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This work checks the Pauli equation with the description of the magnetic field and found a
possible missing term in it. We propose a fixed Pauli equation, where the application in density
functional theory explains the observed magnetic susceptibilities for Al, Si, and Au with applying
directly magnetic fields. The possible shape of the Lagrangian describing the charged particle with
an external magnetic field is also discussed.

Our textbooks give us many theories describing the
world, which are Maxwell equations, Schrödinger equa-
tions, and Dirac equations, for example. These are until
now continuing to explain our experimental observations.
However, if we found some inconsistencies between theo-
ries and observations, it is a big chance to open the door
for a physics no one knows.
Let us see our history to find which issue people are

in trouble about. One of not solved problems is how to
treat the magnetic field, in which we still do not know
the universal method to reproduce both the paramag-
netism and diamagnetism for solid states including met-
als. The historical starting point of considering theoret-
ically the magnetic field is Pauli equation[1], from which
Landau[2] and Wilson[3] discussed about the way of cal-
culating magnetic susceptibilities in the diamagnetism.
Thanks to their works, many theoretical results of the
magnetic susceptibilities in both model[4–8] and density
functional theory (DFT)[9, 10] have been explaining the
experimental observations until now. However, no one
applies directly the magnetic field to get the diamag-
netism for solids in DFT. In this paper, a problem in
the current theory is discovered and fixed to be able to
treat the magnetic field properly in solids.
In 1950’s, Wilson[3] and Ginzburg[11] are discussing,

respectively, diamagnetism and superconductivity with
using the Hamiltonian

1

2m
(p̂+ qA)

2
+ qV, (1)

where m is electron mass, p̂ = −iℏ ∇ is the momentum
operator, q = −e is the electron charge defined by the
absolute value e > 0, A is the vector potential satisfy-
ing ∇ × A = B with the magnetic field B, and V is
the electro-static potential. More recently, the diamag-
netic susceptibilities of atoms based on DFT are calcu-
lated from this Hamiltonian.[12] However, the analytical
mechanics produces for us the vector potential with the
opposite sign in the Hamiltonian
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2m
(p̂− qA)

2
+ qV, (2)

in which the paramagnetism was explained.
In the analytical mechanics, from the Lorentz force q

v × B with the velocity of the particle v, we somehow

derived the potential

U = −qA · v + qV, (3)

and which makes the Lagrangian

L = T − U =
1

2
mv2 + qA · v − qV. (4)

The momentum becomes

p =
∂

∂v
L = mv + qA, (5)

and the Hamiltonian becomes

H =

(
v · ∂

∂v
− 1

)
L

=
1

2
mv2 + qV

=
1

2m
(p− qA)

2
+ qV, (6)

which is consistent with the Hamiltonian (2). The motion
equation is

0 =

(
∂

∂t

∂

∂v
− ∂

∂r

)
L

= mv̇ − q (v ×B−∇V ) , (7)

where the symmetric gauge A = B × r / 2 is used. Then,
we constructed the Pauli equation

1

2m
{σ · (p̂− qA)}2 ψ =

(
Ê − qV

)
ψ, (8)

where σ is Pauli matrices

{σx, σy, σz} =

{(
1

1

)
,

(
−i

i

)
,

(
1

−1

)}
, (9)

the other values are implicitly multiplied by the unit ma-
trix

σ0 =

(
1

1

)
= 1, (10)

ψ is an one-electron wavefunction, and Ê = iℏ∂t is the
time differential operator. The left-hand side becomes{

p̂2

2m
− q

2m
B ·

(̂
l+ ℏσ

)}
ψ +O

(
B2

)
, (11)
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where l̂ = r × p̂ is the angular momentum operator, and
theB first-order terms are indicating the paramagnetism.
About the potential (3), we notice that the particle

likes to have v parallel to qA with the Lorentz force
pointing the outside

qv ×B

∝ q2A×B = q2
B× r

2
×B =

(B ·B) r− (r ·B)B

2/q2
.

(12)

So in the above Lagrangian (4), the charged particle can
not make the bound state as the cyclotron motion in the
magnetic field.
Since the Lagrangian tells us many informations like

the Hamiltonian, the force, and the momentum, it is not
reasonable to create the Lagrangian from only informa-
tion of the Lorentz force. Therefore, it is better for us to
change the strategy of understanding the magnetic field.
Let us try to construct one candidate of the Hamilto-
nian explaining experimental observations. Current our
agreements are followings. (i) The charged particle moves
with the Lorentz force and behaves as the diamagnetism
in a magnetic field. (ii) The dipole moments like usual
magnets behave as the paramagnetism with each others.
The vector potential includes B × r, where the vector r
seems to connect the magnetic field B and the particle
surrounding it with the cyclotron motion. On the other
hand, usual magnets attract or repulse with each others
at positions of those poles, where B · r becomes domi-
nant and is expected to be a missing term to explain the
paramagnetism. Based on the relation

(σ ·B) (σ · r) = B · r+ iσ ·B× r, (13)

we may be able to consider the following fixed Pauli equa-
tion

1

2m
{σ · (p̂+ qA)− 2qi (B · r)}2 ψ =

(
Ê − qV

)
ψ. (14)

Then, the left-hand side becomes{
p̂2

2m
+

q

2m
B ·

(̂
l− ℏσ

)
− 4qi (B · r) (σ · p̂)

}
ψ

+O
(
B2

)
. (15)

Here, we see that the orbital and spin parts of Zeeman
term work as, respectively, the diamagnetism and the
paramagnetism, although an unknown extra term is ap-
pearing in the B first-order terms. To understand the
extra term, let us consider the one-dimension problem
with the magnetic field pointing the z direction. If we
prepare an s orbital as ψ, then with being careful for
only the sign, the extra term becomes

−4qℏBzzσz∂zψ ∝ qBzzσzzψ ∝ qBzσzψ, (16)

which seems to work as the diamagnetism.

The Pauli equation is changing to the following equa-
tion

1

2m
{σ · (p̂+ qA) + qX}2 ψ =

(
Ê − qV

)
ψ, (17)

where X is the extra term −2i B · r. We note that
changing qA → qA − ℏ∇f , qV → qV − ℏ∂tf , and ψ
→ eif ψ does not change the equation. This is the usual
gauge symmetry keeping the norm |ψ|. We also find a
symmetry for spin coordinates

qX → qX − λ, (18)

ψ →
(
eiλz

e−iλz

)
ψ, (19)

which is not yet appearing in the classical physics.
Table I shows the DFT results adopting (15) for the

face-centered-cubic structured Al, Si, and Au with the
experimentally observed crystal structures[13]. By ap-
plying directly 0.1 T for [111], [110], and [001] directions,
molar magnetic susceptibilities are evaluated and are
consistent with the experiments[14], although we have
to check more materials.

TABLE I: Calculated molar magnetic susceptibilities
(10−6cm3/mol) and the experimental values[14].

Our results Expt.
Al 7 16.5
Si -4 -3.12
Au -15 -28

Hereafter, we discuss about an possibility of the shape
of the Lagrangian describing the charged particle in a
magnetic field. Not to have inconsistencies in the mo-
tion equation appearing later, we have to define a four
dimensional space including an unknown ξ axis. The co-
ordinate is

(r, iξ) = σ · r+ iξ, (20)

where the local velocity becomes

(v, ivξ) = σ · v + ivξ = σ · ∂r
∂t

+ i
∂ξ

∂t
. (21)

Then, we define the kinetic energy

T =
m

2

{
(σ · v)2 − v2ξ

}
. (22)

By using this, one candidate of the Lagrangian satisfying
the Hamiltonian (14) and the Lorentz force is

L =
m

2

{
(σ · v)2 − v2ξ

}
+
qi

4
(σ · v) (σ · r) (σ ·B)

−5qi

4
(σ ·B) (σ · v) (σ · r)− qV, (23)
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where the momentum becomes

σ · p =

(
σ · ∂

∂v

)
L

= σ ·mv +
3qi

4
(σ · r) (σ ·B)

+
5qi

4
(σ ·B) (σ · r)

= σ ·mv + 2qi (B · r)− σ · qA, (24)

and

ipξ =
∂

∂ivξ
L = imvξ. (25)

The Hamiltonian becomes

H =

(
v · ∂

∂v
+ ivξ

∂

∂ivξ
− 1

)
L

=
m

2

{
(σ · v)2 − v2ξ

}
+ qV

=
1

2m

[
{σ · (p+ qA)− 2qi (B · r)}2 − p2ξ

]
+ qV,

(26)

which is consistent with the Hamiltonian (14) if the coor-
dinate system is chosen to have the constant momentum
pξ. The motion equation becomes

0 =

{
∂

∂t

∂

∂ivξ
− ∂

∂iξ
+ σ ·

(
∂

∂t

∂

∂v
− ∂

∂r

)}
L

= imv̇ξ + σ ·mv̇

+2qi (B · v)− σ · qB× v

2
+ σ · q ∂V

∂r

+
qi

4
(σ · v) (σ ·B) +

5qi

4
(3v ·B+ iσ · v ×B)

= i {mv̇ξ + 6q (v ·B)}+ σ · {mv̇ − q (v ×B−∇V )} ,
(27)

where if the charged particle has the velocity parallel to
the magnetic field, the particle will be accelerated along

the ξ axis. We emphasize that this Lagrangian is still in a
fantasy, because there is no proof from the experimental
side.

Summarizing, we found a possible missing term in the
description of the magnetic field of the Pauli equation.
Then, the fixed Pauli equation explains Al, Si, and Au for
the experimental magnetic susceptibilities. The results
are reasonable in both the paramagnetic and diamagnetic
materials including metals at the moment. The possible
shape of the Lagrangian for the charged particle in the
magnetic field is also discussed.
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