FLORENTIN SMARANDACHE A Numerical Function in Congruence Theory

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

[Published in "Libertas Mathematica», University of Texas, Arlington, Vol. XII, 1992, pp. 181-185]

A NUMERICAL FUNCTION IN CONGRUENCE THEORY

In this article we define a function L which will allow us to generalize (separately or simultaneously) some theorems from Numbers Theory obtained by Wilson, Fermat, Euler, Gauss, Lagrange, Leibnitz, Moser, Sierpinski.

§1. Let A be the set $\{m \in \mathbb{Z} \mid m = \pm p^{\beta}, \pm 2p^{\beta} \text{ with } p \text{ an odd prime, } \beta \in N^*, \text{ or } m = \pm 2^{\alpha} \text{ with } \alpha = 0,1,2, \text{ or } m = 0\}.$

Let's consider $m = \varepsilon p_1^{\alpha_1} ... p_s^{\alpha_s}$, with $\varepsilon = \pm 1$, all $\alpha_i \in N^*$, and $p_1, ..., p_s$ distinct positive numbers.

We construct the FUNCTION $L: \mathbb{Z} \to \mathbb{Z}$,

$$L(x,m) = (x + c_1)...(x + c_{\varphi(m)})$$

where $c_1,...,c_{\varphi(m)}$ are all residues modulo m relatively prime to m, and φ is the Euler's function.

If all distinct primes which divide x and m simultaneously are $p_{i_1}...p_{i_r}$ then:

$$L(x,m) \equiv \pm 1 \pmod{p_{i_1}^{\alpha_{i_1}} \dots p_{i_r}^{\alpha_{i_r}}},$$

when $m \in A$ respective by $m \notin A$, and

$$L(x,m) \equiv 0 \pmod{m / (p_{i_1}^{\alpha_{i_1}} ... p_{i_r}^{\alpha_{i_r}})}$$
.

Noting $d = p_{i_1}^{\alpha_{i_1}} ... p_{i_r}^{\alpha_{i_r}}$ and m' = m / d we find:

$$L(x,m) \equiv \pm 1 + k_1^0 d \equiv k_2^0 m' (\operatorname{mod} m)$$

where k_1^0, k_2^0 constitute a particular integer solution of the Diophantine equation $k_2m'-k_1d=\pm 1$ (the signs are chosen in accordance with the affiliation of m to A).

This result generalizes the Gauss' theorem $(c_1,...,c_{\varphi(m)} \equiv \pm 1 \pmod{m})$ when $m \in A$ respectively $m \notin A$ (see [1]) which generalized in its turn the Wilson's theorem (if p is prime then $(p-1)! \equiv -1 \pmod{m}$).

Proof.

The following two lemmas are trivial:

Lemma 1. If $c_1,...,c_{\varphi(p^\alpha)}$ are all residues modulo p^α relatively prime to p^α , with p an integer and $\alpha \in N^*$, then for $k \in \mathbb{Z}$ and $\beta \in N^*$ we have also that $kp^\beta + c_1,...,kp^\beta + c_{\varphi(p^\alpha)}$ constitute all residues modulo p^α relatively prime to it is sufficient to prove that for $1 \le i \le \varphi(p^\alpha)$ we have that $kp^\beta + c_i$ is relatively prime to p^α , but this is obvious.

Lemma 2. If $c_1,...,c_{\varphi(m)}$ are all residues modulo m relatively prime to m, $p_i^{\alpha_i}$ divides m and $p_i^{\alpha_i+1}$ does not divide m, then $c_1,...,c_{\varphi(m)}$ constitute $\varphi(m \mid p_i^{\alpha_i})$ systems of all residues modulo $p_i^{\alpha_i}$ relatively prime to $p_i^{\alpha_i}$.

Lemma 3. If $c_1,...,c_{\varphi(m)}$ are all residues modulo q relatively prime to q and $(b,q)\sim 1$ then $b+c_1,...,b+c_{\varphi(q)}$ contain a representative of the class $\hat{0}$ modulo q.

Of course, because $(b, q - b) \sim 1$ there will be a $c_{i_0} = q - b$ whence $b + c_i = \mathbf{M_q}$. From this we have the following:

Theorem 1. If
$$\left(x, m / \left(p_{i_1}^{\alpha_{i_1}} \dots p_{i_s}^{\alpha_{i_s}}\right)\right) \sim 1$$
,

then

$$(x+c_1)...(x+c_{\varphi(m)}) \equiv 0 \Big(\mod m / \Big(p_{i_1}^{\alpha_{i_1}} ... p_{i_r}^{\alpha_{i_r}} \Big) \Big).$$

Lemma 4. Because $c_1,...,c_{\varphi(m)}\equiv \pm 1 (\bmod{\,m})$ it results that $c_1,...,c_{\varphi(m)}\equiv \pm 1 (\bmod{\,p_i^{\alpha_i}})$, for all i, when $m\in A$ respectively $m\not\in A$.

Lemma 5. If p_i divides x and m simultaneously then:

$$(x+c_1)...(x+c_{\omega(m)}) \equiv \pm 1 \pmod{p_i^{\alpha_i}},$$

when $m \in A$ respectively $m \notin A$. Of course, from the lemmas 1 and 2, respectively 4 we have:

$$(x+c_1)...(x+c_{\omega(m)}) \equiv c_1,...,c_{\omega(m)} \equiv \pm 1 \pmod{p_i^{\alpha_i}}$$
.

From the lemma 5 we obtain the following:

Theorem 2. If $p_{i_1},...,p_{i_r}$ are all primes which divide x and m simultaneously then:

$$(x+c_1)...(x+c_{\varphi(m)}) \equiv \pm 1 \pmod{p_{i_1}^{\alpha_{i_1}}...p_{i_r}^{\alpha_{i_r}}},$$

when $m \in A$ respectively $m \notin A$.

From the theorems 1 and 2 it results:

$$L(x,m) \equiv \pm 1 + k_1 d = k_2 m',$$

where $k_1, k_2 \in \mathbb{Z}$. Because $(d, m') \sim 1$ the Diophantine equation $k_2 m' - k_1 d = \pm 1$ admits integer solutions (the unknowns being k_1 and k_2). Hence $k_1 = m't + k_1^0$ and $k_2 = dt + k_2^0$, with $t \in \mathbb{Z}$, and k_1^0 , k_2^0 constitute a particular integer solution of our equation. Thus:

$$L(x,m) \equiv \pm 1 + m'dt + k_1^0 d = \pm 1 + k_1^0 \pmod{m}$$

or

$$L(x,m) = k_2^0 m' (\operatorname{mod} m).$$

§2. APPLICATIONS

1) Lagrange extended Wilson's theorem in the following way: "If p is prime then

$$x^{p-1}-1 \equiv (x+1)(x+2)...(x+p-1) \pmod{p}$$
".

We shall extend this result as follows: whichever are $m \neq 0, \pm 4$, we have for $x^2 + s^2 \neq 0$ that

$$x^{\varphi(m_s)+s} - x^s \equiv (x+1)(x+2)...(x+|m|-1) \pmod{m}$$

where m_s and s are obtained from the algorithm:

(0)
$$\begin{cases} x = x_0 d_0; & (x_0, m_0) \sim 1 \\ m = m_0 d_0; & d_0 \neq 1 \end{cases}$$

(0)
$$\begin{cases} x = x_0 d_0; & (x_0, m_0) \sim 1 \\ m = m_0 d_0; & d_0 \neq 1 \end{cases}$$
(1)
$$\begin{cases} d_0 = d_0^1 d_1; & (d_0^1, m_1) \sim 1 \\ m_0 = m_1 d_1; & d_1 \neq 1 \end{cases}$$

(s-1)
$$\begin{cases} d_{s-2} = d_{s-2}^{1} d_{s-1}; & (d_{s-2}^{1}, m_{s-1}) \sim 1 \\ m_{s-2} = m_{s-1} d_{s-1}; & d_{s-1} \neq 1 \end{cases}$$
(s)
$$\begin{cases} d_{s-1} = d_{s-1}^{1} d_{s}; & (d_{s-1}^{1}, m_{s}) \sim 1 \\ m_{s-1} = m_{s} d_{s}; & d_{s} \neq 1 \end{cases}$$

(s)
$$\begin{cases} d_{s-1} = d_{s-1}^{1} d_{s}; & (d_{s-1}^{1}, m_{s}) \sim 1 \\ m_{s-1} = m_{s} d_{s}; & d_{s} \neq 1 \end{cases}$$

(see [3] or [4]). For m positive prime we have $m_s = m$, s = 0, and $\varphi(m) = m - 1$, that is Lagrange.

L. Moser enunciated the following theorem: If p is prime then $(p-1)!a^p + a = \mathbf{M} p$ ", and Sierpinski (see [2], p. 57): if p is prime then $a^{p} + (p-1)!a = \mathbf{M} p$ " which merge the Wilson's and Fermat's theorems in a single one.

The function L and the algorithm from §2 will help us to generalize that if "a" and m are integers $m \neq 0$ and $c_1,...,c_{\varphi(m)}$ are all residues modulo m relatively prime to *m* then

$$c_1,...,c_{\varphi(m)}a^{\varphi(m_s)+s}-L(0,m)a^s=\mathbf{M}\ m$$

respectively

$$-L(0,m)a^{\varphi(m_s)+s} + c_1,...,c_{\varphi(m)}a^s = \mathbf{M} m$$

or more:

$$(x+c_1)...(x+c_{\varphi(m)})a^{\varphi(m_s)+s}-L(x,m)a^s=\mathbf{M} m$$

respectively

$$-L(x,m)a^{\varphi(m_s)+s} + (x+c_1)...(x+c_{\varphi(m)})a^s = \mathbf{M} \ m$$

which reunite Fermat, Euler, Wilson, Lagrange and Moser (respectively Sierpinski).

A partial spreading of Moser's and Sierpinski's results, the author also obtained (see [6], problem 7.140, pp. 173-174), the following: if m is a positive integer, $m \neq 0$,4. and "a" is an integer, then $(a^m - a)(m-1)! = \mathbf{M} m$, reuniting Fermat and Wilson in another way.

4) Leibnitz enunciated that: "If p is prime then $(p-2)! \equiv 1 \pmod{p}$ ";

We consider " $c_i < c_{i+1} \pmod m$ " if $c_i < c_{i+1}$ where $0 \le c_i < |m|$, $0 \le c_{i+1} < |m|$, and $c_i \equiv c_i \pmod m$, $c_{i+1} \equiv c_{i+1} \pmod m$ it seems simply that $c_1, c_2, ..., c_{\varphi(m)}$ are all residues modulo m relatively prime to $m(c_i < c_{i+1} \pmod m)$ for all $i, m \ne 0$, then $c_1, c_2, ..., c_{\varphi(m)-1} \equiv \pm \pmod m$ if $m \in A$ respectively $m \notin A$, because $c_{\varphi(m)} \equiv -1 \pmod m$.

REFERENCES:

- [1] Lejeune-Dirichlet Vorlesungen über Zahlentheorie" 4^{te} Auflage, Braunschweig, 1894, §38.
- [2] Sierpinski, Waclaw, Ce ştim şi ce nu ştim despre numerele prime Ed. Stiinţifică, Bucharest, 1966.
- [3] Smarandache, Florentin, O generalizare a teoremei lui Euler referitoare la congruență Bulet. Univ. Braşov, seria C, Vol. XXIII, pp. 7-12, 1981; see Mathematical Reviews: 84J:10006.
- [4] Smarandache, Florentin Généralisations et généralités Ed. Nouvelle, Fés, Morocco, pp. 9-13, 1984.
- [5] Smarandache, Florentin A function in the number theory An. Univ. Timişoara, seria şt. mat., Vol. XVIII, fasc. 1, pp. 79-88, 1980; see M. R.: 83c:10008.
- [6] Smarandache, Florentin Problèmes avec et sans...problèmes! Somipress, Fés, Morocco, 1983; see M. R.: 84K:00003.