Infinite arctangent sums involving Fibonacci
and Lucas numbers*

Kunle Adegoke'

Department of Physics and Engineering Physics,
Obafemi Awolowo University, Ile-Ife, 220005 Nigeria

Saturday 23" July, 2016, 16:43

Abstract

Using a straightforward elementary approach, we derive numerous in-
finite arctangent summation formulas involving Fibonacci and Lucas
numbers. While most of the results obtained are new, a couple of cele-
brated results appear as particular cases of the more general formulas
derived here.

Contents

[1__Introduction| 2

2 Preliminary result| 4

3__Main Results| 5
3.1 G = F in identity (2.3), thatis, Go =0, Gy =1 . . ... ... 5
3.2 G = L in identity (2.3), thatis, Go =2, Gy =1 . . . .. ... 6

*MSC 2010: 11B39, 11Y60

fadegoke00@gmail.com
Keywords: Fibonacci numbers, Lucas numbers, Lehmer formula, arctangent sums, Infinite
sums



[4  Corollaries and special values| 6

4.1 Results from Theorem 3.1l 6l
411 A=F;,, p=1and k=01inidentity (3.1) . ... .. .. §
412 N=L;,p=1and k=0 inidentity (3.1) . . ... . .. 7
413 AN=Fy, k=jand p=0inidentity (3.1). ... .. .. 7
114 A= Fy and p = I in identity (3.1) . . . .. ... ... 7
4.1.5 5N =Ly, p=0and k = j in identity (3.1) . . . . . . 8
4.1.6 5\ = L4;, p=0and k = 27 in identity (3.1) . . . . . 8
4.1.7 N = Lo;/v/5and k= j inidentity (3.1) . . . . ... .. 9
118 A= Ly;/V5, p—0and k= 2j #0 in identity (B.0) . . 9

4.2 esults from Theorem B.2 q
421 AN=F,, andp=1inidentity (3.2) . ... ... ... 9
4.2.2 A= Ly; 1/vV5and k = j in identity (3.2) . . . . . . .. 10
4.2.3 5\ = Ly and k= j inidentity (3.2) . . . .. . . .. 11

4.3 Results from Theorem 3.3 11
431 A= /Ly, k=0and p=1inidentity 3.3) ... ... 11
432 A= Ls;and p=1inidentity (3.3) . ... . ... ... 12
4.3.3 X =+/5Fy;, p=1and k=0 in identity (3.3) . . . . . . 12

4.4 Results from Theorem 3.4 13
441 A= /Ly and j=0=Fkinidentity (3.4) . ... .. 13
442 N=Lg; jandp=1inidentity (3.4) . ... ... ... 13
443 N=Ls; qand j=0=Fkinidentity (3.4) . . . ... .. 14
4.4.4 X=+/5Fy; ; and j =0 =k in identity (3.4) . ... .. 14

b__Conclusion| 14

1 Introduction

It is our goal, in this work, to derive infinite arctangent summation formulas
involving Fibonacci and Lucas numbers. The results obtained will be found
to be of a more general nature than one finds in earlier literature.

Previously known results containing arctangent identities and/or infinite
summation involving Fibonacci numbers can be found in references [I], 2,
3, 4, 5] and references therein.



In deriving the results in this paper, the main identities employed are the
trigonometric addition formula

My — A A
tan™! {%} =tan"! o tan™! e (1.1)

which holds for A € R such that either 2y > 0 or zy < 0 and \? < —axy,
and the following identities which resolve products of Fibonacci and Lucas
numbers

FyoFypy=F2— (=1) 92, (1.2a)
Ly—yLyso = Loy + (=1)7 Ly, , (1.2b)
LyFy=Fopu + (=1)"Fypeu, (1.2¢)
FuLy=Fyppy — (=1)"Fyu, (1.2d)
LyLy=Lyiy+ (—1)"Ly_y, (1.2¢)
5Fy—oFuro = Loy — (1)) Ly, . (1.2f)

Also we shall make repeated use of the following identities connecting Fi-
bonacci and Lucas numbers:

Fy, = F,L,, (1.3a)

Ly, —2(=1)" =5F?, (1.3b)
5F2 — [ =4(—1)0) (1.3¢)
Loy +2(—=1)" = L2, (1.3d)

Identities ([1.2)) and ([1.3]) or their variations can be found in [0} [7, [§].

On notation, G;, i integers, denotes generalized Fibonacci numbers defined
through the second order recurrence relation G; = G;_1 + G;_», where two
boundary terms, usually Gy and G1, need to be specified. When Gy = 0 and
G = 1, we have the Fibonacci numbers, denoted F;, while when Gy = 2 and
G = 1, we have the Lucas numbers, denoted L;.

Throughout this paper, the principal value of the arctangent function is as-
sumed.



Interesting results obtained in this paper, for integers k, 7 # 0 and p include
e () S (T e ()
tan™ = tan tan— =tan | = |,
Z { 4]7“_F22]+F2 Z 4]7“_F22]+L2 ‘F]
F5. Ly, Fy 1
>t {02t () Yt { P (),
L2j F4j’f‘ 2r+2j—1 L2j71

4]7'—4—23 r—=1

= tan tan”" ¢ — » = tan —_— ],
F4]7‘ 2r+1 FQ] Z F2r+2k 1 FZk

r=1

> (1L, B 1 > B Fy; (Lo
tanl{——}:tan1< ), tanl{ J }:tanl(—]).
Z 5F3 Lop—q ; Fyjrq Loj_4

We also obtained the following special values

Socfighed Se )i e (R)5
St ()5 S fl] 5. S 2] s
ioztam_1 {\/;LM} = g’ ioztaun_1 {%} = g,

r=1 r _ 2r—1

Zta <M> = tan~! \/7, iojtaun_1 {;}:z} = tan~! (%) .

Logar—1)

Z tan—

2 Preliminary result

Taking * = Gppin—m and y = Gprap in the arctangent addition formula,

identity (1.1)), gives

_ )\<Gmr+n - Gmr—l—n—m) } —1 ( >\ ) —1 < >\ >
tan™! =t — | =t :
o { Gmr+nGmr+nfm + )\2 o Gmr+nfm o Gmr+n
(2.1)




Summing each side of identity (2.1) from r = p € Z tor = N € Z" and
noting that the summation of the terms on the right hand side telescopes,
we obtain

N
— /\<Gmr+n - Gmr—l—n—m) } —1 < )\ ) -1 < /\ )
tan ™! { = tan — | —tan .
TZ:; Gmr+nGmT+n—m + >\2 Gmp+n—m C:mN—l-n
(2.2)

Now taking limit as N — oo, we have

Lemma.

For A € R, n,m,p € Z, m # 0 holds

5 { MGt =Gl () g
T=p

mr—l—nGmr—l-n—m + >\2 Gmp+n—m

3 Main Results

3.1 G = F in identity (2.3), that is, Gy =0, G; =1

Choosing m = 4j and n = 2k + 2j and using identities ((1.2a)) and (1.2d)) we
prove

THEOREM 3.1. For A€ R, j,k,p € Z and j # 0 holds

- ALy Lajr ok ~ A
tan ™" E— = tan~' (— : 3.1
TZ; {F2 - By + N2 } Fljpror—2) 31)

45742k

while taking m = 45 — 2 and n = 2k + 2j — 2 and using identities (|1.2a)) and
(1.2¢|) we prove

THEOREM 3.2. For A € R and j,k,p € Z holds

= Ao 1 Fyjr_opion A
Ztanfl . 25—14744 2;—2k 1 . :tanfl <—> ] (32)
—p i orpon—1 — F5j_1 + A Fujp_opyor—2;



3.2 G =L in identity (2.3), that is, Gy =2, G; =1

Choosing m = 4j and n = 2k + 2j — 1 and using identities (1.2b]) and (1.2f)
we prove

THEOREM 3.3. For A e R, j,k,p € Z and j # 0 holds

itan_l ( SAFo; Fyjryon—1 ) — tan~! (;) (3.3)
— Lgjrqan—2 — Laj + N2 ’

Lyjpron—2j-1

while taking m = 45 — 2 and n = 2k + 2j — 1 and using identities (1.2b)) and
(1.2¢) we prove

THEOREM 3.4. For A € R and j,k,p € Z holds

- ALoi_1Lyjr_oy A
Ztaﬂil ( 2j—1445r—2r42k 2) _ tanfl < > ) (34)
p— Lgjr—arqar, — Laj—2 + A Lyjp—2pior—2j+1

4 Corollaries and special values

Different combinations of the parameters A, j, k and p in the above theorems
yield a variety of interesting particular cases. In this section we will consider
some of the possible choices.

4.1 Results from Theorem [3.1]
4.1.1 A=F,,p=1and k =0 in identity (3.1)
The choice A = F};, p =1 and k = 0 in identity (3.1]) gives

s F?L. L, 1
tan~! R i —tan ' — ). 4.1
2t {F —m L b

457 J

Thus, at j = 1, we obtain the special value

o0 L ,
E tan ™! {F42 } = % . (4.2)
4r




41.2 A=L;,p=1and k=0 in identity (3.1)

The above choice gives

> L2F;Ly; 1
tan ™! S =tan"! [ = ). 4.3
; o {F2 —r+2f " \F (4.3)

4jr J

At j = 1, identity(4.2) is reproduced, while at j = 2 we have the special
value

0o I i
E tan~! {9F—§} = % . (4.4)
r=1 T

Note that identities (4.2]) and (4.4)) are special cases of identity (4.8]) below,
at j = 1 and j = 2, respectively.

4.1.3 A=F,;, k=jand p=0 in identity (3.1)

This choice gives

o0 F2 Ly
1 25 H4jr—2j . s
TE_I tan {FQ—} = E s (45)

4jr—2j

which, at j = 1, gives the special value

. — L47‘—2 ™
Ztanl{Ff 2}:5 . (4.6)
r=1 r—

4.1.4 )= F,; and p =1 in identity (3.1
This choice gives

o'} FQL - F.
Ztan_l {%jﬁk} = tan~! <i) . (4.7)
r=1

45r+2k F: 2j+2k

At k = 0 in identity (4.7) we have



Note that identities (4.2)) and (4.4)) are special cases of identity (4.8) at j =1
and j = 2, respectively.

At k= j # 0 in identity (4.7) we have

o F2.7, e 1
Z:tam_1 {%} — tan ™! (E) , (4.9)
r=1 J

45r+27

yielding at j = 1, the special value

Ztan { 4”2} = tan ! (%) . (4.10)

47'+2

Finally, taking limit of identity (4.7]) as j — oo, we obtain

F3:Lyjr o (1
]11:1010 Ztan {];2— = tan (@> (4.11)

r=1 45r+2k

4.1.5 5 = L4, p=0and k = j in identity (3.1)

Another interesting particular case of identity (3.1]) is obtained by setting
5M% = Ly;, p =0 and k = j to obtain

> Foin/BLy;Lyir_o;
Ztan—l{ v/l QJ}J w12)
r=1

Losjr—2j) 2

which at j = 1 gives the special value

ita {@}:g . (4.13)

Lo -2

4.1.6 5\ = L, p=0 and k = 2j in identity (3.1)
In this case Theorem [3.1] reduces to

i tanfl F‘é]— '5[/4‘]‘[/4‘]7" — ta‘nfl iﬂ (4 14)
: - Vb Fyo ) '



At j =1, we have the special value

Zta {\/;TL4T} =

7

5l

4.1.7 A= Ly;/V/5 and k = j in identity (3.1

Setting A = Ly;/v/5 and k = j in identity (3.1)) we have

> 5F. Lo
Zt an_ Q = tan_l ( 2 ) s
Lajr 24 F4jp\/§

which at p = 1 gives

r=1

and at p = 0 yields

L4]r 27

ita {\/_FM}—%.

4.1.8 A= Ly;/V/5,p=0and k= 2j # 0 in identity (3.1)

The above choice yields

4.2 Results from Theorem (3.2
4.2.1 A= F,;_; and p =1 in identity (3.2)
The above choice gives
> Fyo,
Ztan_1 {—2(2] ) } =tan~! (
r—1 F4j7“—27"+2k—1

At k = j in identity (4.20) we have the interesting

Fajq
Fojiop—o

formula

).

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)



I 2(25-1) 1 1
E t GtV R QU
an- { an

F4jr 2r4+25—1 275—1

) . (4.21)

Note that identity (4.21]), at j = 1, includes Lehmer’s result (cited in 3] [5])
as a particular case.

Setting 7 = 1 in identity (4.20)) we obtain

1
tan ' —— L =tan' [ — | |. 4.22
Z {F2r+2k: 1} <F2k> (4.22)

Note again that identity (4.22)) subsumes Lehmer’s formula and the result of
Melham (p = 1 in identity(3.5) of [5]), at £ = 1 and at k = 0 respectively.

Finally, taking limit ;7 — oo in identity (4.20)), we obtain

F2 2j-1) -1 1
Jlggo Ztan {— = tan o) (4.23)

F4]r 2r4+2k—1

4.2.2 \= Ly 1/v/5 and k = j in identity (3.2)

The above choice gives

- F. 1 Ly
2; 144gr—2r+25-1 —1 2j—1
E tan™ = tan — . 4.24
{ L2 } (\/6F4jp2p) ( )

45r—2r4+25—1

Setting p = 1 in identity (4.24)), we find

> Fjr—oryoi—1 1 1
tan ™! Lo By 7 = tan”! (— > , (4.25)
; { L4jr72r+2j71 V5 Foja

while choosing j = 1 leads to

ita {%} = tan~! (%F%p) : (4.26)

which at p = 0 gives the special value

10



4.2.3 5)? = Ly;_» and k = j in identity (3.2)

The above substitutions give

\/DLyjoLo; 1Fyir_o, /DLy
Ztan { 452425 1L 45r—2r+425— l}ztan_1< 47 2>.

L2(4jr—2r+2j—1) 5F4jp—2p

At p =0 in identity (4.28]) we have, for positive integers j,

Ztan { \V4 5L4j 2L2j 1F4]7‘ 2r— 2]+1} _

L 2(4jr—2r—25+1)

?

T
2

giving, at j = 1, the special value

ita {\/_F2r 1}23.

Logar—1)

At p = 2 in identity (4.28]) we have, for positive integers j,

{\/5[/4] —oLoj 1 Fyjr_or16j— 3} _1< 1
Ztan = tan

L2(4]T’72T'+6]*3)

which gives, at j = 1, the special value

Zta {—\/_F2’"+3} — tan~! (

L2 (2r+3)

2
ot
N————

4.3 Results from Theorem [3.3
4.3.1 X=./L4, k=0and p=1 in identity (3.3)

The above choice gives

11

(4.27)

(4.28)

(4.29)

(4.30)



LSjer

itanl (5 Y L4jF2jF4jr1> = tan~! < Y L4j> ,
r=1

which, at j = 1, gives

Zta <M> = tan ! \/7 .

L2 4r—1)

4.3.2 )= L,; and p =1 in identity (3.3)
Setting A = Ly; and p = 1 in identity (3.3) gives

o
X:Jﬁanf1 {—F4j } = tan ! <—L2j > .
—1 Fyjrior—1 Lojtor—1
Taking limit as j — oo in identity (4.35]) gives
= Fy; 1
lim tan ™! {—j } = tan! (—) .
Jmoo ; Flyjrior—1 @21

4.3.3 A=+5Fy, p=1and k=0 in identity (3.3
Setting \ = \/gng, p=1and k = 0 in identity (3.3) we obtain

5\/_F2]F4]7’ 1 \/_ng
Z an— 7 = tan"~
Lzm 1 L2J 1

which gives the special value

Fy, _
Zta @ = tan 1\/5,
L4r 1

at j = 1.

12

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



4.4 Results from Theorem
4.41 MN=./L45 and j =0 =k in identity (3.4)

With the above choice we obtain

ita {M}ztanl (Lf1> )

which gives rise, at p = 1, to the special value

4.4.2 X =Ly_; and p =1 in identity (3.4)

With the above choice we have

00 2

Ztan_l {L2j1 L4jr—2r+2k} ~ tan! ( Loyj_y )
5 — .

r=1

5 F4jrf2r+2k Lajtok—1

k =0 in identity (4.41]) gives

-1 2j—1 L45r—2r o
; tan {—5 ™ } =

45r—2r

9

N

which at j = 1 gives the special value

- 1L s
-1 2r o

Y ()T

j =1 in identity (4.41) leads to

- 1 Lo, 1
Ztan_l { 22+2k} = tan~* ( ) ,
r=1 5 F2'r+2k L2k+1

which gives the special value

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)



at k= 1.

Taking limit j — oo in identity (4.41]), we obtain

& L3 1 Lujr—or12k 1
]ILI?O Ztan’1 J ] = tan ' <@) : (4.46)
r=1

2
5 F 4jr—2r+2k

44.3 A=Lyj_; and j =0 =k in identity (3.4

This choice gives

- 1L, 1
tan ! {— T} = tan™! ( ) , (4.47)
rz_p 5 FZ Lop s
Note that identities (4.43)) and (4.45)) are special cases of (4.47)) at p = 1 and

at p = 2.

444 X\=+/5F; ; and j =0=k in identity (3.4)

The above choice gives

itan1 {2/5} = tan™! (L\/S ) : (4.48)

2p—1

which at p = 1 gives the special value

L2r

i tan ™! { \/S} = tan ' V/5|. (4.49)

5 Conclusion

Using a fairly straightforward technique, we have derived numerous infi-
nite arctangent summation formulas involving Fibonacci and Lucas numbers.
While most of the results obtained are new, a couple of ‘celebrated’ results
appear as particular cases of more general formulas derived in this paper.
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