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Abstract

In the existing literature various numerical techniques have been
developed to quantize the confined harmonic oscillator in higher di-
mensions. In obtaining the energy eigenvalues, such methods often
involve indirect approaches such as searching for the roots of hyper-
geometric functions or numerically solving a differential equation.
In this paper, however, we derive an explicit matrix representation
for the Hamiltonian of a confined quantum harmonic oscillator in
higher dimensions, thus facilitating direct diagonalization.
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1 Introduction
The d−dimensional confined harmonic oscillator (cho) of mass m and
frequency ω is described by the Hamiltonian

H(x) = − ~2

2m
∇2 +

1

2
mω2x2 ,

where x = (x1, x2, . . . , xd) with |xi| ≤ L, x2 = xtx and ∇ is the d−dimensional
cartesian gradient operator. H(x) being a Kronecker sum, we can also
write

H(x) =
d∑

i=1

Hi(xi) ,

where

Hi(xi) = − ~2

2m

∂2

∂x2
i

+
1

2
mω2x2

i , |xi| ≤ L .

We also note that H(x) = T (x) + V (x), where

T (x) =
d∑

i=1

Ti(xi) and V (x) =
d∑

i=1

Vi(xi) ,

with

Ti(xi) = − ~2

2m

∂2

∂x2
i

and Vi(xi) =
1

2
mω2x2

i , (i = 1, 2, . . . , d) .

2



Various techniques have been employed by researchers to numerically di-
agonalize the Hamiltonian of a confined oscillator. These methods usually
involve searching for roots of hypergeometric functions, as can be seen for
example in references [1] and [3]. In [5] a method based on the expan-
sion of the wavefunction as well as numerical integration of an ordinary
differential equation were used to obtain the energy eigenvalues and wave-
functions of a one-dimensional confined oscillator.

In this paper we will derive an explicit matrix representation for the Hamil-
tonian of the confined d−dimensional harmonic oscillator.

2 Matrix representation of the operators
If we consider each operator Ti(xi) as living in an N− dimensional Hilbert
space, then the functions

ϕr(xi) =

√
1

L
cos

[
π

2
sin2

(rπ
2

)
− (r + 1)πxi

2L

]
, r = 0, 1, 2, . . . , N − 1,

(1)
constitute a set of basis vectors of this N− dimensional Hilbert space
since they are the non-degenerate, mutually orthogonal and normalized
eigenstates of the Hermitian operator Ti, with corresponding eigenvalues

εr = (r + 1)2ε, r = 0, 1, 2, . . . , N − 1, where ε =
π2~2

8mL2
. (2)

Thus the operator T (x) lives in an Nd dimensional Hilbert space whose
basis vectors can be taken as the direct product vectors

ψs(x) = ψs(x1, x2, . . . , xd) =
d∏

i=1

ϕsi
(xi), s = 0, 1, 2, . . . , Nd − 1 , (3)

where
si =

⌊ s

Nd−i

⌋
mod N, i = 1, 2, . . . , d , (4)

where bqc, the floor of q, is the nearest integer not greater than q.

Thus each state ψs(x) is uniquely characterized or labelled by a vector
s = (s1, s2, . . . , sd) such that si ∈ [0, 1, 2, . . . , N − 1].
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Denoting the eigenvalues of T (x) by es, we have

es =
d∑

i=1

εsi
= ε

d∑
i=1

(si + 1)2, s = 0, 1, 2, . . . , Nd − 1 ,

with si as defined in (4) and ε as given in (2).

Since the cho Hamiltonian H(x) lives in the same Hilbert space as T (x),
the complete set of functions {ψs}, with ψs as given in (3), will be used
as the basis vectors for the matrix representation of H.

Thus, for s = 0, 1, 2, . . . , Nd − 1 and t = 0, 1, 2, . . . , Nd − 1 and with si

and ti as given in (4), the N2d matrix elements of H are given by

Hst = 〈ψs|H |ψt〉

=
d∑

i=1

〈ψs|Hi |ψt〉

=
d∑

i=1

{
d−1∏
j=0

〈
ϕsd−j

(xd−j)
∣∣Hi

d∏
j=1

∣∣ϕtj(xj)
〉}

=
d∑

i=1


 d∏

j=1
j 6=i

δsjtj

 (〈ϕsi
|Hi |ϕti〉)


=

d∑
i=1

cistHisiti
,

(5)

where we have introduced a d−dimensional vector c whose components
are Nd ×Nd symmetric binary matrices, ci with elements given by

cist =
d∏

j=1
j 6=i

δsiti , (6)

so that cist = 1 if either the two vectors s and t are one and the same
vector, s = t, or they differ only at the ith component, otherwise cist = 0.
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We note that
δsiticist = δst . (7)

In (5), Hi, i = 1, 2, . . . d are Nd ×Nd, symmetric matrices with elements

Hisiti
= 〈ϕsi

|Hi |ϕti〉
= 〈ϕsi

|Ti |ϕti〉+ 〈ϕsi
|Vi |ϕti〉

= Tisiti
+ Visiti

,

(8)

so that (5) can now be written as Hst = Tst + Vst with

Tst =
d∑

i=1

cistTisiti
, Vst =

d∑
i=1

cistVisiti
(9)

We introduce yet another d−dimensional vector, α, whose components,
αi, are Nd × Nd symmetric binary matrices, in terms of which the ci
matrices may also be expressed. The αi matrices are defined through
their elements by αist = δsiti .

2.1 Properties of the auxilliary matrices ci and αi

It is straightforward to verify the following property for the αi matrices:

αiαj = αjαi = Nd−1δijαi +Nd−2(1− δij)JNd , (10)

where

JNd =


1 1

... 1

1 1
... 1

...
...

...
...

1 1
... 1


is the Nd × Nd all-ones matrix. The αi matrices are singular and have
trace equal to Nd. The eigenvalues of αi are Nd−1 repeated N times and
0 repeated Nd − N times. Finally using multinomial expansion theorem
and (10), it is readily established that the matrix α =

∑d
i=1 αi satisfies

α2 = Nd−1α+Nd−2d(d− 1)JNd .
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From (6) it follows that

cist = δst + (1− αist) δαst, d−1 (11)

and

cst =
d∑

i=1

cist = δstd+ δαst, d−1 .

Explicitly

cist =


cos2 (αistπ/2) if αst = d− 1

0 if αst < d− 1

1 if s = t

and

cst =


0 if αst < d− 1

1 if αst = d− 1

d if s = t

.

From the definition of the ci matrices the following further properties are
evident:

1. cni = Nn−1ci, for n ∈ Z+.

2. The eigenvalues of ci are 0 and N .

3. The ci matrices are singular and have trace Nd.

2.2 Representation for T

Since Tisiti
= 〈ϕsi

|Ti |ϕti〉, from (9) we have

Tst =
d∑

i=1

cistε(si + 1)2δsiti

= εδst

d∑
i=1

(si + 1)2 ,

(12)

where we have used (1), (2) and (7).
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2.3 Representation for V

Since Visiti
= 〈ϕsi

|Vi |ϕti〉, performing the indicated integrations, with ϕsi

and ϕti as given in (1) and noting that the only non-zero matrix elements
of Vi are those for which si and ti are of the same parity, we obtain

Visiti
=
λ2ε

2

[
(1− δsiti)

(si − ti)
2 + δsiti

− (1− δsiti)

(si + ti + 2)2

]
cos2

[
(si − ti)

π

2

]

+
λ2ε

8
δsiti

[
π2

6
− 1

(si + 1)2

]
,

where λ = ω~/ε = εω/ε.

Substituting for Visiti
in the second of (9) and using (7) and (11), we

obtain

Vst =
λ2ε

8
δst

[
π2d

6
−

d∑
i=1

1

(si + 1)2

]

+
λ2ε

2
δαst,d−1

d∑
i=1

{[
(1− δsiti)

(si − ti)
2 + δsiti

− (1− δsiti)

(si + ti + 2)2

]
cos2

[
(si − ti)

π

2

]}
.

We therefore see that off-diagonal survival of Vst is possible (but not guar-
ranteed due to the presence of the cos2 term) only if αst = d − 1, that is
only if there exists a k ∈ [1, d] such that si = ti if i 6= k but sk 6= tk, so
that the vectors r and s differ only at the kth entry.

Thus,

Vst =
λ2ε

8
δst

[
π2d

6
−

d∑
i=1

1

(si + 1)2

]

+
λ2ε

2
δαst,d−1

[
1

(sk − tk)
2 −

1

(sk + tk + 2)2

]
cos2

[
(sk − tk)

π

2

]
,

where

k =
d∑

j=1

j
(
1− δsjtj

)
=

d∑
j=1

j (1− αjst) .
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2.4 Representation for H

Adding the matrix elements Tst and Vst we find that the matrix elements
for the Hamiltonian of the d−dimensional oscillator, with the direct prod-
uct of eigenstates of the particle in a one dimensional box as basis, are
given by

Hst = εδst

d∑
i=1

(si + 1)2 +
λ2ε

8
δst

[
π2d

6
−

d∑
i=1

1

(si + 1)2

]

+
λ2ε

2
δαst,d−1

[
1

(sk − tk)
2 −

1

(sk + tk + 2)2

]
cos2

[
(sk − tk)

π

2

]
,

where

k =
d∑

j=1

j
(
1− δsjtj

)
=

d∑
j=1

j (1− αjst) .

3 Application: Approximate analytic expression
for the energy spectrum of the 1−dimensional
cho

Based on our discussion in the previous sections culminating in the deriva-
tion of the explicit matrix elements of the d−dimensional confined har-
monic oscillator, it is now straightforward, in principle, to find the eigen-
values of the oscillator. In practice however, the quantization remains a
formidable task because of the exponential growth of the size of the Hamil-
tonian matrix with d. However, since the matrix elements are available in
explicit form, they can be gainfully employed, for example in perturbation
calculations, to obtain approximate analytical results.

It is our aim in the remaining part of this paper to derive an approximate
analytic expression for the energy spectrum of the 1−dimensional confined
harmonic oscillator. We will treat the potential energy of the confined
oscillator as a perturbation of the kinetic energy term, the latter being the
exactly solvable particle in a box Hamiltonian, with the non-degenerate
eigenstates given in (1). Results from perturbation calculations, in the
one dimensional case, can also be found in references [2], [4] and [6].
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Energy spectrum of the 1−dimensional cho

For the discussion of the confined harmonic oscillator in one dimension,
it is convenient to drop the subscripts on s and t. Also we shall refer to
Hi, Vi, Ti and xi simply as H, V , T and x respectively. The eigenvalue
problem is therefore

H |Er〉 = Er |Er〉 , r = 0, 1, 2, . . . , N − 1 .

Since the eigenstates of T (x) are known, being the ϕr(x) of (1), it is
convenient, for small values of the classical oscillator frequency, ω, to
treat V (x) as a perturbation of the exactly solvable particle in a box
Hamiltonian, T (x), with ω2 as the perturbation parameter.

By noting that δαst,d−1 = δαst,0 = 1− δst we have

Vst =
λ2ε

8
δst

[
π2

6
− 1

(s+ 1)2

]

+
λ2ε

2

[
(1− δst)

(s− t)2 + δst
− (1− δst)

(s+ t+ 2)2

]
cos2

[
(s− t)

π

2

] (13)

and

Hst = εδst(s+ 1)2 +
λ2ε

8
δst

[
π2

6
− 1

(s+ 1)2

]

+
λ2ε

2

[
(1− δst)

(s− t)2 + δst
− (1− δst)

(s+ t+ 2)2

]
cos2

[
(s− t)

π

2

]
.

Since the states |Er〉 are non-degenerate, Er can be approximated, using
standard perturbation theory, as

Er ≈ E(0)
r + E(1)

r + E(2)
r + E(3)

r .

The zeroth order correction to the energy of the one dimensional confined
harmonic oscillator, E(0)

r , being the energy of the one dimensional par-
ticle in a box and the first order correction, E(1)

r , being the expectation
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value of the perturbation V (x), in each state ϕr(x), are straightforward
to calculate:

E(0)
r = εr = ε(r + 1)2, from (2)

and

E(1)
r = Vrr =

λ2ε

8

[
π2

6
− 1

(r + 1)2

]
, from (13)

=
λ2ε

8

[
ζ(2)− 1

(r + 1)2

]
,

where ζ(m) is the Riemann zeta function defined by

ζ(m) =
∞∑

r=1

1

rm
.

The second order correction to the energy of the one dimensional confined
harmonic oscillator, E(2)

r , is given by

E(2)
r =

∞∑
s=0
s 6=r

VrsVsr

εrs

=
r−1∑
s=0

VrsVsr

εrs

+
∞∑

s=r+1

VrsVsr

εrs

, (14)

where
εrs = εr − εs = ε(r + s+ 2)(r − s) , (15)

so that

2ε(r + 1)

εrs

=
1

(r + s+ 2)
+

1

(r − s)

and
2ε(s+ 1)

εrs

= − 1

(r + s+ 2)
+

1

(r − s)
.

(16)

Since V is a real symmetric matrix, (14) is simply

E(2)
r =

r−1∑
s=0

V 2
rs

εrs

+
∞∑

s=r+1

V 2
rs

εrs

. (17)
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We note that the matrix elements occuring in (17) are necessarily off-diagonal
(s 6= r). Furthermore the only surviving elements Vrs, according to (13),
are those for which r and s are both odd or both even. It therefore follows
from (13) that

Vrs =
λ2ε

2

[
1

(r − s)2
− 1

(r + s+ 2)2

]
cos2

[
(s− t)

π

2

]
=
λ2ε

2

(
1

(r − s)
− 1

(r + s+ 2)

) (
1

(r − s)
+

1

(r + s+ 2)

)
cos2

[
(r − s)

π

2

]
,

and using (16) we have

Vrs = 2λ2ε3 (r + 1)(s+ 1)

ε2
rs

cos2
[
(r − s)

π

2

]
, s 6= r . (18)

From (15) and (18) and noting that

cos4
[
(r − s)

π

2

]
≡ cos2

[
(r − s)

π

2

]
we have

V 2
rs

εrs

= 4λ4ε
(r + 1)2(s+ 1)2

(r − s)5(r + s+ 2)5
cos2

[
(r − s)

π

2

]
and thus (17) now becomes

E(2)
r = 4λ4ε(r + 1)2

r−1∑
s=0

(s+ 1)2

(r − s)5(r + s+ 2)5
cos2

[
(r − s)

π

2

]
+ 4λ4ε(r + 1)2

∞∑
s=r+1

(s+ 1)2

(r − s)5(r + s+ 2)5
cos2

[
(r − s)

π

2

]
.

(19)

Classifying the energy corrections in (19) by parity of r we have

E(2)
q = 4λ4ε(q + 1)2 (Aq +Bq) , (20)

with

Aq =

q−1∑
s=0

(s+ 1)2

(q − s)5(q + s+ 2)5
cos2

[
(q − s)

π

2

]
and

Bq =
∞∑

s=q+1

(s+ 1)2

(q − s)5(q + s+ 2)5
cos2

[
(q − s)

π

2

]
,
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where q = 2r for even levels and q = 2r + 1 for odd levels.

Choosing

fs =
(s+ 1)2

(2r − s)5(2r + s+ 2)5
cos2

[
(2r − s)

π

2

]
in the following summation identity (see section 2.11 of [7] for more general
formulas)

M∑
s=0

fs =

(M−(M mod 2))/2∑
s=0

f2s +

(M+(M mod 2))/2−1∑
s=0

f2s+1 , (21)

allows us to write (noting that f2s+1 = 0 with the present choice of fs)

A2r =
2r−1∑
s=0

(s+ 1)2

(2r − s)5(2r + s+ 2)5
cos2

[
(2r − s)

π

2

]
=

r−1∑
s=0

(2s+ 1)2

(2r − 2s)5(2r + 2s+ 2)5

=
1

210

r−1∑
s=0

(2s+ 1)2

(r − s)5(r + s+ 1)5

(22)

and

B2r =
1

210

∞∑
s=r+1

(2s+ 1)2

(r − s)5(r + s+ 1)5
. (23)

Similarly, taking identity (21) into consideration, we have

A2r+1 =
2r∑

s=0

(s+ 1)2

(2r − s+ 1)5(2r + s+ 3)5
cos2

[
(2r − s+ 1)

π

2

]
=

r−1∑
s=0

(2s+ 2)2

(2r − 2s)5(2r + 2s+ 4)5

=
4

210

r−1∑
s=0

(s+ 1)2

(r − s)5(r + s+ 2)5

(24)

and

B2r+1 =
4

210

∞∑
s=r+1

(s+ 1)2

(r − s)5(r + s+ 2)5
. (25)
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We note that the above results can be combined into

Aq =
r−1∑
s=0

(2s+ 1 + q mod 2)2

(2r − 2s)5(q + 2s+ 2 + q mod 2)5

and

Bq =
∞∑

s=r+1

(2s+ 1 + q mod 2)2

(2r − 2s)5(q + 2s+ 2 + q mod 2)5
,

where q = 2r or q = 2r + 1.

The finite sums A2r and A2r+1 as given in (22) and (24) as well as the
infinite sums B2r and B2r+1 as given in (23) and (25) are expressible in
closed form, in terms of the well-studied polygamma functions; a computer
algebra system, such as Waterloo Maple, comes in handy for this purpose.
Putting the results together in (20), the final result is (see the Appendix
for the Maple code)

E(2)
r =

λ4ε

128

(
ζ(4)

(r + 1)2
− 5ζ(2)

(r + 1)4
+

7

(r + 1)6

)
, r = 0, 1, 2, . . .

We remark that an equivalent result to ours, for E(2)
r , can also be found

in reference [2]. The sum was however left unevaluated in that paper.

In standard non-degenerate perturbation theory, the third order correction
to the energy of the one dimensional confined harmonic oscillator, E(3)

r , is
given by

E(3)
r =

N∑
s=0
s 6=r

N∑
t=0
t6=r

VrsVstVtr

εrsεrt

− Vrr

N∑
s=0
s 6=r

VrsVsr

ε2
rs

.

Working exactly as in computing the second order corrections, while taking
note of the following summation identity

N∑
s=a

N∑
t=a

fst =
N∑

s=a

fss +
N−1∑
s=a

N∑
t=s+1

(fst + fts) ,

we find that E(3)
r is expressible in closed form, in terms of the polygamma

functions. In the limit of N →∞ the result is

E(3)
r =

λ6ε

2048

(
ζ(6)

(r + 1)4
− 60ζ(4)

(r + 1)6
+

186ζ(2)

(r + 1)8
− 242

(r + 1)10

)
.
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Thus, the energy corrections can be written as

E(m)
r =

λ2mε

24m−1

m∑
n=0

(−1)nζ(2m− 2n)c
(m)
n

((r + 1)2)m+n−1 , m = 0, 1, 2, 3 ,

where

c
(0)
0 = −1 ,

c
(1)
0 = 1, c

(1)
1 = −2 ,

c
(2)
0 = 1, c

(2)
1 = 5, c

(2)
2 = −14

and

c
(3)
0 = 1, c

(3)
1 = 60, c

(3)
2 = 186, c

(3)
3 = −484 .

(26)

To the sixth order in the classical oscillator frequency, ω, therefore, the
one dimensional cho has the energy spectrum

Er ≈
3∑

m=0

E(m)
r =

3∑
m=0

{
λ2mε

24m−1

m∑
n=0

(−1)nζ(2m− 2n)c
(m)
n

((r + 1)2)m+n−1

}
, (27)

with c(m)
n as given in (26).

The form of (27) allows to conjecture the existence of an exact formula for
the energy spectrum of the one dimensional confined harmonic oscillator,
in the form

Er =
∞∑

m=0

E(m)
r =

∞∑
m=0

{
λ2mε

24m−1

m∑
n=0

(−1)nζ(2m− 2n)c
(m)
n

((r + 1)2)m+n−1

}
, c(m)

n ∈ Z\{0} .

4 Summary
We have derived an explicit matrix representation for the d−dimensional
confined harmonic oscillator, using the eigenstates of the kinetic energy
operator as basis vectors.
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We showed that the Hamiltonian

H(x) = − ~2

2m

d∑
i=1

∂2

∂x2
i

+
1

2
mω2

d∑
i=1

x2
i , |xi| ≤ L ,

has the explicit Nd ×Nd matrix representation

Hst = εδst

d∑
i=1

(si + 1)2 +
λ2ε

8
δst

[
π2d

6
−

d∑
i=1

1

(si + 1)2

]

+
λ2ε

2
δαst,d−1

[
1

(sk − tk)
2 −

1

(sk + tk + 2)2

]
cos2

[
(sk − tk)

π

2

]
,

with

ε =
π2~2

8mL2
, λ = ω~/ε = εω/ε, αst =

d∑
i=1

αist =
d∑

i=1

δsiti

and

k =
d∑

j=1

j
(
1− δsjtj

)
=

d∑
j=1

j (1− αjst) ,

where s, t = 0, 1, 2, . . . , Nd − 1 and

si =
⌊ s

Nd−i

⌋
mod N, i = 1, 2, . . . , d

and
ti =

⌊
t

Nd−i

⌋
mod N, i = 1, 2, . . . , d .

In particular, for the one-dimensional confined harmonic oscillator, we
have an N ×N representation with the matrix elements given by

Hst = εδst(s+ 1)2 +
λ2ε

8
δst

[
π2

6
− 1

(s+ 1)2

]

+
λ2ε

2

[
1

(s− t)2 + δst
− 1

(s+ t+ 2)2

]
(1− δst) cos2

[
(s− t)

π

2

]
,

for s, t = 0, 1, 2, . . . , N − 1.
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Finally, we derived the following approximate analytic expression for the
energy spectrum of the 1−dimensional cho, to the sixth order in the os-
cillator frequency ω,

Er ≈
3∑

m=0

E(m)
r =

3∑
m=0

{
λ2mε

24m−1

m∑
n=0

(−1)nζ(2m− 2n)c
(m)
n

((r + 1)2)m+n−1

}
, r = 0, 1, 2, . . . , N ,

with c(m)
n as given in (26).

Appendix

Maple code to determine E(2)
r

=================================================
>summand:=q->(2*s+1+modp(q,2))^2/(2*r-2*s)^5/(q+2*s+2+modp(q,2))^5;

summand := q → (2s+ 1 + modp(q, 2))2

(2r − 2s)5(q + 2s+ 2 + modp(q, 2))5

>A2r:=sum(summand(2*r),s=0..r-1):
# replace the last ":" with ";" to see the polygamma sums

>B2r:=sum(summand(2*r),s=r+1..infinity):
# replace ":" with ";" to see the polygamma sums
>E2r:=expand(simplify(4*(2*r+1)^2*(A2r+B2r))):
# we suppress the factor [lambda^4*epsilon]
># collect terms of the same order in Pi
E2r:=collect(%,Pi):
>E2r:=factor(coeff(E2r,Pi^4))*Pi^4+factor(coeff(E2r,Pi^2))*Pi^2+op(3,E2r);

E2r :=
π4

11520 (2 r + 1)2 −
5π2

768 (2 r + 1)4 +
7

128 (2 r + 1)6

># we now include the lambda^4*epsilon
E2r:=lambda^4*epsilon*E2r;

E2r := λ4ε

(
π4

11520 (2 r + 1)2 −
5π2

768 (2 r + 1)4 +
7

128 (2 r + 1)6

)
=================================================

16



Since ζ(2) = π2/6 and ζ(4) = π4/90 it follows that

E
(2)
2r =

λ4ε

128

(
ζ(4)

(2r + 1)2
− 5ζ(2)

(2r + 1)4
+

7

(2r + 1)6

)
. (28)

Similarly running the above code with summand(2r + 1) gives

E
(2)
2r+1 =

λ4ε

128

(
ζ(4)

(2r + 2)2
− 5ζ(2)

(2r + 2)4
+

7

(2r + 2)6

)
. (29)

From (28) and (29) we conclude that

E(2)
r =

λ4ε

128

(
ζ(4)

(r + 1)2
− 5ζ(2)

(r + 1)4
+

7

(r + 1)6

)
.
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