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Abstract

Using a straightforward elementary approach, we derive numerous in-
finite arctangent summation formulas involving Fibonacci and Lucas
numbers. While most of the results obtained are new, a couple of cele-
brated results appear as particular cases of the more general formulas
derived here.
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1 Introduction
It is our goal, in this work, to derive infinite arctangent summation formulas
involving Fibonacci and Lucas numbers. The results obtained will be found
to be of a more general nature than one finds in earlier literature.

Previously known results containing arctangent identities and/or infinite
summation involving Fibonacci numbers can be found in references [1, 2,
3, 4, 5] and references therein.

2



In deriving the results in this paper, the main identities employed are the
trigonometric addition formula

tan−1

{
λ(y − x)

xy + λ2

}
= tan−1 λ

x
− tan−1 λ

y
, (1.1)

which holds for λ ∈ R such that either xy > 0 or xy < 0 and λ2 < −xy,
and the following identities which resolve products of Fibonacci and Lucas
numbers

Fu−vFu+v = F 2
u − (−1)(u−v)F 2

v , (1.2a)
Lu−vLu+v = L2u + (−1)(u−v)L2v , (1.2b)

LuFv = Fv+u + (−1)uFv−u , (1.2c)
FuLv = Fv+u − (−1)uFv−u , (1.2d)
LuLv = Lu+v + (−1)uLv−u , (1.2e)

5Fu−vFu+v = L2u − (−1)(u−v)L2v . (1.2f)

Also we shall make repeated use of the following identities connecting Fi-
bonacci and Lucas numbers:

F2u = FuLu , (1.3a)
L2u − 2(−1)u = 5F 2

u , (1.3b)
5F 2

u − L2
u = 4(−1)(u+1) , (1.3c)

L2u + 2(−1)u = L2
u . (1.3d)

Identities (1.2) and (1.3) or their variations can be found in [6, 7, 8].

On notation, Gi, i integers, denotes generalized Fibonacci numbers defined
through the second order recurrence relation Gi = Gi−1 + Gi−2, where two
boundary terms, usually G0 and G1, need to be specified. When G0 = 0 and
G1 = 1, we have the Fibonacci numbers, denoted Fi, while when G0 = 2 and
G1 = 1, we have the Lucas numbers, denoted Li.

Throughout this paper, the principal value of the arctangent function is as-
sumed.

3



Interesting results obtained in this paper, for integers k, j 6= 0 and p include

∞∑
r=1

tan−1

{
F 2

j LjL4jr

F 2
4jr − F 2

2j + F 2
j

}
= tan−1

(
1

Lj

)
,

∞∑
r=1

tan−1

{
L2

jFjL4jr

F 2
4jr − F 2

2j + L2
j

}
= tan−1

(
1

Fj

)
,

∞∑
r=1

tan−1

{
F 2

2jL4jr+2j

F 2
4jr+2j

}
= tan−1

(
1

L2j

)
,

∞∑
r=1

tan−1

{
F2(2j−1)

F4jr−2r+2j−1

}
= tan−1

(
1

L2j−1

)
,

∞∑
r=1

tan−1

{
F2(2j−1)

F4jr−2r+1

}
= tan−1

(
F2j−1

F2j

)
,

∞∑
r=1

tan−1

{
1

F2r+2k−1

}
= tan−1

(
1

F2k

)
,

∞∑
r=p

tan−1

{
1

5

L2r

F 2
2r

}
= tan−1

(
1

L2p−1

)
,
∞∑

r=1

tan−1

{
F4j

F4jr−1

}
= tan−1

(
L2j

L2j−1

)
.

We also obtained the following special values

∞∑
r=1

tan−1

{
L4r−2

F 2
4r−2

}
=

π

2
,

∞∑
r=1

tan−1

{
L4r

F 2
4r

}
=

π

4
,

∞∑
r=1

tan−1

{√
35 L4r−2

L2(4r−2)

}
=

π

2
,

∞∑
r=1

tan−1

{√
3L2r

L4r

}
=

π

3
,

∞∑
r=1

tan−1

{
1

5

L2r

F 2
2r

}
=

π

4
,

∞∑
r=1

tan−1

{√
5

L2r

}
= tan−1

√
5 ,

∞∑
r=1

tan−1

{√
35 L4r

L8r

}
=

√
7

5
,
∞∑

r=1

tan−1

{√
5F2r−1

L2
2r−1

}
=

π

2
,

∞∑
r=1

tan−1

(
5
√

7F4r−1

L2(4r−1)

)
= tan−1

√
7 ,

∞∑
r=1

tan−1

{
L4r+2

F 2
4r+2

}
= tan−1

(
1

3

)
.

2 Preliminary result
Taking x = Gmr+n−m and y = Gmr+n in the arctangent addition formula,
identity (1.1), gives

tan−1

{
λ(Gmr+n −Gmr+n−m)

Gmr+nGmr+n−m + λ2

}
= tan−1

(
λ

Gmr+n−m

)
− tan−1

(
λ

Gmr+n

)
.

(2.1)
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Summing each side of identity (2.1) from r = p ∈ Z to r = N ∈ Z+ and
noting that the summation of the terms on the right hand side telescopes,
we obtain

N∑
r=p

tan−1

{
λ(Gmr+n −Gmr+n−m)

Gmr+nGmr+n−m + λ2

}
= tan−1

(
λ

Gmp+n−m

)
−tan−1

(
λ

GmN+n

)
.

(2.2)
Now taking limit as N →∞, we have

Lemma.

For λ ∈ R, n, m, p ∈ Z, m 6= 0 holds

∞∑
r=p

tan−1

{
λ(Gmr+n −Gmr+n−m)

Gmr+nGmr+n−m + λ2

}
= tan−1

(
λ

Gmp+n−m

)
. (2.3)

3 Main Results

3.1 G ≡ F in identity (2.3), that is, G0 = 0, G1 = 1

Choosing m = 4j and n = 2k + 2j and using identities (1.2a) and (1.2d) we
prove

THEOREM 3.1. For λ ∈ R, j, k, p ∈ Z and j 6= 0 holds

∞∑
r=p

tan−1

{
λF2jL4jr+2k

F 2
4jr+2k − F 2

2j + λ2

}
= tan−1

(
λ

F4jp+2k−2j

)
, (3.1)

while taking m = 4j − 2 and n = 2k + 2j − 2 and using identities (1.2a) and
(1.2c) we prove

THEOREM 3.2. For λ ∈ R and j, k, p ∈ Z holds

∞∑
r=p

tan−1

{
λL2j−1F4jr−2r+2k−1

F 2
4jr−2r+2k−1 − F 2

2j−1 + λ2

}
= tan−1

(
λ

F4jp−2p+2k−2j

)
. (3.2)
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3.2 G ≡ L in identity (2.3), that is, G0 = 2, G1 = 1

Choosing m = 4j and n = 2k + 2j − 1 and using identities (1.2b) and (1.2f)
we prove

THEOREM 3.3. For λ ∈ R, j, k, p ∈ Z and j 6= 0 holds

∞∑
r=p

tan−1

(
5λF2jF4jr+2k−1

L8jr+4k−2 − L4j + λ2

)
= tan−1

(
λ

L4jp+2k−2j−1

)
, (3.3)

while taking m = 4j − 2 and n = 2k + 2j − 1 and using identities (1.2b) and
(1.2e) we prove

THEOREM 3.4. For λ ∈ R and j, k, p ∈ Z holds

∞∑
r=p

tan−1

(
λL2j−1L4jr−2r+2k

L8jr−4r+4k − L4j−2 + λ2

)
= tan−1

(
λ

L4jp−2p+2k−2j+1

)
. (3.4)

4 Corollaries and special values
Different combinations of the parameters λ, j, k and p in the above theorems
yield a variety of interesting particular cases. In this section we will consider
some of the possible choices.

4.1 Results from Theorem 3.1

4.1.1 λ = Fj, p = 1 and k = 0 in identity (3.1)

The choice λ = Fj, p = 1 and k = 0 in identity (3.1) gives

∞∑
r=1

tan−1

{
F 2

j LjL4jr

F 2
4jr − F 2

2j + F 2
j

}
= tan−1

(
1

Lj

)
. (4.1)

Thus, at j = 1, we obtain the special value

∞∑
r=1

tan−1

{
L4r

F 2
4r

}
=

π

4
. (4.2)
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4.1.2 λ = Lj, p = 1 and k = 0 in identity (3.1)

The above choice gives

∞∑
r=1

tan−1

{
L2

jFjL4jr

F 2
4jr − F 2

2j + L2
j

}
= tan−1

(
1

Fj

)
. (4.3)

At j = 1, identity(4.2) is reproduced, while at j = 2 we have the special
value

∞∑
r=1

tan−1

{
9L8r

F 2
8r

}
=

π

4
. (4.4)

Note that identities (4.2) and (4.4) are special cases of identity (4.8) below,
at j = 1 and j = 2, respectively.

4.1.3 λ = F2j, k = j and p = 0 in identity (3.1)

This choice gives
∞∑

r=1

tan−1

{
F 2

2jL4jr−2j

F 2
4jr−2j

}
=

π

2
, (4.5)

which, at j = 1, gives the special value

∞∑
r=1

tan−1

{
L4r−2

F 2
4r−2

}
=

π

2
. (4.6)

4.1.4 λ = F2j and p = 1 in identity (3.1)

This choice gives

∞∑
r=1

tan−1

{
F 2

2jL4jr+2k

F 2
4jr+2k

}
= tan−1

(
F2j

F2j+2k

)
. (4.7)

At k = 0 in identity (4.7) we have

∞∑
r=1

tan−1

{
F 2

2jL4jr

F 2
4jr

}
=

π

4
. (4.8)
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Note that identities (4.2) and (4.4) are special cases of identity (4.8) at j = 1
and j = 2, respectively.

At k = j 6= 0 in identity (4.7) we have

∞∑
r=1

tan−1

{
F 2

2jL4jr+2j

F 2
4jr+2j

}
= tan−1

(
1

L2j

)
, (4.9)

yielding at j = 1, the special value

∞∑
r=1

tan−1

{
L4r+2

F 2
4r+2

}
= tan−1

(
1

3

)
. (4.10)

Finally, taking limit of identity (4.7) as j →∞, we obtain

lim
j→∞

∞∑
r=1

tan−1

{
F 2

2jL4jr+2k

F 2
4jr+2k

}
= tan−1

(
1

φ2k

)
. (4.11)

4.1.5 5λ2 = L4j, p = 0 and k = j in identity (3.1)

Another interesting particular case of identity (3.1) is obtained by setting
5λ2 = L4j, p = 0 and k = j to obtain

∞∑
r=1

tan−1

{
F2j

√
5L4jL4jr−2j

L2(4jr−2j)

}
=

π

2
, (4.12)

which at j = 1 gives the special value

∞∑
r=1

tan−1

{√
35 L4r−2

L2(4r−2)

}
=

π

2
. (4.13)

4.1.6 5λ2 = L4j, p = 0 and k = 2j in identity (3.1)

In this case Theorem 3.1 reduces to

∞∑
r=1

tan−1

{
F2j

√
5L4jL4jr

L8jr

}
= tan−1

(
1√
5

√
L4j

F2j

)
. (4.14)
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At j = 1, we have the special value

∞∑
r=1

tan−1

{√
35 L4r

L8r

}
=

√
7

5
. (4.15)

4.1.7 λ = L2j/
√

5 and k = j in identity (3.1)

Setting λ = L2j/
√

5 and k = j in identity (3.1) we have

∞∑
r=p

tan−1

{√
5F4j

L4jr+2j

}
= tan−1

(
L2j

F4jp

√
5

)
, (4.16)

which at p = 1 gives

∞∑
r=1

tan−1

{√
5F4j

L4jr+2j

}
= tan−1

(
1

F2j

√
5

)
(4.17)

and at p = 0 yields
∞∑

r=1

tan−1

{√
5F4j

L4jr−2j

}
=

π

2
. (4.18)

4.1.8 λ = L2j/
√

5, p = 0 and k = 2j 6= 0 in identity (3.1)

The above choice yields

∞∑
r=1

tan−1

{√
5F4j

L4jr

}
= tan−1

(
L2j

F2j

√
5

)
. (4.19)

4.2 Results from Theorem 3.2

4.2.1 λ = F2j−1 and p = 1 in identity (3.2)

The above choice gives

∞∑
r=1

tan−1

{
F2(2j−1)

F4jr−2r+2k−1

}
= tan−1

(
F2j−1

F2j+2k−2

)
. (4.20)

At k = j in identity (4.20) we have the interesting formula
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∞∑
r=1

tan−1

{
F2(2j−1)

F4jr−2r+2j−1

}
= tan−1

(
1

L2j−1

)
. (4.21)

Note that identity (4.21), at j = 1, includes Lehmer’s result (cited in [3, 5])
as a particular case.

Setting j = 1 in identity (4.20) we obtain

∞∑
r=1

tan−1

{
1

F2r+2k−1

}
= tan−1

(
1

F2k

)
. (4.22)

Note again that identity (4.22) subsumes Lehmer’s formula and the result of
Melham (p = 1 in identity(3.5) of [5]), at k = 1 and at k = 0 respectively.

Finally, taking limit j →∞ in identity (4.20), we obtain

lim
j→∞

∞∑
r=1

tan−1

{
F2(2j−1)

F4jr−2r+2k−1

}
= tan−1

(
1

φ2k−1

)
. (4.23)

4.2.2 λ = L2j−1/
√

5 and k = j in identity (3.2)

The above choice gives

∞∑
r=p

tan−1

{√
5L2

2j−1F4jr−2r+2j−1

L2
4jr−2r+2j−1

}
= tan−1

(
1√
5

L2j−1

F4jp−2p

)
. (4.24)

Setting p = 1 in identity (4.24), we find

∞∑
r=1

tan−1

{√
5L2

2j−1F4jr−2r+2j−1

L2
4jr−2r+2j−1

}
= tan−1

(
1√
5

1

F2j−1

)
, (4.25)

while choosing j = 1 leads to

∞∑
r=p

tan−1

{√
5F2r+1

L2
2r+1

}
= tan−1

(
1√
5

1

F2p

)
, (4.26)

which at p = 0 gives the special value
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∞∑
r=1

tan−1

{√
5F2r−1

L2
2r−1

}
=

π

2
. (4.27)

4.2.3 5λ2 = L4j−2 and k = j in identity (3.2)

The above substitutions give

∞∑
r=p

tan−1

{√
5L4j−2L2j−1F4jr−2r+2j−1

L2(4jr−2r+2j−1)

}
= tan−1

(√
5L4j−2

5F4jp−2p

)
. (4.28)

At p = 0 in identity (4.28) we have, for positive integers j,

∞∑
r=1

tan−1

{√
5L4j−2L2j−1F4jr−2r−2j+1

L2(4jr−2r−2j+1)

}
=

π

2
, (4.29)

giving, at j = 1, the special value

∞∑
r=1

tan−1

{√
15F2r−1

L2(2r−1)

}
=

π

2
. (4.30)

At p = 2 in identity (4.28) we have, for positive integers j,

∞∑
r=1

tan−1

{√
5L4j−2L2j−1F4jr−2r+6j−3

L2(4jr−2r+6j−3)

}
= tan−1

(
1√

5F4j−2F8j−4

)
,

(4.31)
which gives, at j = 1, the special value

∞∑
r=1

tan−1

{√
15F2r+3

L2(2r+3)

}
= tan−1

(
1√
15

)
. (4.32)

4.3 Results from Theorem 3.3

4.3.1 λ =
√

L4j, k = 0 and p = 1 in identity (3.3)

The above choice gives
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∞∑
r=1

tan−1

(
5
√

L4jF2jF4jr−1

L8jr−2

)
= tan−1

(√
L4j

L2j−1

)
, (4.33)

which, at j = 1, gives

∞∑
r=1

tan−1

(
5
√

7F4r−1

L2(4r−1)

)
= tan−1

√
7 . (4.34)

4.3.2 λ = L2j and p = 1 in identity (3.3)

Setting λ = L2j and p = 1 in identity (3.3) gives

∞∑
r=1

tan−1

{
F4j

F4jr+2k−1

}
= tan−1

(
L2j

L2j+2k−1

)
. (4.35)

Taking limit as j →∞ in identity (4.35) gives

lim
j→∞

∞∑
r=1

tan−1

{
F4j

F4jr+2k−1

}
= tan−1

(
1

φ2k−1

)
. (4.36)

4.3.3 λ =
√

5F2j, p = 1 and k = 0 in identity (3.3)

Setting λ =
√

5F2j, p = 1 and k = 0 in identity (3.3) we obtain

∞∑
r=1

tan−1

(
5
√

5F 2
2jF4jr−1

L2
4jr−1

)
= tan−1

(√
5F2j

L2j−1

)
, (4.37)

which gives the special value

∞∑
r=1

tan−1

(
5
√

5F4r−1

L2
4r−1

)
= tan−1

√
5 , (4.38)

at j = 1.
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4.4 Results from Theorem 3.4

4.4.1 λ =
√

L4j−2 and j = 0 = k in identity (3.4)

With the above choice we obtain

∞∑
r=p

tan−1

{√
3L2r

L4r

}
= tan−1

( √
3

L2p−1

)
, (4.39)

which gives rise, at p = 1, to the special value

∞∑
r=1

tan−1

{√
3L2r

L4r

}
=

π

3
. (4.40)

4.4.2 λ = L2j−1 and p = 1 in identity (3.4)

With the above choice we have

∞∑
r=1

tan−1

{
L2

2j−1

5

L4jr−2r+2k

F 2
4jr−2r+2k

}
= tan−1

(
L2j−1

L2j+2k−1

)
. (4.41)

k = 0 in identity (4.41) gives

∞∑
r=1

tan−1

{
L2

2j−1

5

L4jr−2r

F 2
4jr−2r

}
=

π

4
, (4.42)

which at j = 1 gives the special value

∞∑
r=1

tan−1

{
1

5

L2r

F 2
2r

}
=

π

4
. (4.43)

j = 1 in identity (4.41) leads to
∞∑

r=1

tan−1

{
1

5

L2r+2k

F 2
2r+2k

}
= tan−1

(
1

L2k+1

)
, (4.44)

which gives the special value

∞∑
r=1

tan−1

{
1

5

L2r+2

F 2
2r+2

}
= tan−1

(
1

4

)
, (4.45)
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at k = 1.

Taking limit j →∞ in identity (4.41), we obtain

lim
j→∞

∞∑
r=1

tan−1

{
L2

2j−1

5

L4jr−2r+2k

F 2
4jr−2r+2k

}
= tan−1

(
1

φ2k

)
. (4.46)

4.4.3 λ = L2j−1 and j = 0 = k in identity (3.4)

This choice gives

∞∑
r=p

tan−1

{
1

5

L2r

F 2
2r

}
= tan−1

(
1

L2p−1

)
, (4.47)

Note that identities (4.43) and (4.45) are special cases of (4.47) at p = 1 and
at p = 2.

4.4.4 λ =
√

5F2j−1 and j = 0 = k in identity (3.4)

The above choice gives

∞∑
r=p

tan−1

{√
5

L2r

}
= tan−1

( √
5

L2p−1

)
, (4.48)

which at p = 1 gives the special value

∞∑
r=1

tan−1

{√
5

L2r

}
= tan−1

√
5 . (4.49)

5 Conclusion
Using a fairly straightforward technique, we have derived numerous infi-
nite arctangent summation formulas involving Fibonacci and Lucas numbers.
While most of the results obtained are new, a couple of ‘celebrated’ results
appear as particular cases of more general formulas derived in this paper.
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