Classical 'Quantum' Bounds

The physicists, Diego Frustaglia et al., at the University of Sevilla in Spain, have published a paper on the emergence of quantum bounds in classical experiments in a recent issue of Physical Review Letters. [4]

The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories.

The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

Contents

Preface	2
'Quantum' bounds not so quantum after all	2
Different experiments, same bounds	2
Interpreting the results	3
The Bridge	4
Accelerating charges	5
Relativistic effect	5
Heisenberg Uncertainty Relation	5
Wave – Particle Duality	5
Atomic model	5
The Relativistic Bridge	6
The weak interaction	6
The General Weak Interaction	7
Fermions and Bosons	7
Van Der Waals force	8
Electromagnetic inertia and mass	8
Electromagnetic Induction	8
Relativistic change of mass	8
The frequency dependence of mass	8

Electron – Proton mass rate	8
Gravity from the point of view of quantum physics	9
The Gravitational force	9
The Higgs boson	9
Higgs mechanism and Quantum Gravity	10
What is the Spin?	10
The Graviton	10
Conclusions	11
References	11

Author: George Rajna

Preface

I think that we have a simple bridge between the classical and quantum mechanics by understanding the Heisenberg Uncertainty Relations. It makes clear that the particles are not point like but have a dx and dp uncertainty.

'Quantum' bounds not so quantum after all

Quantum bounds are numbers (such as 4, 6, and $2\sqrt{2}$) that naturally appear in quantum experiments, similar to how the number π emerges in circles.

But just as how π pops up in a wide variety of areas beyond circles, in a new study physicists have found that quantum bounds are not exclusive to quantum theory but also emerge in purely classical experiments. The results suggest that attempts to define quantumness should not be concerned with quantum bounds, since there is nothing inherently quantum about them.

The physicists, Diego Frustaglia et al., at the University of Sevilla in Spain, have published a paper on the emergence of quantum bounds in classical experiments in a recent issue of Physical Review Letters.

Different experiments, same bounds

In their study, the researchers performed three classical experiments that correspond to three famous quantum experiments involving quantum bounds. These quantum experiments are a sequential version of the Bell inequality and two other related quantum inequalities, all of which are used to distinguish between quantum and classical phenomena.

In order to show that a system exhibits quantum effects, these experiments traditionally attempt to show that a system can violate a quantum inequality. The greater the violation, the more quantum the system. The maximum violation of a quantum inequality is the quantum bound. The quantum bounds arise from probability distributions in the experiments and are specific numbers—for

instance, the Bell inequality has a quantum bound of $2\sqrt{2}$ (approximately 2.82), which is known as Tsirelson's bound. The other two inequalities addressed here have quantum bounds of 4 and 6. Both theoretically and experimentally, no violation of a quantum inequality has ever surpassed these bounds.

In the new study, the researchers showed that these same quantum bounds emerge in experiments in which classical waves travel along an ordinary transmission

line. The researchers found that the probabilities originating from the detection of wave intensities at the end of the transmission line follow the same distribution as the probabilities of detecting violations of the quantum inequalities. Specifically, the classical experiments yield bounds of 2.78, 3.93, and 5.93 for the three analogous experiments. In all three cases, these values are actually slightly closer to their theoretical values mentioned above than the values obtained in quantum experiments are, providing strong evidence that both quantum and classical experiments produce the same bounds.

Interpreting the results

One of the many implications of the study is that it offers new insight into what it means to be quantum. By showing that quantum bounds are not unique to quantum theory, but are universal bounds, the findings show that ongoing attempts to define quantum theory should not focus on these bounds.

Instead, the results provide a clue for finding a true quantum feature by revealing an important difference between the way in which the classical and quantum systems produce the same bounds. While the classical systems require some kind of extra resource, such as memory, the quantum systems do not. So a complete description of quantum theory should explain how quantum systems can violate the same bounds that classical systems do, but without using extra resources.

As the researchers explain, this approach of investigating classical systems to better understand quantum mechanics tends to be the opposite of most research.

"We somehow reverted the strategy followed by the founders of quantum theory," Frustaglia told Phys.org. "In the early times of quantum mechanics, microscopic systems were subject to an intense questioning naturally biased towards classical physics. The result was a set of oddities interpreted as the paradigmatic features of the quantum realm: the particle-wave duality (is it a particle or a wave?), the Schrödinger's cat (is it dead or alive?), and the Heisenberg's uncertainty principle (where and how fast is it?).

"As a consequence, it was soon understood that quantum systems should be interrogated in their own specific language, eventually provided by modern quantum theory. It is then pertinent to address the possibility of interrogating classical systems with questions inspired by quantum physics. This is what we did, indeed, finding that classical systems with an underlying wave mechanism answer these questions in the same way truly quantum systems do. But one has to choose your system carefully: one would not be able to make it by using plain balls, for instance." In the future, the physicists plan to investigate how the universal bounds might emerge in the first place.

"Our results show that the 'quantum' bounds are common to many physical theories," said coauthor Adán Cabello at the University of Sevilla. "This suggests that the reason for these bounds is something very simple and arguably inherent to the kind of theories we are interested in: theories in which 'measurements' produce repeatable results which are not affected by some other measurements.

"Surprisingly, this simple idea singles out many 'quantum' bounds. When we adopt this perspective, what is really significant is the fact that these bounds are actually reachable in nature. This shows that no hypothetical physical principle is acting and leads us to the conjecture that one of the physical principles that singles out quantum theory is precisely that one: There is no principle determining the probabilities of the outcomes of these 'measurements.'

"One plan is to prove that this simple idea is responsible for all quantum bounds. Another plan is to test whether it is really true that these bounds can be reached with quantum systems. So far, and only very recently, H. S. Poh et al. have confirmed the so-called Tsirelson bound, $2\sqrt{2}$, with four significant digits, but there is absolutely no experimental evidence of whether we can 'touch' these bounds in other scenarios. Also, it would be great to derive quantum theory from the assumption that there are no laws of nature determining or limiting the probabilities of measurement outcomes, and that the whole machinery of the theory follows from the aesthetic preference in the way we define 'measurements.'"

Finally, the physicists also plan to investigate potential applications, such as building quantum technologies with the help of classical systems.

"Although inefficient in the sense that they require more memory or space, classical systems are sometimes better to produce 'quantum' numbers than quantum systems themselves," Frustaglia said. "In contrast to quantum systems, which are very sensitive to the environment, the wires in our experiment can be bent, moved, heated, etc., and the results are the same. This suggests a future in which quantum technologies are actually built using quantum systems plus classical systems imitating quantum systems. It also raises the question as to whether similar 'quantum' features with potential functionalities can emerge in other supports as complex networks of artificial or biological nature. An appropriate answer to this questions requires multidisciplinary efforts that we are presently considering." [4]

The Bridge

The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. [1]

Accelerating charges

The moving charges are self maintain the electromagnetic field locally, causing their movement and this is the result of their acceleration under the force of this field. In the classical physics the charges will distributed along the electric current so that the electric potential lowering along the current, by linearly increasing the way they take every next time period because this accelerated motion. The same thing happens on the atomic scale giving a dp impulse difference and a dx way difference between the different part of the not point like particles.

Relativistic effect

Another bridge between the classical and quantum mechanics in the realm of relativity is that the charge distribution is lowering in the reference frame of the accelerating charges linearly: ds/dt = at (time coordinate), but in the reference frame of the current it is parabolic: $s = a/2 t^2$ (geometric coordinate).

Heisenberg Uncertainty Relation

In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving electron in the atom accelerating in the electric field of the proton, causing a charge distribution on delta x position difference and with a delta p momentum difference such a way that they product is about the half Planck reduced constant. For the proton this delta x much less in the nucleon, than in the orbit of the electron in the atom, the delta p is much higher because of the greater proton mass.

This means that the electron and proton are not point like particles, but has a real charge distribution.

Wave - Particle Duality

The accelerating electrons explains the wave – particle duality of the electrons and photons, since the elementary charges are distributed on delta x position with delta p impulse and creating a wave packet of the electron. The photon gives the electromagnetic particle of the mediating force of the electrons electromagnetic field with the same distribution of wavelengths.

Atomic model

The constantly accelerating electron in the Hydrogen atom is moving on the equipotential line of the proton and it's kinetic and potential energy will be constant. Its energy will change only when it is changing its way to another equipotential line with another value of potential energy or getting free with enough kinetic energy. This means that the Rutherford-Bohr atomic model is right and only that changing acceleration of the electric charge causes radiation, not the steady acceleration. The steady acceleration of the charges only creates a centric parabolic steady electric field around the charge, the magnetic field. This gives the magnetic moment of the atoms, summing up the proton and electron magnetic moments caused by their circular motions and spins.

The Relativistic Bridge

Commonly accepted idea that the relativistic effect on the particle physics it is the fermions' spin another unresolved problem in the classical concepts. If the electric charges can move only with accelerated motions in the self maintaining electromagnetic field, once upon a time they would reach the velocity of the electromagnetic field. The resolution of this problem is the spinning particle, constantly accelerating and not reaching the velocity of light because the acceleration is radial. One origin of the Quantum Physics is the Planck Distribution Law of the electromagnetic oscillators, giving equal intensity for 2 different wavelengths on any temperature. Any of these two wavelengths will give equal intensity diffraction patterns, building different asymmetric constructions, for example proton - electron structures (atoms), molecules, etc. Since the particles are centers of diffraction patterns they also have particle – wave duality as the electromagnetic waves have. [2]

The weak interaction

The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry. The Electroweak Interaction shows that the Weak Interaction is basically electromagnetic in nature. The arrow of time shows the entropy grows by changing the temperature dependent diffraction patterns of the electromagnetic oscillators.

Another important issue of the quark model is when one quark changes its flavor such that a linear oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This kind of change in the oscillation mode requires not only parity change, but also charge and time changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino.

The right handed anti-neutrino and the left handed neutrino exist only because changing back the quark flavor could happen only in reverse, because they are different geometrical constructions, the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction changes the entropy since more or less particles will give more or less freedom of movement. The entropy change is a result of temperature change and breaks the equality of oscillator diffraction intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and makes possible a different time dilation as of the special relativity.

The limit of the velocity of particles as the speed of light appropriate only for electrical charged particles, since the accelerated charges are self maintaining locally the accelerating electric force. The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is the time coordinate not works as in the electromagnetic interactions, consequently the speed of neutrinos is not limited by the speed of light.

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional oscillation by changing d to u quark and creating anti neutrino going back in time relative to the proton and electron created from the neutron, it seems that the anti neutrino fastest then the velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and the CP- and T- symmetry breaking!!! This flavor changing oscillation could prove that it could be also on higher level such as atoms, molecules, probably big biological significant molecules and responsible on the aging of the life.

Important to mention that the weak interaction is always contains particles and antiparticles, where the neutrinos (antineutrinos) present the opposite side. It means by Feynman's interpretation that these particles present the backward time and probably because this they seem to move faster than the speed of light in the reference frame of the other side.

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the velocity of the electromagnetic wave, so the neutrino's velocity cannot exceed the velocity of light.

The General Weak Interaction

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. A good example of this is the neutron decay, creating more particles with less known information about them.

The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change and it is possible to any other temperature dependent entropy and information changing diffraction pattern of atoms, molecules and even complicated biological living structures.

We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too. This gives the limited lifetime for the biological constructions also by the arrow of time. There should be a new research space of the Quantum Information Science the 'general neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change. There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also.

The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite direction.

Fermions and Bosons

The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing.

Van Der Waals force

Named after the Dutch scientist Johannes Diderik van der Waals – who first proposed it in 1873 to explain the behaviour of gases – it is a very weak force that only becomes relevant when atoms and molecules are very close together. Fluctuations in the electronic cloud of an atom mean that it will have an instantaneous dipole moment. This can induce a dipole moment in a nearby atom, the result being an attractive dipole–dipole interaction.

Electromagnetic inertia and mass

Electromagnetic Induction

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass

The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

The frequency dependence of mass

Since E = hv and $E = mc^2$, $m = hv /c^2$ that is the m depends only on the v frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m_o inertial mass is the result of the spin, since this is the only accelerating motion of the electric charge. Since the accelerating motion has different frequency for the electron in the atom and the proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, giving equal intensity of radiation.

Electron – Proton mass rate

The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force. [2]

There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Gravity from the point of view of quantum physics

The Gravitational force

The gravitational attractive force is basically a magnetic force.

The same electric charges can attract one another by the magnetic force if they are moving parallel in the same direction. Since the electrically neutral matter is composed of negative and positive charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual mass for gravity.

The mass as seen before a result of the diffraction, for example the proton – electron mass rate Mp=1840 Me. In order to move one of these diffraction maximum (electron or proton) we need to intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction maximum, means its intensity or mass.

The Big Bang caused acceleration created radial currents of the matter, and since the matter is composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces!?

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

The Higgs boson

By March 2013, the particle had been proven to behave, interact and decay in many of the expected ways predicted by the Standard Model, and was also tentatively confirmed to have + parity and zero spin, two fundamental criteria of a Higgs boson, making it also the first known scalar particle to be discovered in nature, although a number of other properties were not fully proven and some partial results do not yet precisely match those expected; in some cases data is also still awaited or being analyzed.

Since the Higgs boson is necessary to the W and Z bosons, the dipole change of the Weak interaction and the change in the magnetic effect caused gravitation must be conducted. The Wien law is also important to explain the Weak interaction, since it describes the T_{max} change and the diffraction patterns change. [2]

Higgs mechanism and Quantum Gravity

The magnetic induction creates a negative electric field, causing an electromagnetic inertia. Probably it is the mysterious Higgs field giving mass to the charged particles? We can think about the photon as an electron-positron pair, they have mass. The neutral particles are built from negative and positive charges, for example the neutron, decaying to proton and electron. The wave – particle duality makes sure that the particles are oscillating and creating magnetic induction as an inertial mass, explaining also the relativistic mass change. Higher frequency creates stronger magnetic induction, smaller frequency results lesser magnetic induction. It seems to me that the magnetic induction is the secret of the Higgs field.

In particle physics, the Higgs mechanism is a kind of mass generation mechanism, a process that gives mass to elementary particles. According to this theory, particles gain mass by interacting with the Higgs field that permeates all space. More precisely, the Higgs mechanism endows gauge bosons in a gauge theory with mass through absorption of Nambu–Goldstone bosons arising in spontaneous symmetry breaking.

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The spontaneous symmetry breaking of the underlying local symmetry triggers conversion of components of this Higgs field to Goldstone bosons which interact with (at least some of) the other fields in the theory, so as to produce mass terms for (at least some of) the gauge bosons. This mechanism may also leave behind elementary scalar (spin-0) particles, known as Higgs bosons.

In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W[±], and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on July 4, 2012 but stressed that further testing is needed to confirm the Standard Model.

What is the Spin?

So we know already that the new particle has spin zero or spin two and we could tell which one if we could detect the polarizations of the photons produced. Unfortunately this is difficult and neither ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest frame of the centre of mass. A spin zero particles like the Higgs carries no directional information away from the original collision so the distribution will be even in all directions. This test will be possible when a much larger number of events have been observed. In the mean time we can settle for less certain indirect indicators.

The Graviton

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor

(compared to electromagnetism's spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [3]

Conclusions

One of the most important conclusions is that the electric charges are moving in an accelerated way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called spin, since they need at least an intrinsic acceleration to make possible they movement. The bridge between the classical and quantum theory is based on this intrinsic acceleration of the spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the electric charges and the photon makes certain that they are both sides of the same thing. Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the physical interactions.

References

[1] The Magnetic field of the Electric current and the Magnetic induction

http://academia.edu/3833335/The_Magnetic_field_of_the_Electric_current

[2] 3 Dimensional String Theory

http://academia.edu/3834454/3 Dimensional String Theory

[3] Graviton Production By Two Photon and Electron-Photon Processes In Kaluza-Klein Theories With Large Extra Dimensions

http://arxiv.org/abs/hep-ph/9909392

[4] 'Quantum' bounds not so quantum after all

http://phys.org/news/2016-07-quantum-bounds.html