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Abstract

The main purpose of this paper is to demonstrate and illustrate,
once again, the potency of the variational technique as an approxi-
mation procedure for the quantization of quantum mechanical sys-
tems. By choosing particle-in-a-box wavefunctions as trial wave-
functions, with the size of the box as the variation parameter, ap-
proximate eigenenergies and the corresponding eigenfunctions are
obtained for the one dimensional free harmonic oscillator.
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1 Introduction
This paper was inspired by the 1965 work of Padnos, as reported in ref-
erence [1]. Using the variation ansatz with normalized wavefunctions of a
particle in a box as trial wavefunctions, he obtained approximate values
for the ground state energy and the first excited state energy of the one
dimensional quantum harmonic oscillator. Padnos’ work was preceded
by and is an improvement upon the work of Rich [2], who approximated
the oscillator by a particle in a one dimensional box whose size was the
classical range of the oscillator.

One of the reasons Padnos was discouraged from extending the calcula-
tions to higher energy levels was the belief that the calculation becomes
more tedious as one must introduce extra terms to orthogonalize the new
function to the ones already found (for example, the second excited state
must be chosen to be orthogonal to both the ground state and the first ex-
cited state). The authors of this present paper have no need to introduce
any extra terms since the eigenstates of the particle in a box can all be
chosen to be mutually orthogonal, as simple trigonometric functions (see
section 2.1).
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Another notable paper which employed the variational method for har-
monic oscillator quantization is reference [3], where different sets of basis
functions, built from non-orthogonal monomials, were used as trial wave-
functions.

A particle of mass m, free to move only in a ‘box’ of size 2L, so that the
potential, V (x), is

V (x) =


0 , |x| ≤ L

∞ , |x| > L

,

is decribed by the Hamiltonian

HF = T (x) = − ~2

2m

∂2

∂x2
, |x| ≤ L .

The eigenfunctions of HF are non-degenerate and are given by

φr(x) =


√

1
L

cos
[

(r+1)πx
2L

]
, r = 0, 2, 4, . . .

√
1
L

sin
[

(r+1)πx
2L

]
, r = 1, 3, 5, . . . ,

with corresponding eigenvalues

εr = (r + 1)2ε , (1)

where ε = ε0 = ~2π2/8mL2. The eigenfunctions φr(x) can be written
more compactly as

φr(x) =

√
1

L
cos

[
π

2
sin2

(rπ

2

)
− (r + 1)πx

2L

]
, r = 0, 1, 2, 3, . . . (2)

If the particle is not free in the box but is instead under the influence of
a potential, V (x), where

V (x) =


1
2
mω2x2 , |x| ≤ L

∞ , |x| > L

,
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then the system becomes a ‘confined’ quantum harmonic oscillator (CHO),
and is now described by the Hamiltonian

HCHO := − ~2

2m

∂2

∂x2
+

1

2
mω2x2, |x| ≤ L ,

where ω is the classical frequency of the oscillator. Although the con-
fined quantum harmonic oscillator has been studied for a long time (see
references [4, 5, 6, 7, 8, 9] and the references therein), it does not seem
to enjoy the same popularity as its L → ∞ limit, the ‘free’ quantum
harmonic oscillator (FHO), with

HFHO := − ~2

2m

∂2

∂x2
+

1

2
mω2x2, −∞ < x < ∞ .

It is our aim in this paper to apply the variation procedure to quantize
HFHO through HCHO. Since HF and HCHO live in the same Hilbert space
we will use the complete set of functions φr(x) (eigenstates of HF ) as trial
wavefunctions in the variation ansatz. The size of the box, L, then enters,
naturally, as the variation parameter.

2 The free harmonic oscillator as the varia-
tional limit of the confined harmonic oscil-
lator

2.1 The choice of trial wavefunctions

The functions φr(x) as given in (2), being non-degenerate eigenstates of a
Hermitian operator, HF , are a complete set of vectors spanning an infinite
dimensional Hilbert space. In particular φr(x) being mutually orthogonal
in the interval |x| ≤ L and satisfying the boundary conditions φr(±L) = 0
are a suitable choice of trial wavefunctions for the confined harmonic os-
cillator Hamiltonian, HCHO, whose eigenfunctions are also required to
satisfy the same boundary conditions. The box size, L, then serves as
the variation parameter which will be optimized to get the approximate
eigenfunctions and eigenvalues of the free harmonic oscillator. Henceforth,
any quantity derived for the free harmonic oscillator by optimization will
be indicated with an asterik on its symbol.
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The optimized box size, L∗, is obtained by solving

∂Er

∂L

∣∣∣∣
L=L∗

= 0

for L∗, where

Er = 〈φr|HCHO |φr〉 =

∫ L

−L

φrHCHOφr dx . (3)

The optimized approximate energy eigenvalues of the free harmonic oscil-
lator are then given by

Er
∗ = Er|L=L∗ . (4)

Actually, the ε introduced in (1) (ground state energy of the free particle
in a box) is more convenient to use as the variation parameter, with its
optimum value ε∗ being related to the optimum value of the box size L∗

by

L∗2 =
~2π2

8mε∗
. (5)

ε∗ is obtained by expressing the Er of (3) in terms of ε and then solving

∂Er

∂ε

∣∣∣∣
ε=ε∗

= 0 (6)

for ε∗. The optimized approximate eigenenergies of the free harmonic
oscillator are then obtained from

Er
∗ = Er|ε=ε∗ . (7)

2.2 Approximate eigenfunctions and eigenvalues for
the free harmonic oscillator

Performing the integration in (3) we have

Er = (r + 1)2ε +
1

ε

εω
2

8

(
π2

6
− 1

(r + 1)2

)
, r = 0, 1, 2, . . . , (8)

where εω = ~ω. Thus

Er = Arε +
Br

ε
, (9)
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where
Ar = (r + 1)2 , Br =

ε2
ω

8

(
π2

6
− 1

(r + 1)2

)
.

From (8) and (6) we have

ε∗2 =
Br

Ar

,

so that
ε∗

εω

=

√
π2(r + 1)2 − 6

48(r + 1)4
= γ(r) . (10)

From (7) and (9) we have

Er
∗ = 2

√
ArBr ,

so that the approximate eigenenergies of the free harmonic oscillator, Er
∗,

are given by

Er
∗ = εω

√
π2(r + 1)2 − 6

12
, r = 0, 1, 2, 3, . . . . (11)

Writing (5) as
1

L∗2 =
8α

π2

ε∗

εω

,

where α = mω/~, and using (10) we have

1

L∗(r)
=

√(
8α

π2
γ(r)

)
, (12)

so that the approximate eigenstates of the free harmonic oscillator are
given by

φr
∗(x) =

√
1

L∗(r)
cos

[
π

2
sin2

(rπ

2

)
− (r + 1)πx

2L∗(r)

]
, r = 0, 1, 2, 3, . . .

(13)
The optimized eigenfunctions φr

∗(x) are expected to approximate the
eigenstates of the free harmonic oscillator in the interval: −L∗(r) ≤ x ≤ L∗(r).
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2.3 Comparison with the exact results

The free harmonic oscillator is one of the few quantum mechanical sys-
tems that can be quantized exactly. Expressions for the eigenenergies and
the corresponding wavefunctions are derived in every book on quantum
mechanics. For quantum numbers r = 0, 1, 2, . . ., the energy eigenvalues
are given by

Er =

(
r +

1

2

)
εω , (14)

with corresponding normalized wavefunctions

φr(x) =
(α

π

)1/4 1√
2rr!

Hr(x
√

α) exp(−αx2/2) , (15)

where Hq(y) is the degree q Hermite polynomial in y and, as before,
α = mω/~ and εω = ~ω. The first few Hermite polynomials are:

H0(y) = 1, H1(y) = 2y ,

H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y .

2.3.1 Comparison of energy eigenvalues

We recall expressions (11) and (14) for the approximate and exact eigenen-
ergies of the free one-dimensional linear harmonic oscillator:

Er
∗ = εω

√
π2(r + 1)2 − 6

12
,

r = 0, 1, 2, . . .

Er = εω

(
r +

1

2

)
.

Er
∗/εω and Er/εω are plotted in Figure 1 as functions of the harmonic

oscillator quantum number r. The agreement between Er
∗ and Er is quite

remarkable, especially for low quantum numbers.
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Figure 1: Comparison of the approximate eigenenergies, E∗
r , with the

exact eigenenergies, Er, for the free harmonic oscillator.

2.3.2 Comparison of eigenfunctions

To illustrate the agreement between the variation results and the exact
wavefunctions for the free harmonic oscillator, it is instructive to plot
the approximate and the exact wavefunctions together, as functions of
position. Here we do this for the ground state and the first excited state.

From (13) and (15) we have

φ0
∗(x) =

(α

π

)1/4
(

2

π

)1/4 (
π2 − 6

3

)1/8

cos

{(α

2

)1/2
(

π2 − 6

3

)1/4

x

}
and

φ0(x) =
(α

π

)1/4

exp

(
−αx2

2

)
.

The good correlation between φ0
∗(x) and φ0(x) is already obvious from

the Taylor series expansion of both functions:

φ0
∗(x) =

(α

π

)1/4
(

2

π

)1/4 (
π2 − 6

3

)1/8

+ O(x2)

and
φ0(x) =

(α

π

)1/4

+ O(x2) ,
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with
φ0

∗(0)

φ0(0)
=

(
2

π

)1/4 (
π2 − 6

3

)1/8

= 0.9221215996

The approximate ground state wavefunction φ0
∗(x) and the exact ground

state wavefunction φ0(x) of the free harmonic oscillator, with α = 1 are
shown in Figure 2 as functions of position.

Figure 2: Approximate ground state, φ∗0(x), and exact ground state, φ0(x)
as functions of position, for the free harmonic oscillator, for α = 1.

As for the first excited state, we have from (13) and (15) we have

φ∗1(x) =
(α

π

)1/4
(

2π2 − 3

6π2

)1/8

sin

{
α1/2

(
2π2 − 3

6

)1/4

x

}

and
φ1(x) =

(α

π

)1/4

x
√

2α exp

(
−αx2

2

)
.

The variation of φ∗1(x) and φ1(x) with respect to position are as shown in
Figure 3.
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Figure 3: Approximate first excited state, φ∗1(x) and exact first excited
state, φ1(x), as functions of position, for the free harmonic oscillator, for
α = 1.

3 Summary and conclusion
By using the normalized mutually orthogonal wavefunctions of the free-
particle-in-a-box model as trial wavefunctions in variation calculation we
have obtained approximate energy eigenvalues and the corresponding eigen-
states for the one dimensional free harmonic oscillator of mass m and clas-
sical frequency ω. We obtained, for quantum numbers r = 0, 1, 2, 3, . . .,

Er
∗ = εω

√
π2(r + 1)2 − 6

12

and

φr
∗(x) =

√
1

L∗(r)
cos

[
π

2
sin2

(rπ

2

)
− (r + 1)πx

2L∗(r)

]
,

where εω = ω~ and

1

L∗(r)
=

√(
8α

π2
γ(r)

)
, γ(r) =

√
π2(r + 1)2 − 6

48(r + 1)4
,

with α = mω/~.

The optimized eigenfunctions φr
∗(x) were found to adequately describe the

eigenstates of the free harmonic oscillator in the interval: −L∗(r) ≤ x ≤ L∗(r).
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