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Abstract

In this talk I present three explicit examples of generalizations in
relativistic quantum mechanics.

First of all, T discuss the generalized spin-1/2 equations for neu-
trinos. They have been obtained by means of the Gersten-Sakurai
method for derivations of arbitrary-spin relativistic equations. Pos-
sible physical consequences are discussed. Next, it is easy to check
that both Dirac algebraic equation Det(p — m) = 0 and Det(p +
m) = 0 for u— and v— 4-spinors have solutions with py = +F, =
+v/p?+m2. The same is true for higher-spin equations. Mean-
while, every book considers the equality pg = FE, for both u— and
v— spinors of the (1/2,0) & (0,1/2)) representation only, thus ap-
plying the Dirac-Feynman-Stueckelberg procedure for elimination of
the negative-energy solutions. The recent Ziino works (and, indepen-
dently, the articles of several others) show that the Fock space can
be doubled. We re-consider this possibility on the quantum field level
for both S = 1/2 and higher spin particles. The third example is:
we postulate the non-commutativity of 4-momenta, and we derive the
mass splitting in the Dirac equation. The applications are discussed.



1 Generalized Neutrino Equations

A. Gersten [1] proposed a method for derivations of massless
equations of arbitrary-spin particles. In fact, his method is
related to the van der Waerden-Sakurai [2] procedure for the
derivation of the massive Dirac equation. I commented the
derivation of the Maxwell equations® in [3]. Then, I showed that
the method is rather ambigious because instead of free-space
Maxwell equations one can obtain generalized S = 1 equations,
which connect the antisymmetric tensor field with additional
scalar fields. The problem of physical significance of additional
scalar chi-fields should be solved, of course, by experiment.

In the present talk I apply the van der Waerden-Sakurai-
Gersten procedure to the spin-1/2 fields. As a result one ob-
tains equations which generalize the well-known Weyl equations.
However, these equations are known for a long time [4]. Raspini [5,
6] analized them again in detail. I add some comments on phys-
ical contents of the generalized spin-1/2 equations.

[ use the equation (4) of the Gersten paper [1a] for the two-
component spinor field function:

(E? = ?pH) [P = [EIP — cp - &| [EIP + cp- ] =0. (1)

Actually, this equation is the massless limit of the equation
which has been presented (together with the corresponding method
of derivation of the Dirac equation) in the Sakurai book [2]. In
the latter case one should substitute m?2c* into the right-hand
side of Eq. (1). However, instead of equation (3.25) of [2] one
can define the two-component ‘right’ field function

bp = 1(2'713 —iho - V)Y, ¢p =1 (2)

myc  0xg

Tn fact, the S = 1 first-quantized equations.
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with the different mass parameter m;. In such a way we come
to the system of the first-order differential equations

L 0 mie
(Zhajjo + Zha' . V)QSR = mil L, (3)
(iha —iho - V)¢ = micop. (4)

8370

It can be re-written in the 4-component form:
ih(0/0x) tho -V va\
(Ziho-v —inorang) () = )
c ( (m3/mi+m1)  (—=m3/mi + m1)> (W)
(

2 —m3/my +my)  (m3/my +my) (032}
for the function ¥ = column(ya  Yp) = column(dp+oér dr—
¢r). The equation (5) can be written in the covariant form.

mic (1=7°)  mic(1+17°)

[z’y“@u — ] U=0. (6)
The standard representation of v* matrices has been used here.

If m1 = m9 we can recover the standard Dirac equation. As
noted in [4b] this procedure can be viewed as the simple change
of the representation of v* matrices. However, this is valid un-
less mo # 0 only. Otherwise, the entries in the transformation
matrix become to be singular.

Furthermore, one can either repeat a similar procedure (the
modified Sakurai procedure) starting from the massless equation
(4) of [1a] or put mg = 0 in eq. (6). The massless equation is*

mic (1 +~°)
h 2

i"'0, — U=0. (7)

21t is necesary to stress that the term ‘massless’is used in the sense that p,p* = 0.
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Then, we may have different physical consequences following
from (7) comparing with those which follow from the Weyl equa-
tion.® The mathematical reason of such a possibility of different
massless limits is that the corresponding change of representa-
tion of v* matrices involves mass parameters m; and msy them-
selves.

It is interesting to note that we can also repeat this procedure
for the definition (or for even more general definitions);

b= il yine VW, n=0. )

msc:  0x
This is due to the fact that the parity properties of the two-
component spinor are undefined in the two-component equation.
The resulting equation is

. m2c 1—|—’y5 msc 1—75 -
R . S| T

which gives us yet another equation in the massless limit (m4 —

0):

o m3C(1_’Y5) z
[z*y Oy — h 5 ]\IJ—O, (10)
differing in the sign at the 5 term.

The above procedure can be generalized to any Lorentz group
representations, . e., to any spins. In some sense the equations
(7,10) are analogous to the S = 1 equations [3, (4-7,10-13)],
which also contain additional parameters.

Is the physical content of the generalized S = 1/2 massless
equations the same as that of the Weyl equation? Our answer
is ‘no’. The excellent discussion can be found in [4a,b]. First of

3Remember that the Weyl equation is obtained as m — 0 limit of the usual Dirac
equation.



all, the theory does not have chiral invariance. Those authors
call the additional parameters as the measures of the degree
of chirality. Apart of this, Tokuoka introduced the concept of
the gauge transformations (not to confuse with phase transfor-
mations) for the 4-spinor fields. He also found some strange
properties of the anti-commutation relations (see §3 in [4a] and
cf. [8]). And finally, the equation (7) describes four states, two
of which answer for the positive energy £ = |p|, and two others
answer for the negative energy £ = —|p|.

I just want to add the following to the discussion. The opera-
tor of the chiral-helicity 7 = (o - Pp) (in the spinorial representa-
tion) used in [4b] does not commute, e.g., with the Hamiltonian
of the equation (7):*

micl —+°

Hoa-pl =27y ). (1)

For the eigenstates of the chiral-helicity the system of corre-
sponding equations can be read (n =T, |)

5

i, U, — m;lz”qf_n =0. (12)
The conjugated eigenstates of the Hamiltonian |V + ¥ > and
|y — | > are connected, in fact, by 7° transformation ¥ —
YU ~ (a-p)¥ (or my — —my). However, the 4° transformation
is related to the PT' (t — —t only) transformation [4b], which,
in its turn, can be interpreted as £ — —F, if one accepts the
Stueckelberg idea about antiparticles. We associate |V + ¥ >
with the positive-energy eigenvalue of the Hamiltonian E = |p|
and |U; — ¥ >, with the negative-energy eigenvalue of the

4Do not confuse with the Dirac Hamiltonian.



Hamiltonian (£ = —|p|). Thus, the free chiral-helicity mass-
less eigenstates may oscillate one to another with the frequency
w = FE/h (as the massive chiral-helicity eigenstates, see [7a]
for details). Moreover, a special kind of interaction which is
not symmetric with respect to the chiral-helicity states (for in-
stance, if the left chiral-helicity eigenstates interact with the
matter only) may induce changes in the oscillation frequency,
like in the Wolfenstein (MSW) formalism.

The question is: how can these frameworks be connected with
the Ryder method of derivation of relativistic wave equations,
and with the subsequent analysis of problems of the choice of
normalization and that of the choice of phase factors in the
papers [7, 8, 9|7 However, the conclusion may be similar to
that which was achieved before: the dynamical properties of
the massless particles (e. g., neutrinos and photons) may differ
from those defined by the well-known Weyl and Maxwell equa-
tions [13].

2 Negative Energies in the Dirac Equation

The recent problems of superluminal neutrinos, e. g., Ref. [10],
negative mass-squared neutrinos, various schemes of oscillations
including sterile neutrinos, e. g. [11], require much attention.
The problem of the lepton mass splitting (e, i, 7) has long his-
tory [12]. This suggests that something missed in the founda-
tions of relativistic quantum theories. Modifications seem to
be necessary in the Dirac sea concept, and in the even more so-
phisticated Stueckelberg concept of the backward propagation in
time. The Dirac sea concept is intrinsically related to the Pauli
principle. However, the Pauli principle is intrinsically connected



with the Fermi statistics and the anticommutation relations of
fermions. Recently, the concept of the bi-orthonormality has
been proposed; the (anti) commutation relations and statistics
are assumed to be different for neutral particles [8].

We observe some interisting things related to the negative-
energy concept. The Dirac equation is:

[iv"'0, — m|¥(z) =0. (13)
At least, 3 methods of its derivation exist [14, 2, 15]:

e the Dirac one (the Hamiltonian should be linear in 9/9z",

and be compatible with Eg — p2ct = m2ch);

e the Sakurai one (based on the equation (E, — o - p)(E, +
0 P)p =m’p);
e the Ryder one (the relation between 2-spinors at rest is

®r(0) = +¢1(0), and boost application to them).

Usually, everybody uses the following definition of the field op-
erator [16] in the pseudo-Euclidean metrics:

3
U(z) = (2;)3 % / ;Z El:; [un(p)an(p)e ™ + vy (p)b)(p)]e 7],

(14)
as given ab initio. After actions of the Dirac operator at
exp(Fip,x*) the 4-spinors (u— and v— ) satisfy the momentum-
space equations: (p — m)up(p) = 0 and (p + m)vp(p) = 0,
respectively; the h is the polarization index. However, it is
easy to prove from the characteristic equations Det(p F m) =

(p3 — p? —m?)? = 0 that the solutions should satisfy the energy-
momentum relation py = £F, = ++/p? + m? in both cases.



Let me remind the general scheme of construction of the field
operator, which has been presented in [17]. In the case of the
(1/2,0) ® (0,1/2) representation we have:

V() = g [0 —mP)e ) =
— (271_(_)3 zh: / d4p 5<p(2) - Ez)e_ip-xuh(po, p)ah(po7 p) — (15)
= (23_(_)3 / ;ZEZ; [(5(290 - Ep) + 5(290 + Ep)”e(po) + 9<_p0)]€—ip.x
X zh: un(p)an(p) =
— (271'(')3 ; / ;ZE];[(S(])O — Ep) + 5(]90 + Ep)] [e(po)uh(p)ah(p)e_ip'x—l—
+ Q(PO)Uh(—p)ah(—p)e“P'f] _

= G [ *e (o) [un(P)an(p) =, e~ 7P+

+ Uh(—p)ah(— )|p0:Ep€+ (Ept—p)]

During the calculations above we had to represent 1 = 6(py) +
O(—po) in order to get positive- and negative-frequency parts.’
Moreover, during these calculations we did not yet assumed,
which equation this field operator (namely, the u— spinor) does
satisfy, with negative- or positive- mass?

In general we should transform u;(—p) to the v(p). The pro-
cedure is the following one [19]. In the Dirac case we should
assume the following relation in the field operator:

%vh(p)b;i(p) = %m(—p)ah(—p)- (16)

°See Ref. [18] for some discussion.



We know that [15]°

gy (P)uey () = +mdpun (17)
Uiy (P)uoy(—p) = 0, (18)
U (P)opy(p) = —mdpun, (19)
U (P)upy(p) = 0, (20)

but we need A,y (p) = V() (p)up(—p). By direct calculations,
we find

—mb], (p) = %: Ao (P)apy(=p) - (21)
Hence, A, = —im(o - 1)), n = p/|p|, and

bl (p) = iZAZ(U 1) () am) (—D) - (22)
Multiplying (16) by ,)(—p) we obtain

agy(—p) = _i%:(a ' n)(m(A)b&)(P) : (23)
The equations are self-consistent.”

However, other ways of thinking are possible. First of all
to mention, we have, in fact, u,(E,, p) and up(—E,, p), and

() and (M) are the polazrization indices here. According to the referee advice I use
parenthesis here to stress this.
"In the (1,0) @ (0, 1) representation the similar procedure leads to somewhat different
situation:
agy(p) = [1—2(S-0)*|yoan) (—p) - (24)

This signifies that in order to construct the Sankaranarayanan-Good field operator (which
was used by Ahluwalia, Johnson and Goldman [Phys. Lett. B (1993)], it satisfies
V00,0 — L]éat)mz]\ll(x) = 0, we need additional postulates. For instance, one can
try to construct the left- and the right-hand side of the field operator separately each
other [18].



vn(E,, p) and vy (—E,, p), originally, which may satisfy the equa-
tions:®

Ey(£7°) = v -p—m|uy(£E,,p) =0. (25)
Due to the properties UTn°U = —4° Uiy'U = ++' with the

0 _1> = 7%4% in the Weyl basis,” we

it trix U =
unitary matrix < L0

have

[Ep’yo —y-p— m} UTuh(—Ep, p)=0. (26)
Thus, unless the unitary transformations do not change the
physical content, we have that the negative-energy spinors v°y%u~
(see (26)) satisfy the accustomed “positive-energy” Dirac equa-
tion. We should then expect the same physical content. Their
explicite forms 7°yYu~ are different from the textbook “positive-

energy” Dirac spinors. They are the following ones:!°
—pt+m
~ N — Mr
u(p) = _ f ; (27)
V2m(—E,+m) | p~—m
—Di
~ N —p +m
u(p) = p_ (28)
V2m(—E, + m) pi
pT—m

E, =\p>+m? >0, py=+E,, p* = E+p., py = p, £ ip,.
Their normalization is to (—2N 2).

8Remember that, as before, we can always make the substitution p — —p in any of
the integrands of (15).

9The properties of the U— matrix are opposite to those of PT/0P = 440
Pty*P = —4" with the usual P = 4°, thus giving [pr’yO +v-p— m} Pup(—E,, p) =
—[p+m|v2(E,, p) = 0. While, the relations of the spinors vj,(E,, p) = Ysun(Ep, p) are
well-known, it seems that the relations of the v— spinors of the positive energy to u—
spinors of the negative energy are frequently forgotten, o7 (E,, p) = 7°un(—E,, p).

10We use tildes because we do not yet know their polarization properties.
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What about the ©(p) = 7%u~ transformed with the vy ma-
trix? Are they equal to vy(p) = Yun(p)? Our answer is ‘no’.
Obviously, they also do not have well-known forms of the usual
v— spinors in the Weyl basis, differing by phase factors and in
the signs at the mass terms.

Next, one can prove that the matrix

P = iy = ¢ ( 0 12><2> (29)
loaxg 0

can be used in the parity operator as well as in the original Weyl

basis. The parity-transformed function ¥'(t, —x) = PV(¢,x)

must satisfy

[ify“(‘?l: — m]W¥'(t,—x) =0, (30)

with 0 = (0/0t, —V;). This is possible when P~'7P = +" and
P714iP = —+'. The matrix (29) satisfies these requirements,
as in the textbook case. However, if we would take the phase
factor to be zero we obtain that while u;(p) have the eigenvalue
+1 of the parity, but (R = (x — —x,p — —p))

PRi(p) = PRy’y u(=E,,p) = —a(p) (31)

PRi(p) = PRY*y’u(—E,,p) = —u(p). (32)

Perhaps, one should choose the phase factor 8 = 7. Thus, we
again confirmed that the relative (particle-antiparticle) intrinsic
parity has physical significance only.

Similar formulations have been presented in Refs. [20], and [21].
The group-theoretical basis for such doubling has been given in
the papers by Gelfand, Tsetlin and Sokolik [22], who first pre-
sented the theory in the 2-dimensional representation of the in-
version group in 1956 (later called as “the Bargmann-Wightman-
Wigner-type quantum field theory” in 1993). M. Markov wrote

11



two Dirac equations with the opposite signs at the mass term [20)]
long ago:
179, — m] Wi(z) = 0, (33)
[iv" 0, +m] Uy(z) = 0. (34)
In fact, he studied all properties of this relativistic quantum
model (while he did not know yet the quantum field theory in

1937). Next, he added and subtracted these equations. What
did he obtain?

' Oup(x) —mx(z) = 0, (35)
i Oux(z) —mep(z) = 0. (36)
Thus, ¢ and x solutions can be presented as some superpositions
of the Dirac 4-spinors u— and v—. These equations, of course,

can be identified with the equations for the Majorana-like A—
and p—, which we presented in Ref. [7].11

"9\ (2) —mpt(x) = 0, (37)
iV"9,p(x) —mA\S(x) = 0, (38)
V"9 N (x) +mp®(x) = 0, (39)
iV"0,p° (x) + mA(x) = 0. (40)

Neither of them can be regarded as the Dirac equation. However,
they can be written in the 8-component form as follows:

i[9, — m)] v (x) = 0, (41)
i 0, + m] \If(_)(x) = 0, (42)
with
A T S T 1
\I’(+)($) = (ﬁs&j) ,\If(_)(x) = <§A<(x))> , = (;)u 70 ) . (43)

11Of course, the signs at the mass terms depend on, how do we associate the positive-
or negative- frequency solutions with A and p.
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It is easy to find the corresponding projection operators, and
the Feynman-Stueckelberg propagator.

You may say that all this is just related to the spin-parity
basis rotation (unitary transformations). However, in the pre-
vious papers I explained: the connection with the Dirac spinors
has been found [7, 24].1? For instance,

/\}g(P) 1 o=l U+1/2(P)

ANp) | _1=i 1 =i —1{]u_(p) (44)
X' (p) 211 —i =1 —i||vupP) |’

A'(p) i1 i =1/ \vyp(p)

provided that the 4-spinors have the same physical dimension.
Thus, we can see that the two 4-spinor systems are connected
by the unitary transformations, and this represents itself the ro-
tation of the spin-parity basis. However, it is usually assumed
that the A— and p— spinors describe the neutral particles, mean-
while u— and v— spinors describe the charged particles. Kirch-
bach [24] found the amplitudes for neutrinoless double beta de-
cay (00v() in this scheme. It is obvious from (44) that there are
some additional terms comparing with the standard calculations
of those amplitudes.

One can also re-write the above equations into the two-component
forms. Thus, one obtains the Feynman-Gell-Mann [23] equa-
tions. As Markov wrote himself, he was expecting “new physics”
from these equations.

Barut and Ziino [21] proposed yet another model. They con-
sidered ¥° operator as the operator of the charge conjugation.
Thus, the charge-conjugated Dirac equation has the different
sign comparing with the ordinary formulation:

V"0 +m|¥p, =0, (45)

12T also acknowledge personal communications from D. V. Ahluwalia on these matters.
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and the so-defined charge conjugation applies to the whole sys-
tem, fermion + electromagnetic field, e — —e in the covariant
derivative. The superpositions of the Vg, and ¥%, also give us
the “doubled Dirac equation”, as the equations for A— and p—
spinors. The concept of the doubling of the Fock space has been
developed in the Ziino works (cf. [22, 25]) in the framework of the
quantum field theory. In their case the self/anti-self charge con-
jugate states are simultaneously the eigenstates of the chirality.
Next, it is interesting to note that we have for the Majorana-like

field operators (a,(p) = b,(p)):
3
e - [

> (z’@qﬁj(;?(p“)) ay(p")e " + <¢n &u)) a;(Pu)eiW] :
' d*p 1L

v - e @) 2= | T (47)

277: (qbﬁ?p“)) ay(p")e T + <_i@¢§n(pu)> a%(p”)eip“] ;

which, thus, naturally lead to the Ziino-Barut scheme of massive
chiral fields, Ref. [21].

Finally, I would like to mention that, in general, in the Weyl
basis the v— matrices are not Hermitian, 7‘” = A1V So,
v = —~1 §=1,2,3, the pseudo-Hermitian matrix. The energy-
momentum operator ¢d, is obviously Hermitian. So, the ques-
tion, if the eigenvalues of the Dirac operator i7*0,, (the mass, in
fact) would be always real? The question of the complete sys-
tem of the eigenvectors of the non-Hermitian operator deserve
careful consideration [26]. Bogoliubov and Shirkov [17, p.55-56]
used the scheme to construct the complete set of solutions of

the relativistic equations, fixing the sign of py = +E,,.

(46)

ML+t
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The main points of this Section are: there are “negative-
energy solutions” in that is previously considered as “positive-
energy solutions” of relativistic wave equations, and vice versa.
Their explicit forms have been presented in the case of spin-1/2.
Next, the relations to the previous works have been found. For
instance, the doubling of the Fock space and the corresponding
solutions of the Dirac equation obtained additional mathemati-
cal bases. Similar conclusion can be deduced for the higher-spin
equations.

3 Non-commutativity in the Dirac equation

The non-commutativity [27, 28] manifests interesting peculiar-
ities in the Dirac case. We analized Sakurai-van der Waerden
method of derivations of the Dirac (and higher-spins too) equa-
tion [29]. We can start from

or

Obviously, the inverse operators of the Dirac operators of the
positive- and negative- masses exist in the non-commutative
case. As in the original Dirac work, we have

=1, af+p6a'=0, odod+ala =27. (50)

For instance, their explicite forms can be chosen

i (o 0 (0 1oy
O“(O —oi>’ 5_<1M 0 ) (51)
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where o' are the ordinary Pauli 2 x 2 matrices.
We also postulate the non-commutativity relations for the
components of 4-momenta:

[E,p']. =0"=0", (52)
as usual. Therefore the equation (49) will not lead to the well-
known equation E? — p? = m?. Instead, we have
{E2 —FEla-p)+ (a-p)E — pZ—m?— i(o® I)p X p]} Wiy =0
(53)
For the sake of simplicity, we may assume the last term to be
zero. Thus, we come to

{EQ—pQ—mQ—(a-H)}\IJ(4) =0. (54)

However, let us apply the unitary transformation. It is known [30,

7] that one can'?
Uy(o -a)U; ! = o3)al. (55)
For o matrices we re-write (55) to
1 0 0 0
thia-o =10l U0 =alel (50)
0 O 0 1
The explicit form of the U; matrix is (a,; = a1 £ ias):
U = 1 (a + ag a ) _ 1
2a(a +az) \ —ar a-+ag 2a(a + as)
X |a+ ag+ ioga; — ioqas),
w = (U0 o

13Some relations for the components a should be assumed. Moreover, in our case 6
should not depend on E and p. Otherwise, we must take the non-commutativity [E, p*]-
into account again.
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Let us apply the second unitary transformation:

100 0 1 0 0 0 10 0 0
. oo 01 000 1| |01 0 0
Uasth =10 0 1 ol®lo 01 0|0 0 -1 o
01 0 0 01 0 0 00 0 -1

The final equation is
[E? — p? —m® — 0,01 ¥y = 0. (59)

In the physical sense this implies the mass splitting for a Dirac
particle over the non-commutative space, m;o = £vm? 0.
This procedure may be attractive for explanation of the mass
creation and the mass splitting for fermions.
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