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Geometric-Algebra Formulas

for Plane (2D) Geometry

The Geometric Product, and Relations Derived from It

For any two vectors a and b,

a · b = b · a
b ∧ a = −a ∧ b

ab = a · b + a ∧ b

ba = b · a + b ∧ a = a · b− a ∧ b

ab + ba = 2a · b
ab− ba = 2a ∧ b

ab = 2a · b + ba

ab = 2a ∧ b− ba

Definitions of Inner and Outer Products (Macdonald A. 2010 p. 101.)

The inner product

The inner product of a j -vector A and a k -vector B is

A ·B = 〈AB〉k−j . Note that if j>k, then the inner product doesn’t exist.

However, in such a case B ·A = 〈BA〉j−k does exist.

The outer product

The outer product of a j -vector A and a k -vector B is

A ∧B = 〈AB〉k+j .

Relations Involving the Outer Product and the Unit Bivector, i.

For any two vectors a and b,

ia = −ai
a ∧ b = [(ai) · b] i = − [a · (bi)] i = −b ∧ a

Equality of Multivectors

For any two multivectors M and N ,

M = N if and only if for all k, 〈M〉k = 〈N〉k.

Formulas Derived from Projections of Vectors

and Equality of Multivectors

Any two vectors a and b can be written in the form of “Fourier expansions”

with respect to a third vector, v:

a = (a · v̂) v̂ + [a · (v̂i)] v̂i and b = (b · v̂) v̂ + [b · (v̂i)] v̂i.
Using these expansions,

ab = {(a · v̂) v̂ + [a · (v̂i)] v̂i} {(b · v̂) v̂ + [b · (v̂i)] v̂i}

Equating the scalar parts of both sides of that equation,
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a · b = [a · v̂] [b · v̂] + [a · (v̂i)] [b · (v̂i)], and

a ∧ b = {[a · v̂] [b · (v̂i)]− [a · (v̂i)] [b · (v̂i)]} i.

Also, a2 = [a · v̂]
2

+ [a · (v̂i)]2, and b2 = [b · v̂]
2

+ [b · (v̂i)]2.

Reflections of Vectors, Geometric Products, and Rotation operators

For any vector a, the product v̂av̂ is the reflection of a with respect to the

direction v̂.

For any two vectors a and b, v̂abv̂ = ba, and vabv = v2ba.

Therefore, v̂eθiv̂ = e−θi, and veθiv = v2e−θi.
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1 Introduction

{Author’s note, 28 March 2016:

This document has been prepared for two very different audiences: for my fellow

students of GA, and for experts who are preparing materials for us, and need

to know which GA concepts we understand and apply readily, and which ones

we do not.

I confess that I had a terrible time finding the solution presented here!

However, I’m happy to have had the opportunity to apply GA to this famous

problem. Alternative solutions, obtained by using GA’s capabilities for handling

reflections, are in preparation.

Readers are encouraged to study the following documents, GeoGebra work-

sheets, and videos before beginning:

“Rotations of Vectors via Geometric Algebra: Explanation, and Usage in

Solving Classic Geometric “Construction” Problems”

https://drive.google.com/file/d/0B2C4TqxB32RRdE5KejhQTzMtN3M/view?usp=sharing

“Answering Two Common Objections to Geometric Algebra”

As GeoGebra worksheet

As YouTube video.

“Geometric Algebra: Find unknown vector from two dot products”

As GeoGebra worksheet

As YouTube video

For an more-complete treatment of rotations in plane geometry, be sure to

read Hestenes D. 1999, pp. 78-92. His section on circles (pp. 87-89) is especially

relevant to the present document. Macdonald A. 2010 is invaluable in many

respects, and González Calvet R. 2001, Treatise of Plane Geometry through

Geometric Algebra is a must-read.

The author may be contacted at QueLaMateNoTeMate.webs.com.
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2 The Problem of Apollonius, and Its CLP Spe-

cial Case

The famous “Problem of Apollonius”, in plane geometry, is to construct all of

circles that are tangent, simultaneously, to three given circles. In one variant

of that problem, one of the circles has infinite radius (i.e., it’s a line). The

Wikipedia article that’s current as of this writing has an extensive description

of the problem’s history, and of methods that have been used to solve it. As

described in that article, one of the methods reduces the “two circles and a line”

variant to the so-called “Circle-Line-Point” (CLP) special case:

Given a circle C, a line L, and a point P, construct the circles that are

tangent to C and L, and pass through P.

2.1 Observations, and Potentially Useful Elements of the

Problem

From the figure presented in the statement of the problem, we can see that

there are two types of solutions. That is, two types of circles that satisfy the

stated conditions:

• Circles that enclose C;

• Circles that do not enclose C.

We’ll begin by discussing circles that do not enclose C. Most of our obser-

vations about that type will also apply, with little modification, to circles that

do enclose C.

Based upon our experience in solving other “construction problems in-

volving tangency, a reasonable choice of elements for capturing the geometric
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content of the problem is as shown below:

• Use the center point of the given circle as the origin;

• Capture the perpendicular distance from c1’s center to the given line in

the vector h;

• Express the direction of the given line as ±ĥi.

• Label the solution circle’s radius and its points of tangency with C and L
as shown below:

In deriving our solution, we’ll

use the same symbol —for

example, t —to denote both a

point and the vector to that

point from the origin. We’ll rely

upon context to tell the reader

whether the symbol is being

used to refer to the point, or to

the vector.

Now, we’ll express key features of the problem in terms of the elements that

we’ve chosen. First, we know that we can write the vector s as s = h + λĥi,

where λ is some scalar. We also know that the points of tangency t and s are

equidistant (by r2) from the center point of the solution circle. Combining those

observations, we can equate two expressions for the vector s:

s = (r1 + r2) t̂ + r2ĥ = h + λĥi. (1)
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Examining that equation, we observe that we can obtain an expression for

r2 in terms of known quantities by “dotting” both sides with ĥ:[
(r1 + r2) t̂ + r2ĥ

]
· ĥ =

[
h + λĥi

]
· ĥ

(r1 + r2) t̂ · ĥ + r2ĥ · ĥ = h · ĥ + λ
(
ĥi
)
· ĥ

(r1 + r2) t̂ · ĥ + r2 = |h|+ 0;

∴ r2 =
|h| − r1t̂ · ĥ

1 + t̂ · ĥ
. (2)

The denominator of the expression on the right-hand side might catch our

attention now because one of our two expressions for the vector s, namely

s = (r1 + r2) t̂ + r2ĥ

can be rewritten as

s = r1t̂ + r2

(
t̂ + ĥ

)
.

That fact becomes useful (at least potentially) when we recognize that
(
t̂ + ĥ

)2
=

2
(

1 + t̂ · ĥ
)

. Therefore, if we wish, we can rewrite Eq. (10) as

r2 = 2

 |h| − r1t̂ · ĥ(
t̂ + ĥ

)2
 .

Those results indicate that we should be alert to opportunities to simplify

expressions via appropriate substitutions invoving t̂ + ĥ and 1 + ĥ · t̂

As a final observation, we note that when a circle is tangent to other objects,

there will be many angles that are equal to each other. For example, the angles

whose measures are given as θ in the following diagram:

We’ve seen in Smith J A 2016 that GA expressions for rotations involving

angles like the two θ’s often capture geometric content in convenient ways.
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2.2 Identifying the Solution Circles that Don’t Enclose C

Many of the ideas that we’ll employ here will also be used when we treat solution

circles that do enclose C.

2.2.1 Formulating a Strategy

Now, let’s combine our observations about the problem in a way that might

lead us to a solution. Our previous experiences in solving problems via vector

rotations suggest that we should equate two expressions for the rotation eθi:[
t− p

|t− p|

] [
s− p

|s− p|

]
=

[
t− s

|t− s|

] [
−ĥi

]
=

[
s− t

|s− t|

] [
ĥi
]
. (3)

We’ve seen elsewhere that we will probably want to transform that equation

into one in which some product of vectors involving our unknowns t and s is

equal either to a pure scalar, or a pure bivector. By doing so, we may find some

way of identifying either t or s.

We’ll keep in mind that although Eq. (3) has two unknowns (the vectors

t and s), our expression for r2 (Eq. (10)) enables us to write the vector s in

terms of the vector t̂.

Therefore, our strategy is to

• Equate two expressions, in terms of the unknown vectors t and s, for the

rotation eθi;

• Transform that equation into one in which on side is either a pure scalar

or a pure bivector;

• Watch for opportunities to simplify equations by substituting for r2; and

• Solve for our unknowns.

2.2.2 Transforming and Solving the Equations that Resulted from

Our Observations and Strategizing

For convenience, we’ll present our earlier figure again:
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By examining that figure, we identified and equated two expressions for

the rotation eθi, thereby obtaining Eq. (3):[
t− p

|t− p|

] [
s− p

|s− p|

]
=

[
s− t

|s− t|

] [
ĥi
]
.

We noted that we might wish at some point to make the substitution

s = [r1 + r2] t̂ + r2ĥ

=

[
r1 +

|h| − r1t̂ · ĥ
1 + t̂ · ĥ

]
t̂ +

[
|h| − r1t̂ · ĥ

1 + t̂ · ĥ

]
ĥ. (4)

We also noted that we’ll want to transform Eq. (3) into one in which one

side is either a pure scalar or a pure bivector. We should probably do that

transformation before making the substitution for s. One way to effect the

transformation is by left-multiplying both sides of Eq. (3) by s− t, then by ĥ,

and then rearranging the result to obtain

ĥ [s− t] [t− p] [s− p] = |s− t| |t− p| |s− p| i (5)

This is the equation that we sought to obtain, so that we could now write

〈ĥ [s− t] [t− p] [s− p]〉0 = 0. (6)

Next, we need to expand the products on the left-hand side, but we’ll want

to examine the benefits of making a substitution for s first. We still won’t, as

yet, write s in terms of t̂. In hopes of keeping our equations simple enough

for us to identify useful simplifications easily at this early stage, we’ll make the

substitution

s = (r1 + r2) t̂ + r2ĥ,

rather than making the additional substitution (Eq. (10)) for r2. Now, we can

see that s− t = r2

(
t̂ + ĥ

)
. Using this result, and t = r1t̂, Eq. (6) becomes

〈ĥ
[
r2

(
t̂ + ĥ

)] [
r1t̂− p

] [
(r1 + r2) t̂ + r2ĥ− p

]
〉0 = 0.
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Now here is where I caused myself a great deal of unnecessary work in

previous versions of the solution by plunging in and expanding the product

that’s inside the 〈〉0 without examining it carefully. Look carefully at the last

factor in that product. Do you see that we can rearrange it to give the following?

〈ĥ
[
r2

(
t̂ + ĥ

)] [
r1t̂− p

] [
r2

(
t̂ + ĥ

)
+ r1t̂− p

]
︸ ︷︷ ︸
After rearrangement

〉0 = 0.

That result is interesting, but is it truly useful to us? To answer that question,

let’s consider different ways in which we might expand the product, then find

its scalar part.

If we effect the multiplications in order, from left to right, we’re likely to

end up with a confusing mess. However, what if we multiply the last three

factors together? Those three factors, together, compose a product of the form

ab [a + b]: [
r2

(
t̂ + ĥ

)]
︸ ︷︷ ︸

a

[
r1t̂− p

]︸ ︷︷ ︸
b

r2 (t̂ + ĥ
)

︸ ︷︷ ︸
a

+ r1t̂− p︸ ︷︷ ︸
b

 .
The expansion of ab [a + b] is

ab [a + b] = aba + b2a

= 2 (a · b)a− a2b + b2a (among other possibilites).

That expansion evaluates to a vector, of course. Having obtained the cor-

responding expansion of the product
[
r2

(
t̂ + ĥ

)] [
r1t̂− p

] [
r2

(
t̂ + ĥ

)
+ r1t̂− p

]
, we’d

then “dot” the result with ĥ to obtain 〈ĥ
[
r2

(
t̂ + ĥ

)] [
r1t̂− p

] [
r2

(
t̂ + ĥ

)
+ r1t̂− p

]
〉0.

We know, from the solutions to Problem 6 in Smith J A 2016 , that such a ma-

neuver can work out quite favorably. So, let’s try it.

Expanding
[
r2

(
t̂ + ĥ

)] [
r1t̂− p

] [
r2

(
t̂ + ĥ

)
+ r1t̂− p

]
according to the identity

ab [a + b] = 2 (a · b)a− a2b + b2a, we obtain, initially,

2
{
r2

2
(
t̂ + ĥ

)
·
[
r1t̂− p

]}(
t̂ + ĥ

)
− r22

(
t̂ + ĥ

)2 [
r1t̂− p

]
+ r2

[
r1t̂− p

]2 (
t̂ + ĥ

)
When we’ve completed our expansion and dotted it with ĥ, we’ll set the result

to zero, so let’s divide out the common factor r2 now:

2
{
r2

(
t̂ + ĥ

)
·
[
r1t̂− p

]}(
t̂ + ĥ

)
− r2

(
t̂ + ĥ

)2 [
r1t̂− p

]
+
[
r1t̂− p

]2 (
t̂ + ĥ

)

Recalling that
(
t̂ + ĥ

)2
= 2

(
1 + ĥ · t̂

)
, the preceding becomes

2
{
r2

(
t̂ + ĥ

)
·
[
r1t̂− p

]}(
t̂ + ĥ

)
− 2r2

(
1 + ĥ · t̂

) [
r1t̂− p

]
+
[
r1t̂− p

]2 (
t̂ + ĥ

)
.

This is the form that we’ll dot with ĥ. Having done so, the factor t̂+ ĥ becomes

1 + ĥ · t̂. Then, as planned, we set the resulting expression equal to zero:

2
{
r2

(
t̂ + ĥ

)
·
[
r1t̂− p

]}(
1 + ĥ · t̂

)
− 2r2

(
1 + ĥ · t̂

) [
r1ĥ · t̂− ĥ · p

]
+
[
r1t̂− p

]2 (
1 + ĥ · t̂

)
= 0.
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Next, we’ll rearrange that equation to take advantage of the relation r2 =
|h| − r1ĥ · t̂

1 + ĥ · t̂
(see Eq. (10)). We’ll show the steps in some detail:

2
{
r2

(
t̂ + ĥ

)
·
[
r1t̂− p

]}(
1 + ĥ · t̂

)
− 2r2

(
1 + ĥ · t̂

) [
r1ĥ · t̂− ĥ · p

]
+
[
r1t̂− p

]2 (
1 + ĥ · t̂

)
= 0.

2r2

(
1 + ĥ · t̂

){(
t̂ + ĥ

)
·
[
r1t̂− p

]
− r1ĥ · t̂ + ĥ · p

}
+
[
r1t̂− p

]2 (
1 + ĥ · t̂

)
= 0

2

[
|h| − r1ĥ · t̂

1 + ĥ · t̂

](
1 + ĥ · t̂

){(
t̂ + ĥ

)
·
[
r1t̂− p

]
− r1ĥ · t̂ + ĥ · p

}
+
[
r1t̂− p

]2 (
1 + ĥ · t̂

)
= 0

2
[
|h| − r1ĥ · t̂

]{(
t̂ + ĥ

)
·
[
r1t̂− p

]
− r1ĥ · t̂ + ĥ · p

}
+
[
r1t̂− p

]2 (
1 + ĥ · t̂

)
= 0

2
[
|h| − r1ĥ · t̂

]{
r1 − p · t̂ + r1ĥ · t̂− ĥ · p− r1ĥ · t̂ + ĥ · p

}
+
[
r1t̂− p

]2 (
1 + ĥ · t̂

)
= 0

2
[
|h| − r1ĥ · t̂

] {
r1 − p · t̂

}
+
[
r1t̂− p

]2 (
1 + ĥ · t̂

)
= 0.

Now that the dust has settled from the r2 substitution, we’ll expand
[
r1t̂− p

]2
,

then simplify further:

2
[
|h| − r1ĥ · t̂

] {
r1 − p · t̂

}
+
[
r1

2 − 2r1p · t̂ + p2
] (

1 + ĥ · t̂
)

= 0[
−2r1

2 + 2r1p · t̂ + r1
2 − 2r1t̂ · p + p2

]
ĥ · t̂− 2 |h|p · t̂ + 2 |h| r1 + r1

2 − 2r1p · t̂ + p2 = 0(
p2 − r12

)
ĥ · t̂− 2 (r1 + |h|)p · t̂ + r1

2 + p2 + 2 |h| r1 = 0.

We saw equations like this last one many times in Smith J A 2016. There,

we learned to solve those equations by grouping the dot products that involve

t into a dot product of t with a linear combination of known vectors:[
2 (r1 + |h|)p−

(
p2 − r12

)
ĥ
]

︸ ︷︷ ︸
A linear combination of ĥ and p

·̂t = 2 |h| r1 + r1
2 + p2. (7)

The geometric interpretation of Eq. (7) is that 2 |h| r1 +r1
2 +p2 is the pro-

jection of the vector 2 (r1 + |h|)p−
(
p2 − r12

)
ĥ upon t̂. Because we want to find

t, and know 2 (r1 + |h|)p−
(
p2 − r12

)
ĥ, we’ll transform Eq. (7) into a version

that tells us the projection of the vector t upon 2 (r1 + |h|)p−
(
p2 − r12

)
ĥ.

First, just for convenience, we’ll multiply both sides of Eq. (7) by r1 |h|:[
2
(
r1 |h|+ h2

)
p−

(
p2 − r12

)
h
]
· t = 2h2r1

2 + r1 |h|
(
r1

2 + p2
)
.

Next, we’ll use the symbol “w” for the vector
[
2
(
r1 |h|+ h2

)
p−

(
p2 − r12

)
h
]
,

and write

w · t = 2h2r1
2 + r1 |h|

(
r1

2 + p2
)
.

Finally, because Pw (t), the projection of the vector t upon w is (t · ŵ) ŵ,

we have

Pw (t) =

[
2h2r1

2 + r1 |h|
(
r1

2 + p2
)

|w|

]
ŵ. (8)
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As we learned in Smith J A 2016, Eq. (8) tells us that Eq (7) has two

solutions. That is, there are two circles that are tangent to L and pass through

the point P, and are also tangent to C without enclosing it:

Having identified Pw (t), the points of tangency with C and L can be

determined using methods shown in Smith J A 2016, as can the equations for

the corresponding solution circles.

To round off our treatment of solution circles that don’t enclose C, we

should note that we derived our solution starting from equations that express

the relationship between C, L, P, and the smaller of the two solution circles.

You may have noticed that the larger solution circle does not bear quite the

same relationship to L, P, and C as the smaller one. To understand in what

way those relationships differ, let’s examine the following figure.
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By equating two expressions for the rotation eψi, we’d find that[
s− p

|s− p|

] [
t− p

|t− p|

]
=
[
ĥi
] [ t− s

|t− s|

]
.

Compare that result to the corresponding equation for the smaller of the solution

circles: [
t− p

|t− p|

] [
s− p

|s− p|

]
=

[
s− t

|s− t|

] [
ĥi
]
.

We followed up on that equation by transforming it into one in which ĥ was at

one end of the product on the left-hand side. The result was Eq. (5):

ĥ [s− t] [t− p] [s− p] = |s− t| |t− p| |s− p| i.

We saw the advantages of that arrangement when we proceeded to solve for t.

All we had to do in order to procure that arrangement was to left-multiply both

sides of the equation [
t− p

|t− p|

] [
s− p

|s− p|

]
=

[
s− t

|s− t|

] [
ĥi
]

by s− t, and then by ĥ.

To procure a similar arrangement starting from the equation that we wrote

for the larger circle, using the angle ψ ,[
s− p

|s− p|

] [
t− p

|t− p|

]
=
[
ĥi
] [ t− s

|t− s|

]
,

we could left-multiply both sides of the equation by ĥ, then right-multiply by

s− t, giving

ĥ [s− p] [t− p] [t− s] = |s− p| |t− p| |t− s| i.

Using the same ideas and transformations as for the smaller circle, we’d then

transform the product [s− p] [t− p] [t− s] into[
r2

(
t̂ + ĥ

)
+ r1t̂− p

] [
r1t̂− p

] [
r2

(
t̂ + ĥ

)]
.

By comparison, the product that we obtained for the smaller circle was[
r2

(
t̂ + ĥ

)] [
r1t̂− p

] [
r2

(
t̂ + ĥ

)
+ r1t̂− p

]
.

In both cases, the products that result from the expansion have the forms(
t̂ + ĥ

) (
r1t̂− p

) (
t̂ + ĥ

)
and

(
r1t̂− p

)2 (
t̂ + ĥ

)
, so the same simplifications

work in both, and give the same results when the result is finally dotted with

ĥ and set to zero.

The above having been said, let’s look at another way of obtaining an equa-

tion, for the larger circle, that has the same form as Eq. (5). For convenience,

we’ll present the figure for the larger circle again:
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Instead of beginning by equating two expressions for the rotation eψi, we’ll

equate two expressions for e−ψi:[
t− p

|t− p|

] [
s− p

|s− p|

]
=

[
t− s

|t− s|

] [
ĥi
]
.

After left-multiplying both sides by t−s, then by ĥ, and rearranging, the result

would be identical to Eq. (5), except for the algebraic sign of the right-had side,

which —because it’s a bivector—would drop out when we took the scalar part

of both sides.

However, the difference in the sign of that bivector captures the geometric

nature of the difference between the relationships of the large and small circles

to L, P, and C. That difference in sign is also reflected in the positions, with

respect to the vector w, of the solution circles’ points of tangency t:
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2.3 Identifying the Solution Circles that Enclose C

These solution circles can be found by modifying, slightly, the ideas that we

used for finding solution circles that don’t enclose C. Here, too, we’ll want to

express the radius r3 of the solution circle in terms of the vector t. Examining

the next figure,

we see that s = (r1 − r3) t̂+ r3ĥ, and also that s = h+λĥi. By equating those

two expressions, dotting both sides with ĥ, and then solving for r3, we find that

r3 =
|h| − r1t̂ · ĥ

1− t̂ · ĥ
.

As was the case when we found solution circles that didn’t enclose C, we’ll

want to equate expressions for two rotations that involve the unknown points

of tangency t and s. For example, through the angles labeled φ, below:

[
t− p

|t− p|

] [
s− p

|s− p|

]
=

[
t− s

|t− s|

] [
−ĥi

]
=

[
s− t

|s− t|

] [
ĥi
]
,
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Left-multiplying that result by s− t, and then by ĥ,

ĥ [s− t] [t− p] [s− p] = |s− t| |t− p| |s− p| i

∴ 〈ĥ [s− t] [t− p] [s− p]〉0 = 0,

which is identical to Eq. (6). To solve for t, we use exactly the same technique

that we did when we identified the solution circles that don’t surround C, with

r3 and 1− ĥ · t̂ taking the place of r2 and 1− ĥ · t̂, respectively. The result is

z · t = 2h2r1
2 − r1 |h|

(
r1

2 + p2
)
,

where z =
[
2
(
h2 − r1 |h|

)
p−

(
p2 − r12

)
h
]
. Thus,

P z (t) =

[
2h2r1

2 − r1 |h|
(
r1

2 + p2
)

|z|

]
ẑ. (9)

Again, there are two solution circles of this type:

2.4 The Complete Solution, and Comments

There are four solution circles: two that enclose C, and two that don’t:
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I confess that I don’t entirely care for the solution presented in this document.

The need to identify r2, in order to eliminate it later, makes me suspect that I

did not make good use of GA’s capabilities. A solution that uses reflections in

addition to rotations is in preparation, and is arguably more efficient.
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4 APPENDIX: Improved Solutions

We’ll show two ways of solving the problem; the second takes advantage of

observations made during the first.

As noted in the main text, the CLP limiting case reads,

Given a circle C, a line L, and a point P, construct the circles that

are tangent to C and L, and pass through P.

Figure 1: The CLP Limiting Case of the Problem of Apollonius: Given a circle

C, a line L, and a point P, construct the circles that are tangent to C and L,
and pass through P.

The problem has two types of solutions:

• Circles that enclose C;

• Circles that do not enclose C.

19

https://drive.google.com/file/d/0B2C4TqxB32RRdE5KejhQTzMtN3M/view?usp=sharing


There are two solution circles of each type. In this document, we’ll treat

only those that do not enclose the given circle.

4.1 The First Solution

Fig. 2 shows how we will capture the geometric content of the problem. An

important improvement, compared to the solution technique presented in [?],

is that we will use rotations with respect to the vector from the given point P
to the still-unidentified center point (c2) of the solution circle.

Figure 2: Elements used in the first solution of the CLP limiting case.

In deriving our solution, we’ll

use the same symbol —for

example, t —to denote both a

point and the vector to that

point from the origin. We’ll rely

upon context to tell the reader

whether the symbol is being

used to refer to the point, or to

the vector.

We’ll begin our solution by deriving an expression for r2 in terms of t̂. We´ll

do so by equating two independent expressions for s, then “dotting” both sides

with ĥ, after which we’ll solve for r2:

(r1 + r2) t̂ + r2ĥ = h + λĥi[
(r1 + r2) t̂ + r2ĥ

]
· ĥ =

[
h + λĥi

]
· ĥ

(r1 + r2) t̂ · ĥ + r2ĥ · ĥ = h · ĥ + λ
(
ĥi
)
· ĥ

(r1 + r2) t̂ · ĥ + r2 = ‖h‖+ 0;

∴ r2 =
‖h‖ − r1t̂ · ĥ

1 + t̂ · ĥ
, and r1 + r2 =

‖h‖+ r1

1 + t̂ · ĥ
. (10)

Next, we equate two expressions for the rotation ei2φ:[
t− p

‖t− p‖

] [
c2 − p

‖c2 − p‖

]
︸ ︷︷ ︸

=eiφ

[
t− p

‖t− p‖

] [
c2 − p

‖c2 − p‖

]
︸ ︷︷ ︸

=eiφ

=
[
−t̂
] [ c2 − p

‖c2 − p‖

]
︸ ︷︷ ︸

=ei2φ

,
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from which

[t− p] [c2 − p] [t− p]
[
t̂
]

= some scalar,

∴ 〈[t− p] [c2 − p] [t− p]
[
t̂
]
〉2 = 0. (11)

Using the identity ab ≡ 2a ∧ b + ba, we rewrite 11 as

〈(2 [t− p] ∧ [c2 − p] + [c2 − p] [t− p]) [t− p]
[
t̂
]
〉2 = 0,

〈(2 [t− p] ∧ [c2 − p]) [t− p]
[
t̂
]

+ [t− p]
2

[c2 − p]
[
t̂
]
〉2 = 0, and

〈(2 [t− p] ∧ [c2 − p]) [t− p]
[
t̂
]
〉2 + 〈[t− p]

2
[c2 − p]

[
t̂
]
〉2 = 0. (12)

Now, we note that

〈(2 [t− p] ∧ [c2 − p]) [t− p]
[
t̂
]
〉2 = 2 ([t− p] ∧ [c2 − p])

(
[t− p] ·

[
t̂
])
,

and 〈[t− p]
2

[c2 − p]
[
t̂
]
〉2 = [t− p]

2 (
[c2 − p] ∧

[
t̂
])
.

Note how the factor p ∧ t̂

canceled out in Eq. (13). That

cancellation suggests an

improvement that we’ll see in

our second solution of the CLP

case.

Because t = r1t̂ and c2 = (r1 + r2) t̂, t ∧ c2 = 0. We can expand [t− p]
2

as

r1
2 − 2p · t + p2. Using all of these ideas, (12) becomes (after simplification)

2r2
(
r1 − p · t̂

)
p ∧ t̂ +

(
r1

2 − 2p · t + p2
)
p ∧ t̂ = 0. (13)

For p ∧ t̂ 6= 0, that equation becomes

2r2
(
r1 − p · t̂

)
+ r1

2 − 2p · t + p2 = 0.

Substituting the expression that we derived for r2 in (10), then expanding and

simplifying,

2 (‖h‖+ r1)p · t̂−
(
p2 − r12

)
ĥ · t̂ = 2‖h‖r1 + r1

2 + p2.

Finally, we rearrange that result and multiply both sides by r1‖h‖, giving the

equation that we derived in [?]:{
2
(
r1‖h‖+ h2

)
p−

(
p2 − r12

)
h
}
· t = 2h2r1

2 + r1‖h‖
(
r1

2 + p2
)
. (14)

4.2 The Second Solution: Learning From and Building

Upon the First

In Eq. (13), we saw how the factor p∧t̂ canceled out. That cancellation suggests

that we might solve the problem more efficiently by expressing rotations with

respect to the unknown vector t̂, rather than to a vector from P to c2 (Fig. 3).

For this new choice of vectors, our equation relating two expressions for

the rotation ei2φ is:[
t̂
] [ p− t

‖p− t‖

]
︸ ︷︷ ︸

=eiφ

[
t̂
] [ p− t

‖p− t‖

]
︸ ︷︷ ︸

=eiφ

=
[
t̂
] [ p− c2
‖p− c2‖

]
︸ ︷︷ ︸

=ei2φ

,
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Figure 3: Elements used in the second solution of the CLP Limiting Case:

rotations are now expressed with respect to the unknown vector t̂, rather than

to a vector from P to c2.

from which

[p− t]
[
t̂
]

[p− t] [p− c2] = some scalar,

∴ 〈[p− t]
[
t̂
]

[p− t] [p− c2]〉2 = 0. (15)

Using the identity ab ≡ 2a ∧ b + ba, we rewrite 15 as

〈
(
2 [p− t] ∧

[
t̂
]

+
[
t̂
]

[p− t]
)

[p− t] [p− c2]〉2 = 0, and

〈
(
2 [p− t] ∧

[
t̂
])

[p− t] [p− c2]〉2 + 〈[p− t]
2 [

t̂
]

[p− c2]〉2 = 0. (16)

Now, we note that

〈
(
2 [p− t] ∧

[
t̂
])

[p− t] [p− c2]〉2 =
(
2 [p− t] ∧

[
t̂
])

[p− t] · [p− c2] ,

and 〈[p− t]
2 [

t̂
]

[p− c2]〉2 = [p− t]
2 [

t̂
]
∧ [p− c2] .

Because t = r1t̂ and c2 = (r1 + r2) t̂, t ∧ c2 = 0. We can expand [p− t]
2

as

p2 − 2p · t + r1
2. Using all of these ideas, (16) becomes (after simplification)

2 ([p− t] · [p− c2])p ∧ t−
(
p2 − 2p · t + r1

2
)
p ∧ t = 0.

For p ∧ t̂ 6= 0, that equation becomes, after expanding [p− t] · [p− c2] and

further simplifications,

p2 − r12 − 2p · c2 + 2t · c2 = 0.

Now, recalling that c2 = (r1 + r2) t̂, we substitute the expression that we

derived for r1 + r2 in (10), then expand and simplify to obtain (14). This

solution process has been a bit shorter than the first because (16) was so easy

to simplify.
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