrons in atoms belong to level-

by-level arranged electron shells. Each of these layers (which we call a resonant 

electron shell) involves a set of electrons, incorporated in general resonance.  

Thus, the many-electron shell can be represented in the form of sphere with 

symmetrically located on it electrons (for example, on tops of the polyhedron mentally 

inscribed in a spherical surface).  

Such electron shell configuration enables at the analysis to use the simplest 

model - in the form of the charged sphere. Thus the structure of atom reminds "nested 

doll" in which center the nucleus is located, and concentric electron shells are around of 

it - one inside of another. 

How such electron shells structure effect atom properties? We shall examine it 

taking as example atoms of inert gases, which external electron shells "are densely 

populated" and really resemble charged spheres. 

As is known, electrostatic energy of the charged sphere is [5] 
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Electron shell charge Q is determined by number of electrons in the shell. 

Recollect also, that the ionization potential corresponds to the half of absolute value of 

binding energy of electron in shell structure.  

Hence and in view of (18), the total sum of ionization potentials of all electrons of 

external shell, for example, of neon atom is determined by the formula: 
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Really, removal of any electron from the shell (act of ionization) is accompanied 

by "penetration" of a corresponding part of not compensated electric field of atomic core 

beyond the limits of external shell that is perceived as increase of its charge. Therefore 

removal of each subsequent electron from the shell demands increasing energy 

consumption, and the total result will just correspond to the formula (19). 

Using formula (19), it is possible to determine each potential of ionization 

separately (as energy change at removal of one electron), and the total energy to 

represent as the sum of such energy changes  
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As expected, ionization potentials are proportional to the degree of ionization 

(formula (20) is written down in reverse order relative to degree of ionization). Electron 

shells, certainly, are not regularly charged spheres (especially when there is small 

number of electrons in the shell); nevertheless, results of experiments in whole confirm 

applicability of model (fig. 4). Deflections from linear dependence, obviously, are 

connected among other things also with processes of reorganization of electron shells 

after each act of ionization. As a result, the total energy of an electron shell is 

additionally redistributed between ionization potentials. 

However the total sum (20) "absorbs" all redistributions and, as in already 

examined case of the shell with only two electrons, enables most evidently and simply 

to compare results of calculations with experimental data. 

  

 
 

Fig. 4. Ionization potentials of a neon and argon 

subject to degree of ionization 

 

Let's verify the validity of formula (19). But for this purpose it is necessary to 

determine radius of external electron shell as precisely as possible. 

For this purpose as it was already shown, the best variant is of an electron shell 

with only one electron. Therefore radius of the external shell of neon atom is determined 

on the bases of the eighth degree ionization potential  
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There are other methods of calculation of radius which also give close results. 

Having substituted concrete values in (19), we obtain 
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Thus, the right and the left parts of (19), really, are close to each other. Results of 

similar calculations for other noble gases are shown in table 4. 

Таблица 4 

Atom φ8, eV R/RБ Calc. Σφi, eV Exper. Σφi, eV Calc/Exper. 

10 (Ne) 239,1 0,455 956,48 953,89 1,003 

18 (Ar) 143,4 0,759 573,39 577,64 0,993 

36 (Kr) 126 0,863 504,29 508,16 0,992 

54 (Xe) 126 0,863 504,29 484,43 1,041 

 

External shell of halogens atoms has only one electron less, than noble gases; 

therefore we can expect exact fit of calculations and experiments in this case too. 

However, formulas are "to be corrected" accordingly: 
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Calculations output and actual values are represented in table 5. 

 

Table 5 

Atom φ7, eV R/RБ Calc. Σφi, eV Exper. Σφi, eV Calc/Exper. 

9 (F) 185,14 0,514 648,25 658,75 0,984 

17 (Cl) 114,2 0,834 399,52 408,61 0,978 

35 (Br) 103 0,924 360,6 367,94 0,98 

53 (J) 104 0,915 364,15 362,44 1,005 

 

As we see, calculations output and actual values for external electron shells of 

halogens (as well as noble gases) correspond with each other.  

Whether these laws are also distinctly valid for internal atom shells? To answer 

this question, let us make similar calculations for the filled shells which are directly 

under external shells of univalent and bivalent atoms.  

Here also quite obvious changes in formulas are required. First we write down 

these formulas for atoms with only one electron on an external shell: 
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Similarly we can modify formulas for atoms with two electrons on an external 

shell: 
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Calculations output and actual values are represented accordingly in tables 6 and 7. 

Thus, made analysis convincingly shows, that electrons in atoms really 

concentrate layer-by-layer in spherical electron shells. 

Exact correspondence of calculation results to experimental data also testifies 

high accuracy of determining of electron shells radiuses.  

 

Table 6 

Atom φ9, eV R/RБ Calc. Σφi, eV Exper. Σφi, eV Calc/Exper. 

11 (Na) 299,7 0,408 1333,33 1299,31 1,026 

19 (K) 176 0,695 782,73 769,01 1,018 

37 (Rb) 150 0,816 666,67 660,76 1,009 

55 (Cs) 150 0,816 666,67 621,7 1,072 

 

Table 7 

Atom φ10, eV R/RБ Calc. Σφi, eV Exper. Σφi, eV Calc/Exper. 

12 (Mg) 367,2 0,370 1764,32 1702 1,037 

20 (Ca) 211,3 0,644 1013,66 982 1,032 

38 (Sr) 177 0,768 850 830,4 1,024 

 

In conclusion of electron shells structure analysis it is necessary shortly talk 

about so-called "shielding action" on the charge of a nucleus (or atomic core) by 

shells electrons.  

What is the mechanism of "screening effect"? The model of spherical electron 

shells enables to specify this question. 

According to Gauss theorem [5] each subsequent charged sphere is exposed to 

the electric field of the total charge which sits inside of this sphere. So, the charge of 

shells of greater radius cannot influence shells of smaller radius (according to the model 

of spherical electron shells, fig. 5).  

However in this simple scheme there is one not so obvious feature. The matter is 

that each charged sphere besides has «self-action». The charges being on sphere 

surface are subjected to electric field equal to the half value of the field created by this 

charged sphere close to the external surface:  

.
8 2R

Q
E


                                                                                  (29) 

This formula can be deduced by integration of contributions of all elementary 

charges located on a surface of sphere. 
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Fig. 5. Model of spherical electron shells of atom. 

 

So each unit charge on the sphere surface is exposed to the action of force 

numerically equal to the value of electric field (29), generated by all other charges. 

Consequently total force acting on a charge of sphere will be in Q times more 

.
8 2

2

R

Q
F


                                                                                  (30) 

The force (30) acting on a charge of sphere, it is possible to derive direct by R 

differentiation of formula for charged sphere energy (18).  

As force of "self-action" is always directed from the center it reduces total force of 

attraction to a nucleus (atomic core). In particular, if the external electrons shell of atom 

"is densely enough populated", the total force of attraction acting on each one electron 

of the shell is half as great!  

Let's notice that calculation data in tables 4, 5, 6 and 7, are based on the charged 

spheres model and "automatically" take into account the examined effect of electron 

interference in shell structure.  

Therefore conformity of calculations outcome with experimental data testifies to a 

simultaneous and constant location of electrons in spherical shells structure.  

So electrons are not independent particles and are not "spread" all over 

quantum-mechanical probability "clouds"! 

Keeping in mind that these electron shells are resonant formations and have the 

spherical form, we should mention here the corresponding mathematical solution [6]. It 

refers to spherical harmonics on a surface of sphere 

).(cos)sincos(  m

nPmBmA                                                       (31) 

Not striking into mathematics, we shall note, that formula (31) has three particular 

solutions: a zone harmonic (m=0), tesseral harmonic (0 <m <n) and sectoral harmonic 

(m=n). It is proved also, that any function can be expanded in spherical surface 

harmonics. 

These mathematical solutions are important with a view to probable resonance 

modes and degenerate energy levels. 
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Facts and intermediate conclusions: 

- The model of spherical electron shells is confirmed by experimental data (the 

sum of ionization potentials of the shell fits with the energy of charged sphere, 

simulating a shell). 

- The disclosed structure singularity of electron shells requires simultaneous 

compliance of two basic conditions: 

Atom structure electrons are not independent particles; 

All electrons constantly and all together have to be located on spherical shells 

(otherwise the model of spherical electron shells would not be confirmed by 

experimental data).  

 

 

 

The conclusion  

 

The principal result of this research, certainly, is the revelation of the resonant 

nature of electron shells of atoms which naturally arise from wave-corpuscle electron 

properties.  

It is a key concept for understanding of all other questions!  

Resonances in electron shells are the physical reason of electron 

"condensation", that is, their integration in the common resonance with "fixing" in 

resonance antinodes. This effect is the essence of electrons collective properties 

formation in shell structure. 

On the other hand, shell resonance is accompanied by intensive energy (mass) 

exchange of electrons being in antinodes. As a result there is the centrifugal force 

compensating force of attraction, so that electrons motionlessly "hang" above a nucleus 

of atom. Thus, there is an imitation of electrons movement without their real movement. 

And at last, electron condensation in resonant shells is the reason of the 

spherical shells form because "hanging" electrons follow equipotential surfaces, getting 

thus the "necessary" frequency to be tuned in the general resonance. 

 

These conclusions about the physical nature of electron shells are based on the 

analysis of experimental characteristics of atoms. Therefore fundamental results of the 

research can be formulated as  

Laws of formation of atom electron shells: 

 

1. Electron shells of atoms are resonant formations which can be excited both on 

the basic frequency, and on harmonious components. Thus the principal quantum 

number accordingly can be integer, or fractional. 

2. Many-electron atom shells have the spherical form, so the total sum of 

ionization potentials of a shell meets (subject to the virial theorem) the energy of the 

charged sphere of the same radius with electrical charge determined by the number of 

electrons on the shell. 
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3. Electrons of the atom electron shell are built in the common resonance, losing 

their individual properties, owing to what the electron shell obtains properties of Bose-

condensate. 

 

Notes: 

1. In order not to overburden the article, the description of features of electron 

shells of the atoms not includes the dependence on radius value (exceeds it or not the 

Bohr radius). This question can be examined as analogical extension by means of 

calculations similar to those carried out in the article.  

Separate consideration demands also a question of a distribution of electrons in 

atom over shells. We can only note that this distribution should correspond to a principle 

of minimum atom energy in whole.   

2. Some readers of my article [1] propose for the convenience of citing and 

references to results of the research and in compliance with the tradition to name 

disclosed laws of atom electron shells formation by author’s name. 

Answering this proposal, I have to confess not to experience pleasure in 

connection with revelation of inconsistency of the modern atom theory because I as well 

as many other people have spent a lot of time and forces to study this theory and to 

overcome mistakes connected with it. 

As of giving author’s name to scientific discovery, it is really tradition, but it would 

be desirable, that it occurs as a result of discussion by scientific community. 
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