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1 Abstract

In Kalman Folding, Part 1,1 we present basic, static Kalman filtering as a functional fold, high-
lighting the unique advantages of this form for deploying test-hardened code verbatim in harsh,
mission-critical environments. The examples in that paper are all static, meaning that the states of
the model do not depend on the independent variable, often physical time.

1B. Beckman, Kalman Folding, Part 1, http://vixra.org/abs/1606.0328.
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Here, we present mathematical derivations of the basic, static filter. These are semi-formal
sketches that leave many details to the reader, but highlight all important points that must be
rigorously proved. These derivations have several novel arguments and we strive for much higher
clarity and simplicity than is found in most treatments of the topic.

2 Kalman Folding

In Kalman Folding, Part 1,1 we found the following small formulation for the accumulator function
of a fold that implements the static Kalman filter:

kalmanStatic (Z) ({x,P} , {A, z}) = {x+K (z−Ax) ,P−KDKᵀ} (1)

where

K = PAᵀD−1 (2)
D = Z+APAᵀ (3)

and all quantities are matrices:

• z is a b× 1 column vector containing one multidimensional observation

• x is an n× 1 column vector of model states

• Z is a b× bmatrix, the covariance of observation noise

• P is an n× nmatrix, the theoretical covariance of x

• A is a b× nmatrix, the observation partials

• D is a b× bmatrix, the Kalman denominator

• K is an n× bmatrix, the Kalman gain

In physical or engineering applications, these quantities carry physical dimensions of units of
measure in addition to their matrix dimensions as numbers of rows and columns. If the physical
and matrix dimensions of x are [[x]]

def
= (X, n× 1) and of z are [[z]]

def
= (Z, b× 1), then

[[Z]] = ( Z2 b× b )
[[A]] = ( Z/X b× n )
[[P]] = ( X2 n× n )
[[APAᵀ]] = ( Z2 b× b )
[[D]] = ( Z2 b× b )
[[PAᵀ]] = ( XZ n× b )
[[K]] = ( X/Z n× b )

(4)

Dimensional arguments, regarding both matrix dimensions and physical dimensions, are in-
valuable for checking the derivations that follow.
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3 Derivations

Below, we derive equations 1, 2 and 3. Again, these derivations are just sketches designed for
clarity as opposed to rigorous proofs. These derivations only cover the static Kalman filter, where
x are fixed, constant, static states of the model. See Bar-Shalom2 for derivations of the Kalman
filter with time-dependent states and part 2 of this series3 for an example.

The plan is first to develop expressions for the prior estimate x̃ and prior covariance P̃, and
then expressions for the posterior versions x̂ and P̂, defining the Kalman gain K matrix and the
denominator matrixD along the way. Finally, we derive the particular, convenient expressions for
K andD that appear in equations 1, 2, and 3. Bierman laid out this strategy for the derivation in his
classic book Factorization Methods for Discrete Sequential Estimation.4 We follow his plan, unpacking
many of his elided steps for greater clarity.

3.1 Notation

The word vector alone means column vector by default. If a quantity is a row vector, we explicitly
say so. In general, lower-case boldface symbols like x denote column vectors. Row vectors include
a superscript transpose symbol, as in aᵀ. We write literal vectors in square brackets, as in [a, b, . . .]ᵀ

for a column vector or [a, b, . . .] for a row vector or for cases where we don’t care whether it’s a
column or row.

Upper-case boldface symbols like M denote matrices. Because vectors are special cases of
matrices, some matrices are also vectors. We may use an upper-case symbol to denote a vector,
but we do not use a lower-case symbol to denote a non-vector matrix.

Juxtaposition, as in Ax or AB, means matrix multiplication. When we write a product like
AB, we assume that the number of columns of Amatches the number of rows of B.

Matrix multiplication is non-commutative, meaning that AB does not, in general, equal BA.
However, if a matrixD is diagonal, meaning that it has non-zero entries only along its main diag-
onal from upper left to lower right, then AD does always equalDA. We may freely use this fact
without mentioning it explicitly.

Symmetric matrices do not always commute, even with other symmetric matrices. In particu-
lar, the product of two symmetric matrices is not always symmetric, as witnessed by the following
counterexample: (

1 2
2 3

)
·
(
4 5
5 6

)
=

(
14 17
23 28

)
Matrix multiplication is associative, meaning that the order in which pairwise multiplications

is carried out does not matter. Thus

(AB)C = A (BC) = ABC

and we don’t need to write parentheses. That means some expressions of long products can be
hard to read. We occasionally use a center dot or × symbol to make multiplication easier to read,

2Bar-Shalom, Yaakov, et al. Estimation with applications to tracking and navigation. New York: Wiley, 2001.
3B. Beckman, Kalman Folding 2: Tracking and System Dynamics, http://vixra.org/abs/1606.0348.
4http://tinyurl.com/h3jh4kt
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as inA · x orA× x. We also use the × symbol when discussing the numbers of rows and columns
of a matrix, as in “A is anm× nmatrix,” meaning that A hasm rows and n columns.

We may freely exploit the following facts without mentioning them explicitly:

• For any matrixM, (Mᵀ)ᵀ =M

• For any invertible matrixM,
(
M−1

)−1
=M

• For any two matrices A and B, (AB)ᵀ = BᵀAᵀ

• (AB)−1 = B−1A−1 when the matrices are invertible

• Pᵀ = P if and only if P is symmetric

For any matrix M, M2 means MᵀM, the transpose of the matrix times the matrix. Such
squared matrices are always square and symmetric. This notation pertains to vectors, as well,
because they are just special cases of matrices. Thus, x2 = xᵀx, the square of the Euclidean 2-norm
of x, a scalar; and (xᵀ)2 = (xᵀ)ᵀ · xᵀ = x xᵀ is the outer product of x with itself; that outer product
is an n× n square, symmetric matrix, where n is the dimensionality of x.

WhenM2 is invertible,M−2 means the inverse ofM2, namely (MᵀM)−1.
We use the term tall to mean a matrix with more rows than columns, that is, an m × n matrix

when m > n. When discussing m × n matrices, we usually assume that m > n. We use the term
wide to mean a matrix with more columns than rows, as in an n×mmatrix. We use the term small
to mean n× n, and large to meanm×m.

3.1.1 Probability and Statistics

We use the terms distribution and expectation value without definition in this paper. If x is a random
variable, then we denote the expectation value of some function f of x as E[f(x)].

3.2 Definitions

t is the independent variable. In many applications, t represents physical time, or an integer index
mapped to physical time. It is known and non-random. We treat it as a scalar, here, though
it is possible to extend the theory to a vector t.

x is the (column) vector ofn unknown, constant states of the model. It’s a random variable, and we
compute estimates and covariances via expectation values over its distribution. This symbol
also means an algebraic variable standing for some particular estimate of the states.

Ax is the model; it predicts an observation at time t given an estimate of the states x and a current
partials matrix A that may depend on t. The model is a column vector of dimensionality
b× 1, the same as the dimensionality of an observation z.

A is the current partials matrix, the partial derivative of the model with respect to the unknown
states x, evaluated at the current value of the independent variable t. We could write A
as A(t); it’s an aesthetic judgment to omit explicit t dependence because it would make the
derivations longer and harder to read. Because the model is linear, the partials do not depend
on x. A is known, non-random, and may depend on t. Generally, its dimensionality is b×n,
where b is the dimensionality of an observation z.
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Ã is the prior partials matrix, a matrix that stacks all the prior rows of A that precede the current
row. It is known, non-random, and mb × n, where m is the number of prior observations,
b is the dimensionality of a single observation z, and n is the dimensionality of the states x.
Thus Ã is tall in the typical overdetermined case wherem > n, more observations than states.
We do not actually realize Ã in computer memory because Kalman keeps all information in
the running covariance matrix. Ã is just a useful abstraction for the derivations below.

z is the current observation. It is known and non-random. Its dimensionality is b× 1.

z̃ is a stack of all prior observations. It is known, non-random,mb× 1. It’s a useful abstraction in
the derivations below. It’s not necessary to actually realize it in computer memory because
we use all its information incrementally by folding.

x̃ the prior estimate, the estimate of x given all information we have prior to the current observa-
tion. It is known, non-random, n× 1.

x̂ the posterior estimate, the estimate of x given (1) the prior estimate x̃, (2) the current partials A,
and (3) the current observation z. It is known, non-random, n × 1. It satisfies the Kalman
update equation:

x̂ = x̃+K (z−A x̃) (5)

which is equivalent to the recurrence x← x+K (z−Ax) used in part 1 of this series.

P̃ covariance of the priors, equals Ã−2 (de-dimensionalized; proof sketch below). This is called just
P in part one of this series. It is known, non-random, n× n.

P̂ posterior covariance, satisfies P̂Aᵀ = K = P̃AᵀD−1 (de-dimensionalized; proof sketch below).
We calculate it from the prior covariance P̃ and the new partials matrix A. It is known,
non-random, n× n.

A x̃ the predicted observation given the prior estimate x̃ and the current partials matrix A. It is a
particular evaluation of the model. It is known, non-random, b× 1.

z−A x̃ the measurement residual, the difference between the current observation z and the pre-
dicted observation A x̃.

ζ observation noise: random column-vector with zero mean and covariance Z (unity, 1, after de-
dimensionalization). It has b rows and 1 column, like z.

Z covariance of the observation noise, E [ζ ζᵀ]: known, non-random b× b.

z̃ = Ã x+ ζ the observation equation, which equates z̃, the stack of all prior observations, to the
product of Ã, the stack of all prior partials matrices, and an unknown random vector of
states, x, plus some unknown random observation noise ζ. The stack of prior observations z̃
is known, non-random,mb×1; the stack of prior partials matrices Ã is known, non-random,
mb×n; the state vector x is unknown, random, n×1; The noise vector ζ is unknown, random,
mb× 1. The observation equation looks similar to the expression for the residual above. It’s
worthwhile to take a little time to examine the notations carefully and make sure that you
have a good mental picture of the meanings of these notations. The observation equation
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looks tall in the typical, overdetermined case, where as the residual is usually equivalent to
a scalar expression.

K Kalman gain = P̃AᵀD−1 (proof sketch below). Non-random, n× b.

D Kalman denominator = Z + AP̃Aᵀ, or 1 + AP̃Aᵀ de-dimensionalized. (proof sketch below).
Non-random, b× b.

3.3 Demonstration that Prior Covariance P̃ = Ã−2

The fact that the prior covariance, P̃, equals the the inverse square of the stack of prior partials
matrices (de-dimensionalized), Ã−2, is the secret to Kalman’s efficient, in fact constant, use of
computer memory. The stack of prior partials matrices Ã can be very tall and impractical to store.
But its square, Ã2 is only n×n, and its inverse square is also just n×n. Kalman packs all statistical
information about the model into this small matrix of constant size, and incrementally improves
the statistics as observations accumulate, without increasing the size of the matrix, and thus with-
out increasing the amount of computer memory needed to keep all important information. The
Kalman filter is optimal, meaning that the small covariance matrices keep all available informa-
tion. No other method would be able to squeeze more information out of the observations and the
model — at least when the noise is Gaussian. A rigorous optimality proof is out of scope for this
paper, but the least-squares derivation below contains the central idea: Kalman tracks the estimate
and covariance that minimize the sum of squared residuals. Kalman is optimal in the sense that
no other method would find a smaller sum of squared residuals.

3.3.1 Covariance of Any Random Vector Variable

The covariance of any random column vector y is defined as the expectation value E [yyᵀ] =
E
[
(yᵀ)2

]
This is the expectation value of an outer product of a column vector y and its transpose,

yᵀ. Therefore, it is a q× qmatrix, where q× 1 is the dimensionality of y.

3.3.2 Prior Estimate x̃

One of our random variables is x, the column n-vector of unknown states. To calculate its estimate,
assume we know the values of allm past partials Ã (tall,mb×n) and observations z̃ (tall,mb×1).

Relate x to the known observations z̃ and the known partials Ã through the normally dis-
tributed random noise column vector ζ and the observation equation:

z̃ = Ã x+ ζ (6)

3.3.3 Sum of Squared Residuals

Consider the following performance functional, computed over the population of x.

J(x)
def
= ζ2 =

(
z̃− Ã x

)2
=
(
z̃− Ã x

)ᵀ · (z̃− Ã x)
J(x) is a scalar: the sum of squared residuals. A residual is a difference between an actual obser-
vation z and a predicted observation Ax. An actual observation z is a known, concrete b-vector of
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numbers, and the partials matrixA is a known, concrete (b× n)-matrix of numbers corresponding
to that observation. The observation equation

• stacks all prior observations (known, concrete numbers) into z̃

• stacks all prior values of the partials matrix A into Ã (known, concrete numbers)

• multiplies by the unknown random state estimate x to get the (unknown, random) predicted
observations Ã x

• finally adds some unknown random noise ζ (column vector of heightmb)

The performance functional collapses all that information into a scalar random variable J(x)
with the same (Gaussian) distribution as the noise ζ. Recall that any random variable is, in fact,
always a function, even if only the identity function, as when we say that x is a random variable.
This is the standard nomenclature of probability and statistics established by Kolmogorov, and it
admittedly can be confusing.

The job of finding the optimal estimate of the state vector x is the job of finding the concrete,
numerical value of x that minimizes the performance functional J(x), which depends on all the
known, non-random, concrete numbers in z̃ and Ã.

To find the x that minimizes J(x), we could take the classic, school approach of setting to zero
the partial derivatives of J(x) with respect to x and solving the resulting equations for x. The
following is an easier way. Multiply the residuals across by the wide matrix Ãᵀ:

Ãᵀ z̃− Ã2 x

producing an n-vector, and then construct a modified performance functional:

J ′(x)
def
=
(
Ãᵀ z̃− Ã2 x

)2
=
(
Ãᵀ z̃− Ã2 x

)ᵀ · (Ãᵀ z̃− Ã2 x
)

J(x) is minimum with respect to x if and only if (iff) J ′(x) is minimum (this assertion needs a
rigorous proof; as warned, we present only sketches in this paper). Because J ′(x) is non-negative,
when J ′(x) can be zero, its minimum must be zero. J ′(x) is zero iff Ã2, an n × n square matrix, is
invertible (non-singular), in which case

x = Ã−2 Ãᵀ z̃

produces that minimum value of J ′(x), because then

Ãᵀ z̃ = Ã2 x

We call such a solution for x the least-squares estimate of x: the estimate of x based on all prior
observations. From now on, we write it as x̃

x̃
def
= Ã−2Ãᵀz̃ (7)

With this solution, we get a new expression for the performance functional J(x) that is useful
below. First note that
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Ã2 Ã−2 = 1

Ã2 Ã−2Ãᵀ = Ãᵀ Multiply on right by Ãᵀ

(Ãᵀ Ã) Ã−2Ãᵀ = Ãᵀ Expand definition of Ã2

therefore Ã Ã−2 Ãᵀ = 1 Arbitrariness of Ãᵀon left (8)

Equation 8 is another assertion that requires a rigorous proof, out of scope for this paper of
sketches. But, assuming it is true, we have

J(x) =
(
z̃− Ã x

)ᵀ · (z̃− Ã x)
=
(
z̃− Ã x

)ᵀ
Ã Ã−2 Ãᵀ

(
z̃− Ã x

)
insert 1 from equation 8

=
(
z̃− Ã x

)ᵀ
Ã (Ã−2 Ã2) Ã−2 Ãᵀ

(
z̃− Ã x

)
insert 1 = Ã−2 Ã2

=
[(
z̃− Ã x

)ᵀ
Ã Ã−2

]
Ã2
[
Ã−2 Ãᵀ

(
z̃− Ã x

)]
Regroup

=
[
Ã−2 Ãᵀ

(
z̃− Ã x

)]ᵀ
Ã2
[
Ã−2 Ãᵀ

(
z̃− Ã x

)]
Symmetry of Ã and Ã−2

= (x̃− x)ᵀ Ã2 (x̃− x) Definition of x̃ from equation 7 (9)

This has physical dimensions Z2 where Z are the physical dimensions of the observations z.

3.3.4 Prior Covariance P̃

We now want the covariance of the residuals between our least-squares estimate x̃ and the random
vector x:

P̃
def
= E [(x̃− x)(x̃− x)ᵀ] (10)

Get x̃− x from the observations and partials at hand as follows:

z̃ = Ã x+ ζ the observation equation, Equation 6

Ã−2 Ãᵀ z̃ = x+ Ã−2 Ãᵀ ζ Multiply on left by Ã−2 Ãᵀ

x̃ = x+ Ã−2 Ãᵀ ζ Definition of x̃ from equation 7

therefore x̃− x = Ã−2Ãᵀζ

Now rewrite equation 10, the definition of the prior covariance P̃:

E [(x̃− x)(x̃− x)ᵀ] = E
[
Ã−2Ãᵀζ ζᵀ(Ã−2Ãᵀζ)ᵀ

]
= Ã−2Ãᵀ E [ζ ζᵀ] (Ã−2Ãᵀ)ᵀ (11)

We can collapse the expectation value inwards because the stack of observation partials Ã is a
matrix of concrete, non-random numbers.
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Noise ζ is Gaussian, normal, with diagonal covariance matrix Z, by hypothesis. Equation 11
becomes

P̃ = Ã−2Ãᵀ E [ζ ζᵀ] (Ã−2Ãᵀ)ᵀ = Ã−2ÃᵀZ (Ã−2Ãᵀ)ᵀ

= Ã−2ÃᵀZÃ(Ã−2)ᵀ

= Ã−2ÃᵀZÃ(Ã−2) (12)

because Ã−2 is symmetric. At this point, no further simplification is possible, in general, because
Z is b×b and can only be sandwiched between Ãᵀ, n×b, and Ã, b×n. However, we can greatly
simplify this and all subsequent computations by de-dimensionalizing. There are numerical ben-
efits, as well, to be discussed in the next section.

3.3.5 De-Dimensionalizing the Observation Equation

Fully spelled out, and in the general case of b-vector observations z, one block of height b of the
observation equation is

z1
z2
...
zb

 =


A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

. . .
...

Ab1 Ab2 · · · Abn



x1
x2
...
xn

+


ζ1
ζ2
...
ζb


If we divide each row i by the standard deviation σzi of the i-th component zi of the observa-

tion z, we get 
z1
σz1
z2
σz2

...
zb
σzb

 =


A11

σz1

A12

σz1

· · · A1n

σz1
A21

σz2

A22

σz2

· · · A2n

σz2

...
...

. . .
...

Ab1
σzb

Ab2
σzb

· · · Abn

σzb



x1
x2
...
xn

+


ζ1
σz1
ζ2
σz2

...
ζb
σzb

 (13)

The covariance of the noise ζ, so normalized, is non-dimensional unity and equation 12 col-
lapses completely to just

P̃ = Ã−2 (14)

and the estimate of the priors, equation 7 now becomes

x̃
def
= P̃ Ãᵀz̃ (15)

This is remarkable. All information about the covariance of the noise is pulled into the (new,
normalized) observation partials.

I remember, when working in the early 1980’s at the Deep Space Network at JPL on direct
measurement of tectonic drift,5 one difficulty was the wide disparity between uncertainties of
horizontal measurments (right ascension and declination) and uncertainties in range. For instance,

5JPL Geodynamics Program http://www.jpl.nasa.gov/report/1981.pdf
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we knew the RA-dec position of the centroid of Saturn within 75 meters but its distance to no
better than a million kilometers. That’s a disparity of seven orders of magnitude (the situation is
greatly improved, now, due to the accumulation of range data for multiple spacecraft coupled with
decades of orbital mechanics6). At the time, this meant that we had to deal with error ellipsoids
that were long, thin needles, covariance matrices with components differing by up to fourteen
orders of magnitude. That’s not practical with floating-point computer arithmetic. One mitigation
was de-dimensionalizing or normalizing, as described here, which brings the uncertainties of all
components of an observation into the same numerical range, near unity. Another mitigation was
Square Root Information Filtering (SRIF), the subject of another paper in this series.

In any event, for all subsequent calculations in this paper, we assume that the observation
equation has been normalized and that Z = 1.

3.4 Posterior Estimate x̂ and Covariance P̂

To effect incremental updates of x and P, we need the posterior estimate x̂ and covariance P̂ in
terms of the priors x̃, P̃, and the new partials A and new observation z, all of which are matrices
of known, concrete, non-random numbers. This is exactly what our kalmanStatic function from
equation 1 does, of course, in functional form. We derive the posteriors from scratch to seek
opportunities to define K andD and to radically shorten the expressions.

First, define a new performance functional J1(x) as the sum of the performance of the priors
J̃(x) from equation 9, now written with tildes overhead, and a new term J2(x) for the performance
of the new data:

J1(x)
def
= J̃(x) + J2(x) (16)

J̃(x)
def
= (x̃− x)ᵀ Ã2 (x̃− x) Equation 9

J2(x)
def
= (z−Ax)2 (17)
= (z−Ax)ᵀ · (z−Ax)

= z2 − zᵀAx− z xᵀAᵀ + (Ax)2

= z2 − 2 zᵀAx+ (Ax)2

This time, I don’t have a handy trick for minimizing the performance functional. Let’s find
the minimizing x the classic way: by solving d J1(x)/d x = 0. The usual way to write a vector
derivative is with the nabla operator ∇, which produces gradient vectors from scalar functions.

∇ f(x) def
=


df(x)/dx0
df(x)/dx1

...
df(x)/dxn−1


The particular scalar function we’re differentiating is, of course, the new performance func-

tional J1(x) = J̃(x) + J2(x). Because Ã2 is symmetric,

6http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf
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∇ J̃(x) = ∇
(
(x̃− x)ᵀ Ã2 (x̃− x)

)
= −2 Ã2 (x̃− x)

an n-vector, and we similarly compute the gradient of J2(x), which contains the new observation
and partials:

∇ J2(x) = ∇
(
z2 − 2 zᵀAx+ (Ax)2

)
= 2Aᵀ (Ax− z)

= 2
(
A2 x−Aᵀ z

)
another n-vector. We can solve the resulting equation for x on sight, writing the new solution —
the new estimate — with an overhat. Be aware that thatA is a wide matrix, in fact an n-row when
b = 1, a common case, and A2 is thus an outer product and an n× nmatrix.

∇ J1(x) = ∇ J̃(x) +∇ J2(x) = 0
= Ã2 x− Ã2 x̃+A2 x−Aᵀ z

if and only if x = x̂
def
=
(
Ã2 +A2

)−1 · (Aᵀ z+ Ã2 x̃
)

(18)

Look how pretty this is. Equation 15 for the priors gave us the form x̃ = P̃ Ãᵀ z̃, a covariance
P̃ times the prior observations z̃ scaled by the prior partials, transposed, Ãᵀ. The new estimate
x̂ has exactly the same form if we regard the first matrix factor

(
Ã2 +A2

)−1
as a covariance P̂

and if we regard all the priors Ã2 x̃ as a single scaled observation to add to the current scaled
observationAᵀ z. We may regard Ã2 x̃ as a scaled observation because equations 14 and 15 imply
that Ãᵀ z̃ = Ã2 x̃. We may view the second term above, Aᵀ z+ Ã2 x̃, as Aᵀ z+ Ãᵀ z̃.

3.4.1 Posterior estimate, x̂

We must wrangle equation 5 from equation 18. Equation 5 is the recurrence we want, namely
x̂ = x̃+K(z−A x̃), and equation 18 is the recurrence we have, namely
x̂ =

(
Ã2 +A2

)−1 (
Aᵀ z+ Ã2 x̃

)
.

First, formally define the new, posterior covariance.

P̂
def
=
(
Ã2 +A2

)−1
(19)

Now write equation 18 as

x̂ = P̂
(
Aᵀ z+ Ã2 x̃

)
= P̂Aᵀ z+ P̂ Ã2 x̃
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The form above strongly suggests that we define

K
def
= P̂Aᵀ (20)

yielding

x̂ = Kz+ P̂ Ã2 x̃ (21)

Now, to get the recurrence we want

x̂ = x̃+K (z−A x̃)

= x̃+Kz−KA x̃ (22)

we need only set equation 21 equal to equation 22. Cancelling terms and rearranging, we get

(1−KA) x̃ = P̂ Ã2 x̃ = P̂ P̃−1 x̃ (23)

by definition of the prior covariance, equation 14. For arbitrary x̃, this will be true if

(1−KA) = P̂ P̃−1

Rearrange and right-multiply by P̃ to get

P̂ = (1−KA) P̃ = P̂ Ã2 P̃ (24)

showing that equations 23 and 5 are just alternative expressions for the same thing.
Let’s write this more compactly

P̂ = L P̃ (25)

where

L
def
= (1−KA) = P̂ Ã2 (26)

and we have one of the three equivalent recurrences for the posterior covariance from the first
paper in this series

P← LP (27)
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3.4.2 A Gain Matrix KWe Can Actually Compute

Of course, the gain matrix K is formally defined in terms of the posterior covariance, that is, as
P̂Aᵀ, but we don’t have the posterior covariance P̂ by equation 24 until we have the gain matrix
K. To get out of this fix, we note that

K = P̂Aᵀ = L P̃Aᵀ = (1−KA) P̃Aᵀ

and solve for K:

K = P̃Aᵀ −KAP̃Aᵀ

K (1+AP̃Aᵀ) = P̃Aᵀ

K = P̃Aᵀ (1+AP̃Aᵀ)−1 (28)

Defining the Kalman denominator matrixD as follows:

D
def
= 1+AP̃Aᵀ (29)

we finally get a form for the Kalman gain matrix K entirely in terms of priors and the new obser-
vation partials (sometimes called the innovation):

K = P̃AᵀD−1 (30)
where D = 1+APAᵀ (31)

These are almost the same as the original definitions, equations 2 and 3, which were written in
dimensional form. We leave it to the reader to show that the dimensional form forD isZ+APAᵀ.

3.4.3 Two More Recurrences

There remain two more recurrences to derive, namely

P← LPLᵀ +KZKᵀ (32)

and the canonical form,

P← P−KDKᵀ (33)

3.4.4 Minimizing J1(x)

The posterior covariance is, from the statistical viewpoint,

P̂ = E [(x̂− x)(x̂− x)ᵀ]

Get our new expression for x̂:

x̂ = x̃+K (z−A x̃) = Kz+ L x̃
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where, again

L = (1−KA) = P̂ Ã2

Remembering the observation equation (6), write a single instance of it z = Ax+ ζ and find

x̂ = KAx+Kζ+ L x̃

= (1− L) x+Kζ+ L x̃

implying that (x̂− x) = L (x̃− x) +Kζ.
Remembering that E [ζ] = 0, E [ζ ζᵀ] = Z, glibly re-dimensionalizing and skipping intermediate

steps, we find that

P̂ = L P̃ Lᵀ +KZKᵀ (34)

We leave it to the reader to check, with reference to equations 4, that the physical dimensions work
out. This completes the derivation of the recurrence equation 32.

The last form, P̂ = P̃ − KDKᵀ, is easy to show from what we already know, that P̂ = L P̃ =
(1−KA) P̃. We just need to show thatKAP̃ = KDKᵀ. SubstituteD−ᵀAP̃ᵀ forKᵀ by transposing
equation 30. Note that for square matrices, the inverse of the transpose is the transpose of the
inverse. ThereforeD−ᵀ = D−1 becauseD is symmetric. Likewise P̃ᵀ = P̃. The result follows:

KDKᵀ = KDD−ᵀAP̃ = KAP̃

4 Concluding Remarks

These derivations are helpful for gaining intuition into the underlying statistics and dimensional
structures of the Kalman filter and its many variants. They are a bit involved, but it is worthwhile
to ingest these fundamentals, especially for those who need to research new filters and applica-
tions. For more rigorous proofs built on a Bayesian perspective, see Bar-Shalom.2 For more careful
dimensional analysis of the present derivations, see part 6 of this series.7

7B. Beckman, Kalman Folding 6: Dimensional Analysis, to appear.
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