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1 Abstract

Kalman filtering is commonplace in engineering, but less familiar to software developers. It is the
central tool for estimating states of a model, one observation at a time. It runs fast in constant
memory. It is the mainstay of tracking and navigation, but it is equally applicable to econometrics,
recommendations, control: any application where we update models over time.
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By writing a Kalman filter as a functional fold, we can test code in friendly environments and
then deploy identical code with confidence in unfriendly environments. In friendly environments,
data are deterministic, static, and present in memory. In unfriendly, real-world environments, data
are unpredictable, dynamic, and arrive asynchronously.

The flexibility to deploy exactly the code that was tested is especially important for numerical
code like filters. Detecting, diagnosing and correcting numerical issues without repeatable data
sequences is impractical. Once code is hardened, it can be critical to deploy exactly the same code,
to the binary level, in production, because of numerical brittleness. Functional form makes it easy
to test and deploy exactly the same code because it minimizes the coupling between code and
environment.

2 Applications of Kalman Filtering

Kalman filtering estimates states of a linear model from noisy observations. The most common
example is the tracking problem. We need to know the position, attitude, and dynamics of a vehicle
so we can predict its trajectory, but we can only observe radar time-of-flight and angles. We write a
model that goes the other way and predicts radar observations from states, then statistically invert
the model by incrementally accumulating observations. An active variant of tracking is navigation,
where we control the vehicle by moving it from its estimated path to a desired path.

However, Kalman filtering and its many variants are much more broadly applicable, and this
fact is perhaps under-appreciated in the computing mainstream. We can profitably apply such
methods to any problem that fulfills the following criteria:

• we have a model that predicts observations from states

• we accumulate observations and want estimates of the states, that is, we want to invert the
model

• estimation is continual; observations accumulate over time

• estimates must include uncertainty information

• uncertainty of the estimates decreases as observations accumulate

• the number of observations is unlimited

• computer memory cannot grow as observations accumulate

Some applications that come to mind include

Battery charging we have a model that predicts voltage from internal charge state. We observe
voltage and estimate internal charge state to avoid over-charging and over-discharging the
battery.

Tectonic drift and radio interferometry we have a model that predicts celestial positions of radio
sources like quasars and satellites given geospatial positions of radio telescopes. We observe
celestial positions iterferometrically and solve for geospatial positions and velocities of the
telescopes. Over time, we can see tectonic drift of inter-telescope baselines.1

1JPL Geodynamics Program http://www.jpl.nasa.gov/report/1981.pdf
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Recommendations we have a model that predicts customer’s pages views and purchases (conver-
sions) given the customer’s interests. We observe the customer’s page views and conversions
and solve for the customer’s interests. As observations accumulate, recommendations based
on probability of future views and purchases improve.

Capacity planning we have models that predict shipping rate, queue depth and latency, and
package-network bandwidths from warehouse and transportation capacity. We observe
shipping rates, queue depth and latency, and package-network bandwidths and solve for
warehouse and transportation capacities to pinpoint bottlenecks and prioritize capital im-
provements.

Supply and Demand we have models that predict prices from supply and demand. We observe
prices and solve for supply and demand. This can become quite rich as the models may
involve derivatives like futures and options and multiple levels of trading.

Expense Allocations we have models that predict expense reports from accounting categories like
travel and office supplies. We observe actual expense reports and solve for the distribution
across categories.

Geospatial we have models that predict images from terrain, surface (e.g., terrain plus buildings)
and entities (e.g., political boundaries). We observe images and solve for terrain, surface, and
entities.

Tomography we have models that predict spectral irradiance from geometry of reflective and
absorptive surfaces and from states of radiation sources. We observe spectral irradiance and
solve for geometry and source states.

Actuary we have models that predict life expectancy from lifestyle and age. We observe life ex-
pectancy and solve for states of the lifestyle and age model.

Incrementally, all these applications take a state estimate and an observation, and produce a
new state estimate. This structure is exactly that of the the first argument of a functional fold,2 the
accumulator function. We argue in this paper that any Kalman filter or extension or variant with
such a structure can and should be written as a functional fold.

3 Limitations and Extensions

Kalman filtering, per se, applies only when models are linear and noise is Gaussian. Extended
Kalman Filtering (EKF) and Unscented Kalman Filtering (UKF) relieve these restrictions.3 Sigma-
point filtering and particle filtering can handle virtually any model at increased computational
cost. We generally try Kalman filtering first because it is fast and small.

The calibration example below exhibits catastrophic cancellation. Information filtering and
Square-Root Information Filtering (SRIF)4 address this problem.

All examples in this paper have constant states. It is easy to add a linear model for time-
evolving states as in tracking. That is the subject of a separate paper.

2https://en.wikipedia.org/wiki/Fold_%28higher-order_function%29
3Bar-Shalom, Yaakov, et al. Estimation with applications to tracking and navigation. New York: Wiley, 2001.
4http://tinyurl.com/h3jh4kt
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4 Kalman Folding is Easy to Understand

Kalman Filtering is a natural extension of the running average, a routine computation.

4.1 Four Preludes

We write four functional folds, progressing from counting to the Kalman filter.

4.1.1 Prelude #1: Count

If I asked you to count the number of elements in a sequence zs, you might write code like the
following:

zs = {55,89,144};
n = 0;
Do[n += 1, (* run this code ... *)

{z, zs}]; (* where z sequentially takes values from zs *)
Print[n];
~~> 3

Here, we use the Wolfram language.5 All the code in this paper can be implemented in any mod-
ern, mainstream language. Embedded Kalman filters are typically written in C or C++. We pick
Wolfram because it excels at concisely expressing mathematical code. Wolfram’s Do is similar to
Python’s for and C#’s foreach6 and literal sequences like {55,89,144} appear in curly braces.

If I asked you to write the same thing as a functional fold,2 you might write

Fold[
Function[{n, z}, n + 1], (* lambda expression of two arguments *)
0, (* starting accumulation: the sum ’n’ *)
zs] (* input sequence *)

~~> 3

The first argument to Fold is the accumulator function. Here it is a lambda expression, written
Function in Wolfram. It encapsulates the business logic;7 does not depend on the mechanism of
accessing the observations zs; and it has no coupling through free variables to its caller. Reducing
dependencies and coupling is almost always good.

The second argument to Fold is the initial accumulation, zero in the present case.
The third and final argument to Fold is the list of observations. It is easy to implement fold

over lazy streams or over asynchonous observables, and such illustrates the flexibility to move
code amongst wildly different data-delivery environments. That illustration is the subject of a
separate paper.

Fold’s job is to pass the elements of zs to the accumulator function one z at a time and to
ultimately return the final accumulation.

5http://reference.wolfram.com/language/
6http://rosettacode.org/wiki/Loops/Foreach
7https://en.wikipedia.org/wiki/Business_logic
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4.1.2 Prelude #2: Mean

If I asked you to compute the mean (assuming zs is not empty), you might try

Fold[Function[{sum, z}, sum + z], 0, zs] /
Fold[Function[{n, z}, n + 1], 0, zs]
~~> 96

a ratio of two folds. If I pressed you to do it in one Fold and hinted pattern matching, you might
come up with

cume[{n_, sum_}, z_] := {n + 1, sum + z};
{n, sum} = Fold[cume, {0, 0}, zs];
Print[sum/n];
~~> 96

Pattern matching is not available for Wolfram’s anonymous literal functions, so we create a
named accumulator function, cume for short. Like all accumulator functions, it is binary. This
one takes an accumulation {n, sum} and an observation z. The accumulation is, in turn, a pair.
When called, cume expects its first actual argument to be a pair, and instantiates the variables n
and sum to the values in that pair; cume must produce an updated pair of count and sum.

I press you to get rid of the outer assignment and the Print statement, which, unfortunately,
does the critical arithmetic. That arithmetic must be done inside the accumulator function. You
write:

cume[{x_, n_, sum_}, z_] := {(sum + z)/(n + 1), n + 1, sum + z};
Fold[cume, {0, 0, 0}, zs]
~~> {96, 3, 288}

where x is the current estimate of the mean. This is better: all arithmetic done inside cume at the
cost of one more pattern variable in the accumulation and a few extra outputs.

1. An Insight: A Recurrence for the Mean
We simplify the expression above by writing the new estimate x for the mean as a correction
to the old. This gets rid of the running sum. We write this correction as a gain K times a
residual (z−x). We find the gain K by setting x+K× (z−x) equal to (sum+z)/(n+1), noting
that sum equals nx, and solving for K. We get K = 1/(n+ 1). The improved code is

cume[{x_, n_}, z_] :=
With[{K = 1 / (n + 1)},
{x + K * (z - x), n + 1}];

Fold[cume, {0, 0}, zs]
~~> {96, 3}

We prefer this form because

(a) it expresses the new mean entirely in terms of the old, as a recurrence relation8

(b) it is easy to memorize because it is an affine9 update

We see below that a Kalman filter looks almost exactly like this.
8https://en.wikipedia.org/wiki/Recurrence_relation
9https://en.wikipedia.org/wiki/Affine_transformation
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4.1.3 Prelude #3: Variance

I press on: give me the variance computed in constant memory. Variance is the sum of squared
residuals divided by the count less one, Bessel’s correction.10 The variance is also the square of the
standard deviation.

1. School Variance

You’ll soon break up the sum of squared residuals with this “school formula:”

n∑
i=1

(zi − z̄)
2 =

n∑
i=1

z2i − n z̄
2

where z̄ def
=

∑n
i=1 z/n is the mean. You write

cume[{var_, ssq_, x_, n_}, z_] :=
With[{n2 = n + 1},
With[{K = 1/n2},
With[{x2 = x + K (z - x), ssq2 = ssq + z^2},
{(ssq2 - n2 x2^2)/Max[1, n], ssq2, x2, n2}]]];

Fold[cume, {0, 0, 0, 0}, zs]
~~> {2017, 31682, 96, 3}

where Max[1,n] both accounts for Bessel’s correction and prevents divide-by-zero. The ac-
cumulation argument to cume now pattern-matches the variance and three auxiliary values:

var the variance so far
x mean so far
n count so far
ssq sum of squares so far

This form keeps the recurrence for the mean that we found preferable above. Can we find a
recurrence for the variance?

2. Recurrent Variance

A recurrence should express the new variance as the old variance plus a correction depend-
ing only on old values. Start by seeking a recurrence for the sum of squared residuals

Σ
def
=

n∑
i=1

(zi − z̄)
2

This is not hard to find:

Σ← Σ+ Kn(z− z̄)2

remembering that K = 1/(n+ 1). Code this as an accumulator function:
10https://en.wikipedia.org/wiki/Bessel’s_correction
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cume[{var_, x_, n_}, z_] :=
With[{K = 1/(n + 1)},
With[{x2 = x + K (z - x),

ssr2 = (n - 1) var + K n (z - x)^2},
{ssr2/Max[1, n], x2, n + 1}]];

Fold[cume, {0, 0, 0}, zs]
~~> {2017, 96, 3}

As before, a recurrence lets us get rid of an auxiliary variable, this time, the sum of squared
residuals. Getting rid of variables is almost always better.

3. Welford’s Variance, Catastrophic Cancellation, SRIF

We have discovered something equivalent to Welford’s formula.11, 12

Σ← Σ+ (z− z̄n)(z− z̄n+1)

Our recurrence and Welford’s reduce the chances of catastrophic cancellation,13 the chief
numerical torment of variances. Welford’s subtracts before squaring, whereas the School
variance squares before subtracting. It is all too easy to get negative or meaningless variances
by subtracting large floating-point numbers resulting from squares.

The analogue to Welford’s in the world of Kalman filtering is Square-Root Information Fil-
tering (SRIF).4 SRIF is beyond the scope of this paper, but we point out places below where
it might be employed.

4. All Intermediate Results

If we want to see all intermediate results, which include the running variance, mean, and
count, you make one tiny change, calling FoldList instead of Fold:

FoldList[cume, {0, 0, 0}, xs]
~~>
0 0 0
0 55 1
578 72 2
2017 96 3


still in constant memory. FoldList, often called scan in other programming languages, pro-
duces a Sequence of Accumulation, thus has a slightly different type to Fold.

5. Variance of the Mean

As observations accumulate, the estimate of the mean should improve. We know how to in-
crementally compute variance of the observations with respect to the running mean. Can we
compute variance of the running mean with respect to the unknown, abstract, true, constant
mean ℵ?

11http://tinyurl.com/nfz9fyo
12http://rebcabin.github.io/blog/2013/02/04/welfords-better-formula/
13https://en.wikipedia.org/wiki/Catastrophic_cancellation
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In practical applications, outside of testing, we do not know this ground truth ℵ. Remark-
ably, however, we can calculate the variance of the running mean with respect to ℵ assuming
only statistics of the observation noise. Then, in testing, we can check the percentage of resid-
uals that lie within one standard deviation of this truth. If our computations behave well,
about 68% of residuals should be within one theoretical sigma of ground truth. This is a
good test for Kalman filters, extensions, and variants.

Write this variance as the expectation value over the probability distribution of the obser-
vation noise. Consider the (n + 1)-st estimate of the mean, z̄n+1, where z is the current
observation:

z̄n+1 = z̄n + K(z− z̄n)

Its residual with respect to the unknown truth ℵ is

(ℵ− z̄n+1) = (ℵ− z̄n) − K(z− z̄n)

The observation z is the truth ℵ plus a sample ζn of the random noise distribution:

(ℵ− z̄n+1) = (ℵ− z̄n) − K(ℵ+ ζn − z̄n)

= Kn (ℵ− z̄n) − Kζn

because K = 1/(n+ 1). Squaring

(ℵ− z̄n+1)
2 = (Kn (ℵ− z̄n))

2 − 2K2 n (ℵ− z̄n)ζn + (Kζn)
2

Take the expectation value of this square over the distribution of ζ. This distribution must
always have zero mean, so the middle term vanishes. It has constant variance, which we
write as capital zeta, Z. Also write Pn, a traditional notation, for E

[
(ℵ− z̄)2

]
. We get

Pn+1 = K
2(n2Pn + Z)

This recurrence has a closed-form solution for n > 0, that being Pn = Z/n. It follows that

Pn+1 = Pn − K2D

where D def
= Z+ Pn. For n = 0, P1 = K2Z.

This is the preferred mathematical form for the variance of the mean because the correction
is negative, reminding us that this variance decreases as observations accumulate. We see a
similar form below where we develop the Kalman filter. However, because it is a difference
of squares, it is exposed to catastrophic cancellation, just like the School variance.

We also find K = P/D, another preferred form that shows up in the Kalman filter. In fact, we
justify the notation D through this form, because D appears as a denominator.
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4.1.4 Prelude #4: Linear Least Squares

Finally, I press you to find the coefficients of a cubic polynomial from noisy observations using
linear least-squares and a fold (either Fold or FoldList), still in constant memory. If you succeed,
you’ll invent basic Kalman folding.

In more depth, I want you to estimate a column vector of four unknowns:

x =
[
x0 x1 x2 x3

]ᵀ
where the polynomial is the inner product of a row of powers of t

A =
[
1 t t2 t3

]
=
[
t0 t1 t2 t3

]
and x, and the observations are (values of) the polynomial plus noise ζ:

z = Ax = x0t
0 + x1t

1 + x2t
2 + x3t

3 + ζ

The system is linear in the model states x through the observation partials, A. The partials are obvi-
ously nonlinear in t, by design.

An oracle gives you some specific values of t and noisy z, in arbitrary order:
t0 z0
t1 z1
t2 z2
t3 z3
t4 z4

 =


0. −2.28442
1. −4.83168
−1. −10.4601
−2. 1.40488
2. −40.8079


which plot as in figure 1, where the solid line represents the true model only the oracle knows, and
the dots represent the noisy observations the oracle gives you. Your job is to estimate the states x
so that your polynomial gets as close to the oracle’s as the data allow. You must also produce the
running covariance14 matrix P along with the states so that we have a measure of their uncertainty.

You think for a very long time, remembering everything you learned above, and eventually
realize that the following cume will do it:

cume[Zeta_][{x_, P_}, {A_, z_}] :=
Module[{D, K},
D = Zeta + A.P.Transpose[A];
K = P.Transpose[A].Inverse[D];
{x + K.(z - A.x), P - K.D.Transpose[K]}]

where all quantities are matrices and the lower dot is Wolfram’s matrix multiplication. Specifically:

• Z is a 1× 1matrix, the covariance of observation noise

• x is a column 4-vector, the model states

• P is a 4× 4matrix, the theoretical covariance of x

• A is a row 4-vector, the observation partials

14We use the terms covariance for matrices and variance for scalars.

9



Figure 1: Model (solid line) and fake data (dots)

• z is a 1× 1matrix, effectively a scalar

• D is a 1× 1matrix, generalization of the denominator Dwe defined above in Prelude #3

• K is a column 4-vector, the Kalman gain, generalization of the gain K from Prelude #3

1. Dimensional Arguments

Recall Prelude #3, whereD is Z+P. We see it here as Z+APAᵀ. We didn’t see A previously
because our observations z were equal to the states. However, here we need two factors of
A to make the dimensions work out. We mean “dimensions” in two senses:

(a) dimensions of the matrices, as in numbers of rows and columns

(b) physical dimensions of units of measure when z and x denote physical quantities, as in
most applications.

We see another factor of A in K, again required by dimensional analysis.

The requirement of dimensional consistency almost forces this Kalman accumulator func-
tion. Here is the full dimensional breakdown. If the physical and matrix dimensions of x are
[[x]]

def
= (X, n× 1) and of z are [[z]]

def
= (Z, b× 1), then

10



[[Z]] = ( Z2 b× b )
[[A]] = ( Z/X b× n )
[[P]] = ( X2 n× n )
[[APAᵀ]] = ( Z2 b× b )
[[D]] = ( Z2 b× b )
[[PAᵀ]] = ( XZ n× b )
[[K]] = ( X/Z n× b )

In all examples in this paper, the observations z are 1 × 1 matrices, equivalent to scalars, so
b = 1, but the theory and code carry over to multi-dimensional vector observations.

We can see by inspection that the dimensions of the estimate15 x + K · (z − Ax) and the
covariance P− KDKᵀ are minimal and correct. This “correct-by-inspection” formulation is
invaluable for checking mathematics and code.

2. Lambda Lifting Z

This cume lambda lifts16 the observation covariance Z because it’s constant for the lifetime
of the filter. This means that you must call this cume once with a Z to get the accumulator
function. We’ve introduced one extra level of function-ness to avoid either

• coupling cume to an external value of Z that is, closing17 over Z (we insist on pure
functional coupling only)

• passing around a constant Z in every observation packet {A, z}. Below, where we
allow Z to change with each observation, we will put it in the observation packet.

3. Folding the Accumulator Function

The effect of a Fold or FoldList with this cume is to incrementally replace the prior estimate,
x, with x+K · (z−Ax) and to replace the prior covariance, P, with P−KDKᵀ.

Here is this cume in action. Assume an observation-noise covariance of 1. Our initial esti-
mate for x is the column vector

[
0 0 0 0

]ᵀ, meaning we know nothing, and our initial
state covariance is a ‘practical’ infinity of 1, 000 on the diagonal, emphasizing that we know
nothing.

P0 =


1000. 0. 0. 0.
0. 1000. 0. 0.
0. 0. 1000. 0.
0. 0. 0. 1000.

 = 1000.× 14×4

Use Fold rather than FoldList because we want just the final result. Chop removes quantities
within a floating-point quantum of zero.

15We sometimes use the center dot or the × symbols to clarify matrix multiplication. They have no other significance
and we can always write matrix multiplication just by juxtaposing the matrices.

16https://en.wikipedia.org/wiki/Lambda_lifting
17https://en.wikipedia.org/wiki/Closure_(computer_programming)
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Fold[cume[IdentityMatrix[1]],
{ColumnVector[{0, 0, 0, 0}], IdentityMatrix[4]*1000.0},
{{{{1, 0., 0., 0.}}, { -2.28442}},
{{{1, 1., 1., 1.}}, { -4.83168}},
{{{1, -1., 1., -1.}}, {-10.46010}},
{{{1, -2., 4., -8.}}, { 1.40488}},
{{{1, 2., 4., 8.}}, {-40.8079}}}
] // Chop

~~>

x =


−2.97423
7.2624

−4.21051
−4.45378

 (1)

P =


0.485458 0 −0.142778 0

0 0.901908 0 −0.235882
−0.142778 0 0.0714031 0

0 −0.235882 0 0.0693839



Figure 2: Model (dark line), fake data (dots), and estimated model (light line)
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Results are not bad: our oracle reveals that ground-truth is
[
−3 9 −4 −5

]ᵀ; compare this
to equation 1. Figure 2 plots the solution.

To find out quantitatively how bad or how good, inspect P. Its diagonal elements are the
squares of the standard deviations of the estimated states. Those standard deviations are:

[
0.6967 0.9497 0.2672 0.2634

]ᵀ
All our estimates are within two standard deviations of ground truth, so we would expect
worse performance in only 5 percent of cases.

4.2 Kalman is a Swiss-Army Knife

This is remarkable. An accumulator function, small enough to fit on a business card, suffices
to estimate states of any linear model in constant memory. It does not need data to get started,
just a-priori guesses, even vacuous ones. Its code fits on tiny embedded systems. It empowers
radar, navigation, tracking, the entire space age, industrial robotics, battery-charge estimation,
radio interferometry, econometrics. It can be extended to non-static and nonlinear models, to
non-scalar observations, and to non-Gaussian noise sources. It’s the sweet spot in a spectrum of
statistical estimators that progress from counting to Markov-chain Monte Carlo (MCMC) filters.18

4.3 More Intuition

In ex-post-facto justification for choosing the Wolfram language, it allows the code above to look
very similar to the mathematical specification:

cume (Z) ({x,P} , {A, z}) = {x+K (z−Ax) ,P−KDKᵀ} (2)

where

K = PAᵀ D−1 (3)
D = Z+APAᵀ (4)

A good way to intuit this solution is to think of K as the derivative dx/dz. We’ve already seen
that the physical dimensions of K are the required X/Z. Then, the update resembles

x← x+
dx
dz

(z−Ax)

which looks like a differential update to the estimate x, where the differential of z is the residual
difference between an actual observation z and a prediction of z from the current model partials
matrix A times the prior estimate x.

The gain dx/dz has the form, in a slight abuse of notation:

K =
PAᵀ

Z+APAᵀ

18https://en.wikipedia.org/wiki/Particle_filter
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An elegant but non-trivial derivation of this appears in a separate paper in this series.19 Just
remember that the denominator matrix, D, is Z plus a correction. Likewise, I do not know an easy
demonstration that the new P is the old P minus KDKᵀ. In this case, just remember the minus
sign. Intuitively, it’s plausible that the new P should be ‘less than’ the old P because the new
observations add information and decrease uncertainty. That plausibility motivates the minus
sign in the formula.

5 Functional Form Encapsulates Code

We stated above that we can run exactly the same Kalman code over lazy streams and over asyn-
chronous observables. This is possible because the only coupling between the environment and
the Kalman code is function invocation.

Why is this important? Because developers can test in friendly environments — where obser-
vations are deterministic, pseudo-random, static, present in memory all at once, and where code
can be stopped in a debugger. Once the code is hardened, developers can then deploy it with con-
fidence in unfriendly, real-world environments — where data are unpredictable, asynchronous,
real-time, infinite in length, and logging is the only forensic tool.

This advantage can be critically important when detecting, diagnosing, and correcting numer-
ical issues like catastrophic cancellation, as we see in the calibration example below. Numerical
issues can substantially complicate code, and being able to move exactly the same code, without
even recompiling, between testing and deployment can make the difference to a successful ap-
plication. We have seen many cases where differences in compiler flags, let alone differences in
architectures, even between different versions of the same CPU family, introduce enough differ-
ences in the generated code to cause qualitative differences in the output. A filter that behaved
well in the lab can fail in practice. In embedded applications like tracking and navigation, fil-
ter failure can cause vehicles to crash. It must be caught in testing and it must not be allowed to
happen in deployment.

6 An Instrument-Calibration Example

Imagine an accelerometer that comes from the factory with unknown bias, scale, and drift errors.
The user’s manual instructs us to calibrate the instrument before fielding. That means estimating
these errors so that we can subtract their effects in post-processing.

In this example, we allow the observation covariance Z to vary with independent variable, so
we don’t lambda-lift Z, but pass it into the filter each step along with A and z.

6.1 Functional Form, Again

Because the values of these errors are small, their variances, by squaring, are even smaller, and
we invite catastrophic cancellation into the filter, on purpose. We verified numerically that in all
examples above, three, mathematically equivalent expressions for the covariance, namely

19Beckman, Kalman Folding 3: Derivations, to appear.
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P← LP

P← LPLᵀ +KZKᵀ

P← P−KDKᵀ

where L = 1 − KA, produce results identical to six significant figures.20 This means high confi-
dence that numerical issues are not important in these examples.

However, in the present example, all three expressions produce different results: two converge
with different numerical details, and one fails. The first two occasionally produce negative covari-
ances, and the third produces mostly negative covariances, exhibiting catastrophic cancellation.

Once a covariance produces bad values, the estimates soon follow because the covariance feeds
back through D = Z + APAᵀ and then into K = PAᵀ/D. Once K destabilizes, the estimates
x← x+K(z−Ax) quickly become nonsense.

This example was adapted from Zarchan and Musoff.21 We verified numerically that one of our
examples matches their results, including negative variances, to six significant figures. Presumably
because their code eventually converged, they didn’t discuss catastrophic cancellation, but we
focus on it here.

6.2 Details of the Example

The documented calibration procedure is to hold the accelerometer vertically at a sequence of an-
gles from 0 degrees to 180 degrees in 2-degree increments, allowing Earth’s gravitation to provide
a fiducial acceleration. Measure the output of the accelerometer and compare it to a theoretical
model that depends on the bias, scale, and drift errors. The model is linear, so the procedure is a
perfect prescription for a Kalman filter.

Let the angle of the accelerometer with respect to the vertical be θ. The accelerometer docu-
mentation dictates that the output should read

a = g cos(θ) + z (5)

z = b+ s g cos(θ) + dg2 cos2(θ) (6)

where we observe z and

g = acceleration of Earth’s gravitation ∼ 32.2 foot/sec2

b = bias foot/sec2

s = scale dimensionless
d = drift sec2/foot

Our vector of states is x =
[
b s d

]ᵀ and our partials are A(θ) =
[
1 gcθ g2c2θ

]
where cθ = cos(θ).

Our measurement rig delivers noisy angles, not noisy values of cos(θ), so we must translate
angle noise ζθ, of constant variance σ2θ, into cθ noise ζcθ with a variable variance σcθ , and then
into observation noise ζz with variance Z(θ). We find

20Derivations of these forms appear in part 3 of this series.
21Zarchan and Musoff, Fundamentals of Kalman Filtering, A Practical Approach, Fourth Edition, Ch. 4
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Z(θ) = (σθ g sin(θ))2 (7)

Posit a ground truth for x of

ℵ =

10× 10−6 g5× 10−6
1× 10−6/g

 (8)

and generate deterministic pseudo-randomly noisy observations as follows:

A(θ) ·ℵ+ g (cos(θ+ ζθ) − cos(θ)) (9)

6.3 Results

Figure 3: Accelerometer calibration results, P← LP

We test three mathematically identical Kalman accumulator functions, differing only in their
formula for P. The first, illustrated in figure 3, reproduces Zarchan and Musoff to six significant
figures, including occasional negative variances. This produces acceptable results, near ground
truth. Zarchan and Musoff’s code for the filter is fully enmeshed with their code for constructing
and delivering observations, so there is no hope of extracting it without change into a deployment
environment. Not so our code, which we can harden and move verbatim, according to the main
message of this paper.

kalman[{x_, P_}, {Zeta_, A_, z_}] :=
Module[{D, K, L},
D = Zeta + A.P.Transpose[A];
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K = P.Transpose[A].inv[D];
L = (id[len[P]] - K.A);
{x + K.(z - A.x), L.P}];

(* also L.P.Transpose[L] + K.Zeta.Transpoe[K] *)
(* or P - K.D.Transpose[K] *)

Figure 4: Accelerometer calibration results, P← LPLᵀ +KZKᵀ

The second filter produces similar and acceptable results but with totally different numerical
values even with exactly the same pseudo-random fakes. This is illustrated in figure 4. Tracking
down the sources of these numerical differences would require a deep numerical study, but might
be necessary in a safety-critical or mission-critical application.

We would be advised to move to the SRIF family of filters after seeing this much variability,
but even more so after the third filter, our original Kalman fold, fails, as illustrated in figure 5. Re-
markably, despite meaningless covariances, the estimates are still reasonable compared to ground
truth, but they certainly cannot be trusted.

6.4 Robustness

It is a general feature of Kalman filters that they are difficult to break in practice. We can bend the
rules, feeding them non-Gaussian noise with very large variances, and they will often converge
despite the abuse. In fact, routine practice is to patch diverging filters with artificial process noise.
However, this example illustrates that hazards exist and should be carefully analyzed. This is
all the more reason to favor a functional form that enables easy movement between testing and
deployment.
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Figure 5: Accelerometer calibration failure, P← P−KDKᵀ

7 Concluding Remarks

The basic Kalman filter statistically inverts the basic model

z = Ax

yielding a sequence of estimates of x, which may additionally evolve over time according to a
linear state-transition model.

The flashes of insight required to invent the Kalman filter were really flashes of genius. There
was a lot of prior work, mostly coming from radar and the tracking community, on incremental
optimal estimation. But Kalman saw what others did not see: that new observations could be sim-
ply scaled by covariances and added to old. These insights enabled whole disciplines of guidance
and control that propelled the space age and all the rest of aerospace since Kalman had them in
1960 because we can perform state estimation fast, incrementally and in constant memory just as with
other, lesser statistics like count, mean, and standard deviation.

Writing the code for a Kalman filter as a foldable accumulator function gives us

• economy of expression, reducing otherwise complex and tricky code to a few, modularized
and decoupled lines

• flexibility of testing and deployment, allowing exactly the same code, even and especially
binary, to run over arrays in memory, lazy streams, asynchronous observables, any data
source that can support a fold operator

• flexibility of application, reducing the inputs to a handful of matrices

We hope that by illuminating this flexibility we can expand the use of the Kalman filter into
other application areas. We also hope to inspire the study and application of more advanced filters
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like the Extended and Unscented Kalman filters, Information filters and Square-Root Information
filters, Sigma-Point filters, and Particle filters.
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