FLORENTIN SMARANDACHE **A Function in the Number Theory**

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

A FUNCTION IN THE NUMBER THEORY

Summary

In this paper I shall construct a function η having the following properties:

$$\forall \eta \in Z \quad n \neq 0 \quad (\eta(n))! = M \cdot n, \tag{1}$$

$$\eta(n)$$
 is the smallest natural number with the property(1). (2)

We consider: $N = \{0, 1, 2, 3, ...\}$ and $N^* = \{1, 2, 3, ...\}$.

Lema 1. $\forall k, p \in N^*, p \neq 1, k$ is uniquely written under the shape: $k = t_1 a_{n_1}^{(p)} + \ldots + t_l a_{n_l}^{(p)}$ where $a_{n_1}^{(p)} = \frac{p^{n_{i-1}}}{p-1}$, $i = \overline{1, l}$, $n_1 > n_2 > \ldots > n_l > 0$ and $1 \leq t_j \leq p-1$, $j = \overline{1, l-1}$, $1 \leq t_l \leq p$, $n_j, t_j \in N$, $i = \overline{1, l}$ $l \in N^*$.

Proof. The string $(a_n^{(p)})_{n\in\mathbb{N}^*}$ consists of strictly increasing infinite natural numbers and $a_{n+1}^{(p)}-1=p\cdot a_n^{(p)},\ \ \forall n\in\mathbb{N}^*,p$ is fixed,

$$a_1^{(p)} = 1, a_2^{(p)} = 1 + p, a_3^{(p)} = 1 + p + p^2, \ldots \Rightarrow N^* = \bigcup_{n \in N^*} ([a_n^{(p)}, a_{n+1}^{(p)}) \cap N^*)$$

where $[a_n^{(p)},a_{n+1}^{(p)})\cap[a_{n+1}^{(p)},a_{n+2}^{(p)})=\emptyset$ because $a_n^{(p)}< a_{n+1}^{(p)}< a_{n+1}^{(p)}$

Let $k \in N^*$, $N^* = \bigcup_{n \in N^*} ([a_n^{(p)}, a_{n+1}^{(p)}) \cap N^*) \Rightarrow \exists ! n_1 \in N^* : k \in ([a_{n_1}^{(p)}, a_{n_1+1}^{(p)}) \Rightarrow k)$ is uniquely written under the shape $k = \left[\frac{k}{a_{n_1}^{(p)}}\right] a_{n_1}^{(p)} + r_1$ (integer division theorem). We note $k = \left[\frac{k}{a_{n_1}^{(p)}}\right] = t_1 \Rightarrow k = t_1 a_{n_1}^{(p)} + r_1$, $r_1 < a_{n_1}^{(p)}$.

If $r_1 = 0$, as $a_{n_1}^{(p)} \le k \le a_{n_1+1}^{(p)} - 1 \implies 1 \le t_1 \le p$ and Lemma 1 is proved.

If $r_1 \neq 0 \Rightarrow \exists! n_2 \in N^*: r_1 \in [a_{n_2}^{(p)}, a_{n_2+1}^{(p)}]; \quad a_{n_1}^{(p)} > r_1 \Rightarrow n_1 > n_2, \ r_1 \neq 0 \text{ and } a_{n_1}^{(p)} \leq k \leq a_{n_1+1}^{(p)} - 1 \Rightarrow 1 \leq t_1 \leq p-1 \text{ because we have } t_1 \leq (a_{n_1+1}^{(p)} - 1 - r_1): a_n^{(p)} < p_1.$

The procedure continues similarly. After a finite number of steps l, we achieve $r_l = 0$, as k = finite, $k \in N^*$ and $k > r_1 > r_2 \dots > r_l = 0$ and between 0 and k there is only a finite number of distinct natural numbers.

Thus:

k is uniquely written: $k = t_1 a_{n_1}^{(p)} + r_1$, $1 \le t_1 \le p - 1$, r is uniquely written: $r_1 = t_2 a_{n_2}^{(p)} + r_2$, $n_2 < n_1$,

$$1 \leq t_2 \leq p-1,$$

 r_{l-1} is uniquely written: $r_{l-1} = t_l a_{n_l}^{(p)} + r_l$ and $r_l = 0$,

$$n_l < n_{l-1}, \ 1 \le t_l \le p,$$

 $\Rightarrow k$ is uniquely written under the shape $k = t_1 a_{n_1}^{(p)} + \ldots + t_l a_{n_l}^{(p)}$ with $n_1 > n_2 > \ldots > n_l$; $n_l > 0$ because $n_l \in N^*$, $1 \le t_j \le p-1$, $j = \overline{1, l-1}$, $1 \le t_l \le p$, $l \ge 1$.

Let $k \in N^*$, $k = t_1 a_{n_1}^{(p)} + \ldots + t_l a_{n_l}^{(p)}$, with $a_{n_i}^{(p)} = \frac{p^{n_i} - 1}{p - 1}$, $i = \overline{1, l}$, $l \ge 1$, $n_i, t_i \in N^*$, $i = \overline{1, l}$, $n_1 > n_2 > \ldots > n_l > 0$, $1 \le t_j \le p - 1$, $j = \overline{1, l - 1}$, $1 \le t_l \le p$.

I construct the function η_p , p = prime > 0, $\eta_p : N^* \to N^*$ thus:

$$\forall n \in N^* \ \eta_p(a_n^{(p)}) = p^n,$$

$$\eta_p(t_1a_{n_1}^{(p)}+\ldots+t_la_{n_l}^{(p)})=t_1\eta_p(a_{n_1}^{(p)})+\ldots+t_l\eta_p(a_{n_l}^{(p)}).$$

Note 1. The function η_p is well defined for each natural number.

Proof.

Lema 2. $\forall k \in N^* \Rightarrow k$ is uniquely written as $k = t_1 a_n^{(p)} + \ldots + t_l a_{n_l}^{(p)}$ with the conditions from Lemma $1 \Rightarrow \exists ! \ t_1 p^{n_1} + \ldots + t_l p^{n_l} = \eta_p(t_1 a_{n_1}^{(p)} + \ldots + t_l a_{n_l}^{(p)})$ and $t_{1p}^{n_1} + t_{lp}^{n_l} \in N^*$.

Lema 3. $\forall k \in N^*, \forall p \in N, p = prime \Rightarrow k = t_1 a_{n_1}^{(p)} + \dots t_l a_{n_l}^{(p)}$ with the conditions from Lemma $2 \Rightarrow \eta_p(k) = t_1 p^{n_1} + \dots + t_l p^{n_l}$.

It is known that $\left[\frac{a_1+\ldots+a_n}{b}\right] \geq \left[\frac{a_1}{b}\right]+\ldots+\left[\frac{a_n}{b}\right] \ \forall a_i,b\in N^*$ where through $[\alpha]$ we have written the integer side of number α . I shall prove that p's powers sum from the natural numbers make up the result factors $(t_1p^{n_1}+\ldots+t_lp^{n_l})!$ is $\geq k$;

$$\left[\frac{t_1p^{n_1}+\ldots+t_lp^{n_l}}{p}\right] \geq \left[\frac{t_1p^{n_1}}{p}\right]+\ldots+\left[\frac{t_lp^{n_l}}{p}\right] = t_1p^{n_1-1}+\ldots+t_lp^{n_l-1}$$

:

$$\left[\frac{t_1 p^{n_1} + \ldots + t_l p^{n_l}}{p^n}\right] \ge \left[\frac{t_1 p^{n_1}}{p^{n_l}}\right] + \ldots + \left[\frac{t_l p^{n_l}}{p^{n_l}}\right] = t_1 p^{n_1 - n_l} + \ldots + t_l p^0$$

:

$$\left[\frac{t_1p^{n_1} + \ldots + t_lp^{n_l}}{p^{n_l}}\right] \ge \left[\frac{t_1p^{n_1}}{p^{n_1}}\right] + \ldots + \left[\frac{t_lp^{n_l}}{p^{n_l}}\right] = t_1p^0 + \ldots + \left[\frac{t_lp^{n_l}}{p^{n_l}}\right].$$

Adding $\Rightarrow p$'s powers sum is $\geq t_1(p^{n_1-1}+\ldots+p^0)+\ldots+t_l(p^{n_l-1}+\ldots+p^0)=t_1a_{n_1}^{(p)}+\ldots t_la_{n_l}^{(p)}=k$.

Theorem 1. The function n_p , p = prime, defined previously, has the following properties:

- (1) $\forall k \in N^*, (n_p(k))! = Mp^k$.
- (2) $\eta_p(k)$ is the smallest number with the property (1).

Proof.

- (1) results from Lemma 3.
- (2) $\forall k \in N^*$, $p \ge 2 \Rightarrow k = t_1 a_{n_1}^{(p)} + \ldots + t_l a_{n_l}^{(p)}$ (by Lemma 2) is uniquely written, where:

$$n_i, t_i \in N^*, \ n_1 > n_2 > \ldots > n_l > 0, \ a_{n_i}^{(p)} = \frac{p^{n_i} - 1}{p - 1} \in N^*, \ i = \overline{1, l}, \ 1 \le t_j \le p - 1, j = \overline{1, l - 1}, \ 1 < t_l < p.$$

$$\Rightarrow \eta_p(k) = t_1 p^{n_1} + \ldots + t_l p^{n_l}$$
. I note: $z = t_1 p^{n_1} + \ldots t_l p^{n_l}$.

Let us prove the z is the smallest natural number with the property (1). I suppose by the method of reduction ad absurdum that $\exists \gamma \in N, \ \gamma < z$:

$$\gamma! = M p^k$$
;

$$\gamma < z \Rightarrow \gamma \le z - 1 \Rightarrow (z - 1)! = Mp^k$$
.

$$z-1=t_1p^{n_1}+\ldots+t_lp_l^{n_l}-1;\; n_1>n_2>\ldots>n_l\geq 0 \; \text{and} \; n_j\in N,\; j=\overline{1,l};$$

$$\left[\frac{z-1}{p}\right] = t_1 p^{n_1-1} + \ldots + t_{l-1} p^{n_{l-1}-1} + t_l p^{n_l-1} - 1 \text{ as } \left[\frac{-1}{p}\right] = -1 \text{ because } p \ge 2,$$

$$\left[\frac{z-1}{p^{n_l}}\right] = t_1 p^{n_1-n_l} + \ldots + t_{l-1} p^{n_{l-1}-n_l} + t_l p^0 - 1 \text{ as } \left[\frac{-1}{p^{n_l}}\right] = -1 \text{ as } p \ge 2, \ n_l \ge 1,$$

$$\left[\frac{z-1}{p^{n_l+1}}\right] = t_1 p^{n_1-n_l-1} + \ldots + t_{l-1} p^{n_{l-1}-n_l-1} + \left[\frac{t_l p^{n_l}-1}{p^{n_l+1}}\right] = t_1 p^{n_1-n_l-1} + \ldots + t_{l-1} p^{n_{l-1}-n_l-1}$$

because $0 < t_l p^{n_l} - 1 \le p \cdot p^{n_l} - 1 < p^{n_l+1}$ as $t_l < p$;

$$\left[\frac{z-1}{p^{n_{l-1}}}\right] = t_1 p^{n_1 n_{l-1}} + \ldots + t_{l-1} p^0 + \left[\frac{t_l p^{n_l} - 1}{p^{n_{l-1}}}\right] = t_1 p^{n_1 - n_{l-1}} + \ldots + t_{l-1} p^0 \text{ as } n_{l-1} > n_l,$$

$$\left[\frac{z-1}{p^{n_1}}\right] = t_1 p^0 + \left[\frac{t_2 p^{n_2} + \ldots + t_l p^{n_l} - 1}{p^{n_1}}\right] = t_1 p^0.$$

Because
$$0 < t_2p^{n_2} + \ldots + t_lp^{n_l} - 1 \le (p-1)p^{n_2} + \ldots + (p-1)p^{n_{l-1}} + p \cdot p^{n_l} - 1 \le (p-1) \times \sum_{i=n_{l-1}}^{n_2} p^i + p^{n_l+1} - 1 \le (p-1)\frac{p^{n_2+1}}{p-1} = p^{n_2+1} - 1 < p^{n_1} - 1 < p^{n_1} \Rightarrow \begin{bmatrix} \frac{t_2p^{n_2} + \ldots + t_lp^{n_l} - 1}{p^{n_1}} \\ \frac{t_2p^{n_2} + \ldots + t_lp^{n_l} - 1}{p^{n_1}} \end{bmatrix} = 0$$

$$\left[\frac{z-1}{p^{n_1+1}}\right] = \left[\frac{t_1p^{n_1} + \dots t_lp^{n_l} - 1}{p^{n_1+1}}\right] = 0$$

because: $0 < t_1 p^{n_1} + \ldots + t_l p^{n_l} - 1 < p^{n_1+1} - 1 < p^{n_1+1}$ according to a reasoning similar to the previous one.

Adding $\Rightarrow p$'s powers sum in the natural numbers which make up the product factors (z-1)! is:

 $t_1(p^{n_1-1}+\ldots+p^0)+\ldots+t_{l-1}(p^{n_{l-1}-1}+\ldots+p^0)+t_l(p^{n_l-1}+\ldots+p^0)-1\cdot n_l=k-n_l< k-1< k$ because $n_l>1\Rightarrow (z-1)!\neq Mp^k$, this contradicts the supposition made.

 $\Rightarrow \eta_p(k)$ is the smallest natural number with the property $(\eta_p(k))! = Mp^k$.

I construct a new function $\eta: Z \setminus \{0\} \to N$ as follows:

$$\begin{cases} \eta(\pm 1) = 0, \\ \forall n = \epsilon p_1^{\alpha_1} \dots p_s^{\alpha_s} \text{ with } \epsilon = \pm 1, \ p_i = \text{prime}, \\ p_i \neq p_j \text{ for } i \neq j, \ \alpha_i \geq 1, \ i = \overline{1,s}, \ \eta(n) = \max_{i = \overline{1,s}} \{ \eta_{p_i}(\alpha_i) \}. \end{cases}$$

Note 2. η is well defined and defined overall.

Proof.

(a) $\forall n \in \mathbb{Z}, n \neq 0, n \neq \pm 1, n$ is uniquely written, independent of the order of the factors, under the shape of $n = \epsilon p_1^{\alpha_1} \dots p_s^{\alpha_s}$ with $\epsilon = \pm 1$ where $p_i = \text{prime}, p_i \neq p_j, \alpha_i \geq 1$ (decompose into prime factors in \mathbb{Z} =factorial ring).

$$\Rightarrow \exists ! \eta(n) = \max_{i=1,s} \{ \eta_{p_i}(\alpha_i) \} \text{ as } s = \text{finite and } \eta_{p_i}(\alpha_i) \in N^* \text{ and } \exists \max_{i=1,s} \{ \eta_{p_i}(\alpha_i) \}$$
(b) $n = \pm 1 \Rightarrow \exists ! \eta(n) = 0$.

Theorem 2. The function η previously defined has the following properties:

- (1) $(\eta(n))! = Mn, \forall n \in Z \setminus \{0\};$
- (2) $\eta(n)$ is the smallest natural number with this property.

Proof.

(a)
$$\eta(n) = \max_{i=1,s} \{ \eta_{p_i}(\alpha_i) \}, \ n = \epsilon \cdot p_1^{\alpha_1} \dots p_s^{\alpha_s}, \ (n \neq \pm 1); \ (\eta_{p_1}(\alpha_1))! = M p_1^{\alpha_1}, \dots (n_{p_s}(\alpha_s))! = M p_s^{\alpha_s}.$$

Supposing $\max_{i=1,s} \{ \eta_{p_i}(\alpha_1) \} = \eta_{p_{i_0}}(\alpha_{i_0}) \Rightarrow (\eta_{p_{i_0}}(\alpha_{i0}))! = M p_{i_0}^{\alpha_{i_0}}, \ \eta_{p_{i_0}}(\alpha_{i_0}) \in N^* \text{ and because } (p_i, p_j) = 1, \ i \neq j,$

$$\Rightarrow (\eta_{p_{i_0}}(\alpha_{i_0}))! = Mp_j^{\alpha_j}, \ j = \overline{1,s}.$$

$$\Rightarrow (\eta_{p_{i_0}}(\alpha_{i_0}))! = Mp_1^{\alpha_1} \dots p_s^{\alpha_s}.$$

(b)
$$n = \pm 1 \Rightarrow \eta(n) = 0$$
; $0! = 1, 1 = M\epsilon \cdot 1 = Mn$.

(2) (a)
$$n \neq \pm 1 \Rightarrow n = \epsilon p_1^{\alpha_1} \dots p_s^{\alpha_s} \Rightarrow \eta(n) = \max_{i=1,s} \eta_{p_i}$$

Let
$$= \max_{i=1,2} \{ \eta_{p_i}(\alpha_i) \} = \eta_{p_{i_0}}(\alpha_{i_0}), \ 1 \le i \le s;$$

 $\eta_{p_{i_0}}(\alpha_{i_0})$ is the smallest natural number with the property:

$$\begin{split} &(\eta_{p_{i_0}}(\alpha_{i_0}))! = Mp_{i_0}^{\alpha_{i_0}} \Rightarrow \forall \gamma \in N, \ \gamma < \eta_{p_{i_0}}(\alpha_{i_0}) \Rightarrow \gamma! \neq Mp_{i_0}^{\alpha_{i_0}} \Rightarrow \\ &\Rightarrow \gamma! \neq M\epsilon \cdot p_{i_0}^{\alpha_i} \dots p_{i_0}^{\alpha_{i_0}} \dots p_{s}^{\alpha_{s}} = Mn. \end{split}$$

 $\eta_{p_{i_0}}(\alpha_{i_0})$ is the smallest natural number with the property.

(b) $n = \pm 1 \Rightarrow \eta(n) = 0$ and it is the smallest natural number $\Rightarrow 0$ is the smallest natural number with the property $0! = M(\pm 1)$.

Note 3. The functions η_p are increasing, not injective, on $N^* \to \{p^k | k = 1, 2, ...\}$ they are surjective.

The function η is increasing, not injective, it is surjective on $Z \setminus \{0\} \to N \setminus \{1\}$.

CONSEQUENCE. Let $n \in N^*$, n > 4. Then $n = \text{prime} \Leftrightarrow \eta(n) = n$.

"
$$\Rightarrow$$
 " $n = \text{prime and } n \ge 5 \Rightarrow \eta(n) = \eta_n(1) = n$.

" \Leftarrow " Let $\eta(n) = n$ and suppose by absurd that $n \neq \text{prime} \Rightarrow$

(a) or
$$n = p_1^{\alpha_1} \dots p_s^{\alpha_s}$$
 with $s \ge 2$, $\alpha_i \in N^*$, $i = \overline{1, s}$,

$$\eta(n) = \max_{i = \overline{1}} \{ \eta_{p_i}(\alpha_i) \} = \eta_{p_{i_0}}(\alpha_{i_0}) < \alpha_{i_0} p_{i_0} < n$$

contradicts the assumtion: or

(b)
$$n = p_1^{\alpha_1}$$
 with $\alpha_1 \ge 2 \Rightarrow \eta(n) = \eta_{p_1}(\alpha_1) \le p_1 \cdot \alpha_1 < p_1^{\alpha_1} = n$

because $\alpha_1 \geq 2$ and n > 4 and it contradicts the hypothesis.

Application

1. Find the smallest natural number with the property: $n! = M(\pm 2^{31} \cdot 3^{27} \cdot 7^{13})$.

Solution

$$\eta(\pm 2^{31} \cdot 3^{27} \cdot 7^{13}) = \max\{\eta_2(31), \eta_3(27), \eta_7(13)\}.$$

Let us calculate $\eta_2(31)$; we make the string $(a_n^{(2)})_{n \in \mathbb{N}^*} = 1, 3, 7, 15, 31, 63, \dots$

$$31 = 1 \cdot 31 \Rightarrow \eta_2(31) = \eta_2(1 \cdot 31) = 1 \cdot 2^5 = 32.$$

Let's calculate $\eta_3(27)$ making the string $(a_n^{(3)})_{n\in\mathbb{N}^*} = 1, 4, 13, 40, \dots; 27 = 2 \cdot 13 + 1 \Rightarrow \eta_3^{(27)} = \eta_3(2 \cdot 13 + 1 \cdot 1) = 2 \cdot \eta_3(13) + 1 \cdot \eta_3(1) = 2 \cdot 3^3 + 1 \cdot 3^1 = 54 + 3 = 57.$

Let's calculate $\eta_7(13)$; making the string $(a_n^{(7)})_{n\in\mathbb{N}^*}=1,8,57,\ldots;\ 13=1\cdot 8+5\cdot 1\Rightarrow \eta_7(13)=1\cdot \eta_7(8)+5\cdot \eta_7(1)=1\cdot 7^2+5\cdot 7^1=49+35=84\Rightarrow \eta(\pm 2^{31}\cdot 3^{27}\cdot 7^{13})=\max\{32,57,84\}=84\Rightarrow 84!=M(\pm 2^{31}\cdot 3^{27}\cdot 7^{13})$ and 84 is the smallest number with this property.

2. Which are the numbers with the factorial ending in 1000 zeros?

Solution

 $n=10^{1000},\ (\eta(n))!=M10^{1000}$ and it is the smallest number with this property. $\eta(10^{1000})=\eta(2^{1000}\cdot5^{1000})=\max\{\eta_2(1000),\eta_5(1000)\}=\eta_5(1\cdot781+1\cdot156+2\cdot31+1)=1\cdot5^5+1\cdot5^4+2\cdot5^3+1\cdot5^7=4005,4005 \text{ is the smallest number with this property.}\ 4006,4007,4008,4009$ verify the property but 4010 does not because 4010! = 4009!4010 has 1001 zeros.

Florentin Smarandache

University of Craiova

17.11.1979

Nature Science Faculty

[Published on "An. Univ. Timişoara", seria Şt. Matematice, vol.XVIII, fasc. 1, pp. 79-88, 1980; See Mathematical Reviews: 83c: 10008.]