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Abstract:  We summarize how the Lorentz Force motion observed in classical electrodynamics 
may be understood as geodesic motion derived by minimizing the variation of the proper time 
along the worldline of test charges in external potentials, while the spacetime metric remains 
invariant under, and all other fields in spacetime remain independent of, any rescaling of the 
charge-to-mass ratio q/m.  In order for this to occur, time is dilated or contracted due to attractive 
and repulsive electromagnetic interactions respectively, in very much the same way that time is 
dilated due to relative motion in special relativity, without contradicting the latter’s well-
corroborated experimental content. As such, it becomes possible to lay an entirely 
geometrodynamic foundation for classical electrodynamics in four spacetime dimensions. 
 
PACS: 04.20.Fy; 03.50.De; 04.20.Cv; 11.15.-q 
 
1. Motivation and Purpose 

 
The equation of motion for a test particle along a geodesic line in curved spacetime 

specified by the metric interval 2 2c d g dx dxµ ν
µντ =  with metric tensor gµν  was first obtained by 

Albert Einstein in §9 of his landmark 1915 paper [1] introducing the General Theory of Relativity.  
The infinitesimal linear element /d ds cτ =  for the proper time is a scalar invariant which is 

independent of the chosen system of coordinates.  Likewise the finite proper time 
B

A
dτ τ= ∫  

measured along the worldline of the test particle between two spacetime events A and B has an 
invariant meaning independent of the choice of coordinates.  Specifically, the geodesic of motion 
is stationary, and results from a minimization of the variational equation 
 

0
B

A
dδ τ= ∫ . (1.1) 

 
After carrying out the well-known calculation originally given by Einstein in [1], the particle’s 
equation of geodesic motion is found to be: 
 

2

2

d x du d
u u

x dx

d d d d
β β µ ν

µν

β µ

µ

β ν

ντ τ τ τ
= −Γ= = −Γ , (1.2) 
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with the Christoffel connection defined by ( )1
2 g g ggβ

µν α µ
βα

µ να ν αµν−Γ ≡ − ∂∂ − ∂  and the 

relativistic four-velocity given by /dx du µµ τ≡ .   
 

The geodesic (1.2) can also be viewed at in alternative, yet equivalent way.  In curved 
spacetime, ( ) ;/ /DB D x Bβ ν β

ντ τ≡ ∂ ∂ ∂  defines the “derivative along the curve” for any 

contravariant vector Bβ , using gravitationally-covariant derivatives ; B B Bβ β β σ
ν ν σν∂ = ∂ + Γ  and 

the chain rule.  So when B uβ β= , then, in view of (1.2), we may also write: 
 

( ); 0
Du x x x dx du

u u u u u u
D x d d

β α α α β β
β β β σ β σ β µ ν

α α σα σα µνατ τ τ τ τ τ
 ∂ ∂ ∂ ∂= ∂ = ∂ + Γ = + Γ = + Γ = ∂ ∂ ∂ ∂ 

. (1.3) 

 
This has exactly the same content as the geodesic equation (1.2).  But given that / 0du dβ τ =  
describes Newtonian inertial motion when the gravitational connection 0β

µνΓ = , we may think of 

/ 0Du Dβ τ =  above as describing covariantly-inertial motion in the presence of gravitation.  This 
is what gives gravitational geodesics their colloquial characterization as “straight lines,” or more 
precisely, “inertial lines” in curved spacetime. 
 
 Just as ordinary derivatives ( )/ ,tα∂ = ∂ ∂ ∇  are replaced by gravitationally-covariant 

derivatives ;α∂  in curved spacetime, so too in gauge theory ordinary derivatives α∂  are replaced 

by gauge-covariant or “canonical” derivatives iqAα α α≡ ∂ −D , where q is the electric charge 

strength and Aα  is the gauge field / vector potential, and where we use αD  rather than the often-

employed Dα  to distinguish symbolically from the D of gravitational motion in (1.3).  Motivated 

by the geodesic nature of gravitationally-covariant motion for which / 0Du Dβ τ =  rather than 
/ 0du dβ τ =  and how this motion stems directly from the replacement of ordinary with 

gravitationally-covariant derivatives, the purpose of this paper is to summarize how 
electrodynamic Lorentz Force motion is likewise geodesic motion which is canonically-inertial 
and which stems directly from the canonical derivatives of gauge theory.  As will be shown, this 
comes about as a consequence of heretofore unrecognized time dilations and contractions which 
occur any time two material bodies are electromagnetically interacting. 
 
2. Geometro-electrodynamics and Time Dilations and Contractions: An Overview 
 
 To begin, if the test particle, to which we now ascribe a mass 0m> , also has a non-zero 
net electrical charge 0q ≠  and the region of spacetime in which it subsists also has a nonzero 

electromagnetic field strength 0F βα ≠ , then the equation of motion is no longer given by (1.2), 
but is supplemented by an additional term which contains the Lorentz Force law, namely: 
 

2

2

d x du dx dx q dx q u
g F g F

d d d
u

d m cd m c
u

β β µ ν σ σ
βα βα

σ
β β µ ν

µν α µν σατ τ τ τ τ
= −Γ = −Γ= + + . (2.1) 
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In the above, the field strength F βα  containing the electric and magnetic field bivectors E and B 
is defined as usual by F A Aβα β α α β≡ ∂ − ∂  in relation to the gauge potential four-vector Aα .  The 
above force law is of course a well-known, well-corroborated, well-established law of physics.   
 
 Given that the gravitational geodesic (1.2) specifies a path of minimized proper time (1.1), 
the question arises whether there is a way to obtain (2.1) from the same variation as in (1.1), thus 
revealing the electrodynamic motion to also entail particles moving through spacetime along paths 
of minimized proper time in four spacetime dimensions.  Conceptually, it cannot be argued other 
than that this would be a desirable state of affairs.  But physically the difficulty rests in how to 
accomplish this without ruining the integrity of the metric and the background fields in spacetime 
by making them a function of the charge-to-mass ratio /q m.  This ratio is and must remain a 
characteristic of the test particle alone.  It is not and cannot be a characteristic of the line element 
dτ , or the metric tensor gµν , or the gauge field Aα , or the field strength F βα  which define the 

field-theoretical spacetime background through which the test particle is moving.  And, at bottom, 
this difficulty springs from the inequivalence of the “electrical mass” (a.k.a. charge) q and the 
inertial mass m, versus the Newtonian equivalence of gravitational and inertial mass.  In (2.1), this 
is captured by the fact that m does not appear in the gravitational term u uβ µ ν

µν−Γ , while the /q m 

ratio does appear in the electrodynamic Lorentz Force term that we rewrite as ( )/q m F uβ σ
σ  in 

natural units with 1c = .   
 

This may also be seen very simply if we compare Newton’s law with Coulomb’s law.  In 
the former case we start with a force 2/F GMm r= −   (with the minus sign indicating that 
gravitation is attractive) and in the latter 2/eF k Qq r= −  (for which we choose an attractive 

interaction to provide a direct comparison to gravitation), where G is Newton’s gravitational 
constant and the analogous  0

2
01/ 4 / 4ek c πµπε= =  is Coulomb’s constant.  If the gravitational 

field is taken to stem from M and the electrical field from Q, then the test particle in those fields 
has gravitational mass m and electrical mass q.  But the Newtonian force F ma=  always contains 
the inertial mass m.  So in the former case, because the gravitational and inertial mass are 
equivalent, the acceleration 2 2/ / /a F m GMm mr GM r= = − = −  and these two masses cancel, 
giving u uβ µ ν

µν−Γ  without any mass in (2.1).  But in the latter case the acceleration 

( )2 2/ / / /e ea F m k Qq mr q m k Q r= = − = −  because the electrical and inertial masses are not 

equivalent, hence ( )/q m F uβ σ
σ  containing this same ratio in (2.1).  Here, the motion is distinctly 

dependent on the electrical and inertial masses q and m of the test particle.  And as a result, different 
charges q with different masses m may all be moving through the exact same background fields 
and yet have different observable motions. 

 
So, were we to pursue the conceptually-attractive goal of understanding electrodynamic 

motion as the result of particles moving through spacetime along paths of minimized proper time, 
with (1.1) applying to electrodynamic motion just as it does to gravitational motion, the line 
element dτ  would inescapably have to be a function ( )/d q mτ  of /q m.  And this in turn would 

appear to violate the integrity of the line element dτ  as well as the metric tensor gµν  in 
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2 2c d g dx dxµ ν
µντ = , because these would all seem to be dependent upon the attributes q and m of 

the test particles that are moving through the spacetime background.  Were this to be reality and 
not just seeming appearance, this would be physically impermissible.   

 
Consequently, despite there being many known derivations of the Lorentz Force law, there 

does not, to date, appear to be an acceptable rooting of the Lorentz Force law in the variational 

equation 0
B

A
dδ τ= ∫  which would reveal electrodynamic motion to be geodesic motion just like 

the familiar gravitational motion.  And this is because it has not been understood how to obtain 
electrodynamic motion from a minimized variation while simultaneously maintaining the integrity 
of field theory such that the metric and the background fields do not depend upon the attributes of 
the test particles which may move through these fields. This, in turn, is because electrical mass is 
not equivalent to the inertial mass, which causes different test particles to move differently even 
when in the exact same background fields, in contrast to the Newtonian equivalence of the 
gravitational and inertial masses from which all particles respond alike in the same background. 

 
So, when a first test particle with electrical mass q and inertial mass m is placed in a field 

F βα , and a second test particle with electrical mass q′  and inertial mass m′  of a different ratio 

/ /q m q m′ ′ ≠  is placed at equipotential in the same field F βα , there are observably-different 
Lorentz Force motions for these two different test particles even though they are at equipotential.  
As a result, having the line element dτ  be a mathematical function of /q m yet be physically 
independent of /q m may seem paradoxical.  Nevertheless, it is possible to have a line element 

( )/d q mτ  which is a function of the electrical-to-inertial mass ratio /q m, from which the 

variational equation 0
B

A
dδ τ= ∫  does yield the combined gravitational and electrodynamic 

equation of motion (2.1), yet for which the line element dτ , the metric tensor gµν , the gauge field 

Aα , and the electromagnetic field strength F βα  are all independent of this /q m ratio.  
Specifically, close study reveals that this paradox may be resolved by recognizing that time does 
not flow at the same rate for these two test particles in very much the same way that time does not 
flow at the same rate for two reference frames in special relativity which are in motion relative to 
one another.  
  

In particular, in the absence of gravitation with gµν µνη=  and 0β
µνΓ = , the first test 

particle will have a Lorentz motion given by: 
 

2

2

d x q dx
F

d m cd

β σ
βα

σαη
τ τ

= . (2.2) 

 
Note that this Lorentz motion also contains a set of coordinates xµ .  Now usually it is assumed 
that for the second test particle the motion is given by this same equation (2.2), merely with the 
substitution of q q′→  and m m′→ ; that is, by: 
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2

2

d x q dx
F

d m cd

β σ
βα

σαη
τ τ

′
′

= . (2.3) 

 
The particular assumption here is that there is no change in the rate at which time flows when (2.2) 
is replaced with (2.3); and more generally the assumption is that the coordinate interval dxσ  in 
(2.3) is identical to the dxσ  in (2.2).  Yet, it is impossible to have both (2.2) and (2.3) emerge 

through the variation 0
B

A
dδ τ= ∫  from the same metric element dτ , and simultaneously maintain 

the integrity of the field theory, unless the coordinates are different, wherein dxσ  in (2.2) is not 
identical to what must now be  dx dx dxσ σ σ′→ ≠  in (2.3).   
 

In fact, the very physics of having electric charges in electromagnetic fields induces a 
change in coordinates as between these two test charges with different / /q m q m′ ′ ≠ , very similar 
to the coordinate change via Lorentz transformations induced by relative motion.  As a result, the 
electrodynamic motion of the second test charge is given, not by (2.3), but by: 
 

2

2

d x q dx
F

d m cd

β σ
βα

σαη
τ τ

′ ′
′

=
′

. (2.4) 

 
Here, xβ  in (2.2) and x xβ β′ ≠  in (2.4), respectively, are two different sets of coordinates.  Yet, 
they are interrelated by a definite transformation. Most importantly, this results in time itself being 
induced to flow differently as between these two sets of coordinates, making time dilation and 
contraction as fundamental an aspect of electrodynamics, as it already is of the special relativistic 
theory of motion and the general relativistic theory of gravitation.  In fact, what is really happening 
– physically – is that the placement of a charge in an electromagnetic field is inducing a physically-
observable change of coordinates ( / ) ( / )x q m x q mβ β′ ′ ′→  in the very same way that relative 

motion between the coordinate systems ( )x vβ  and ( )x vβ′ ′  of two different inertial reference 

frames with velocities v and ν ′  induces a Lorentz transformation ( ) ( )x v x vβ β′ ′→  that relates the 

two coordinate systems to one another via 2 2 ( ) ( ) ( ) ( )c d dx v dx v dx v dx vµ ν µ ν
µν µντ η η ′ ′ ′ ′= = , with an 

invariant line element 2 2d dτ τ ′=  and the same metric tensor µν µνη η ′=  in either reference frame. 

 
 As it turns out, the line element that yields (2.1) from (1.1), including electrodynamic 
motion, which is quadratic in dτ , is: 
 

2 2 q q
c d g dx d A dx d A g x x

mc mc
µ µ ν ν µ ν

µν µντ τ τ  = + + =  
  

D D . (2.5) 

 
Above, we have defined a gauge-covariant coordinate interval ( )/x dx q mc d Aµ µ µτ≡ +D , again 

with a canonical D  to distinguish from the gravitational D in (1.3).  And it will be seen that upon 
multiplying through by 2m  and dividing through by 2dτ  this becomes: 
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2 2 dx q dx q q q
m c g m A m A g p A p A g

d c d c c c

µ ν
µ ν µ µ ν ν µ ν

µν µν µνπ π
τ τ

     = + + = + + =     
    

. (2.6) 

 
This, it will be recognized, is the usual relationship between the rest mass m and the canonical 
energy-momentum / / /mdx d qA c p qA cµ µ µ µ µπ τ≡ + = + , where ordinary mechanical / kinetic 

energy-momentum is /p mdx dµ µ τ= .  Some authors continue to use pµ  to denote the canonical 
momentum when there are charges and gauge field present; we find it preferable to employ the 
different symbol µπ  to avert confusion.  The gauge interval ( )/x dx q mc d Aµ µ µτ≡ +D  defined in 

(2.5) is then seen to be merely a restatement of the gauge-covariant derivatives iqAσ σ σ≡ ∂ −D  and 

canonical momenta /p qA cµ µ µπ ≡ +  which emerge from gauge theory and relate to one another 

via i pσ σ∂ ⇔   and i σ σπ⇔D , and in particular from the mandate for local gauge (really, phase) 

symmetry.   
 

Now, the line element (2.5) is clearly a function of /q m and so has the appearance of 
depending on the ratio /q m.  But this is only appearance.  For, when we now place the second 
test charge with the second ratio / /q m q m′ ′ ≠  in the exact same metric measured by the invariant 

line element dτ  and moving through the exact same fields gµν  and Aµ , this metric gives: 

 

2 2 2 2 q q
c d c d g dx d A dx d A g x x

m c m c
µ µ ν ν µ ν

µν µντ τ τ τ′ ′  ′ ′ ′ ′ ′= = + + =  ′ ′  
D D , (2.7) 

 
with ( )/x dx q m c d Aµ µ µτ′ ′ ′ ′= +D .  So despite dτ  being a function of the /q m ratio, this 

d dτ τ ′=  as a measured proper time element is actually invariant with respect to the /q m ratio 
because the differences between different /q m and /q m′ ′  are entirely absorbed into the 

coordinate transformation x xµ µ′→ , which is quite analogous to the Lorentz transformation of 
special relativity.  The counterpart to (2.6) now becomes: 
 

2 2 dx q dx q
m c g m A m A g

d c d c

µ ν
µ ν µ ν

µν µνπ π
τ τ
′ ′ ′ ′  ′ ′ ′ ′ ′= + + =  

  
, (2.8) 

 
with an invariant dτ  and unchanged background fields gµν  and Aµ . 

 
In fact, this transformation x xµ µ′→  is defined so as to keep d dτ τ ′=  invariant, and 

g gµν µν′=  and A Aµ µ′=  and by implication the field strength bivector F Fβα βα′=  all unchanged, 

just as Lorentz transformations are defined so as to maintain a constant speed of light for all inertial 
reference frames independently of their state of motion.  That is, combining (2.5) and (2.7), this 
transformation x xµ µ′→  which results in time dilations and contractions, is defined by: 
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2 2 q q q q
c d g dx d A dx d A g dx d A dx d A

mc mc m c m c
µ µ ν ν µ µ ν ν

µν µντ τ τ τ τ′ ′     ′ ′= + + ≡ + +     ′ ′     
. (2.9) 

 
Consequently, d dτ τ ′=  is a function of charge q and mass m yet is invariant with respect 

to the same, and there is no inconsistency in having d dτ τ ′=  be a function of, yet be invariant 
under, a rescaling of the /q m ratio.   Likewise, the fields g gµν µν′=  and A Aµ µ′=  are independent 

of the charge and the mass of the test particle, because again, everything stemming from the 
different ratios /q m and /q m′ ′  is absorbed into a coordinate transformation x xµ µ′→ .  Thus, 
while “gauge” is a historical misnomer for what is really invariance under local phase 
transformations ( , )i tU eψ ψ ψ ψΛ′→ = = x  applied to a wavefunction ψ , we see in (2.9) that the line 
element dτ  truly is invariant under what can be genuinely called a re-gauging of the /q m ratio.  
And from (2.6) and (2.8), we see that this symmetry is really not new.  It is merely a restatement 
of the usual relationship 2 2m c g µ ν

µνπ π=  between rest mass and canonical momentum. 

 
As a result, each and every different test particle carries its own coordinates, all interrelated 

so as to keep dτ  invariant, and gµν , Aµ  and F βα  unchanged.  The coordinate transformation 

interrelating all the test particles causes time 0x t=  to dilate for electrical attraction and to contact 
for repulsion, with a dimensionless ratio / emdt dτ γ≡  that integrally depends upon the magnitude 

of the likewise-dimensionless ratio 2/qA mcµ  of electromagnetic interaction energy qAµ  to the 

test particle’s rest energy 2mc .  This in turn supplements the ratio 2 2/ 1 / 1 /vdt d v cτ γ= = −  for 

motion in special relativity and 00/ 1/gdt d gτ γ= =  for a clock at rest in a gravitational field, 

and assembles them into the overall product combination / em g vdt dτ γ γ γ=  governing time dilation 

and contraction when all of motion and gravitational and electromagnetic interactions are present. 
 
Operationally, the electromagnetic contribution emγ  to this time dilation or contraction 

would be measured in principle by comparing the rate at which time is kept by otherwise identical, 
synchronized geometrodynamic clocks or oscillators which are then electrically charged with 
different /q m ratios, and then placed at rest into a background potential ( ) ( )0, ,Aµ φ φ= =A 0  at 

equipotential, where 0ϕ  is the proper potential.  Or more generally, this would be measured by 

electrically charging otherwise identical clocks and then placing them into the potential to have 
differing dimensionless 2

0 /q mcφ  ratios. 

 
Empirically, for 2

0 / 1q mcφ << , and for an attractive Coulomb force 2/eF k Qq r= − , the 

interaction energies /em eE Fdr k Qq r= = +∫  plus integration constant are related to these 

electromagnetic time dilations in a manner identical to how the kinetic energy 21
2vE mv=  is 

contained in 2 2 2 2 2 21
2/ 1 /vmc mc v c mc mvγ = − ≅ +  for nonrelativistic velocities v c<<  in 

special relativity.  In fact, the actual expression for the electromagnetic contribution to the time 
dilation for 2

0 / 1q mcφ <<  interactions is 2
01 /em q mcγ φ= − .  And for a Coulomb proper potential 
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0 /ek Q rφ = −  for an electrical interaction chosen to be attractive like gravitation, this is 
21 /em ek Qq mc rγ = + .  So the combined time dilation / em g vdt dτ γ γ γ=  mentioned earlier, 

employing the gravitational factor 2
001/ ( ) 1 /g g r GM c rγ = ≅ +  in the weak field Newtonian 

limit (where the Reissner–Nordström metric term 2 24/eG Q c rk  may clearly be neglected), 

produces an overall energy which, in the low velocity, weak-gravitational and weak-
electromagnetic interaction limit, is given by: 
 

2 2
2 2 2 2

2 2 22 2
00

2 2 2 2 2
2 2 2 2 2

1 / 1
1 1 1

21 /

1 1 1 1

2 2 2 2

e e
em g v

e e e e

k Qq mc r k Qqdt GM v
E mc mc mc mc

d c r mc r cg v c

k Qq k Qq k Qq k QqGMm GMm GM GM
mc mv v v v

r c r r c r r c r c r c r

γ γ γ
τ

 +   = = = ≅ + + +   
  −  

= + + + + + + +

. (2.10) 

 
What we see here, in succession, are 1) the rest energy 2mc , 2) the kinetic energy of the mass m, 
3) the Coulomb interaction energy of the charged mass, 4) the kinetic energy of the Coulomb 
energy, 5) the gravitational interaction energy of the mass, 6) the kinetic energy of the gravitational 
energy, 7) the gravitational energy of the Coulomb energy and 8) the kinetic energy of the 
gravitational energy of the Coulomb energy.  It is clear that this accords entirely with empirical 
observations of the linear limits of these same energies.  

 
Importantly, unlike gravitational redshifts or blueshifts which are a consequence of 

spacetime curvatures, these electromagnetic time dilations do not stem directly from curvature.  
They only affect curvature indirectly through any changes in energy to which they give rise 
because gravitation still “sees” all energy.  Hermann Weyl’s ill-fated attempt from 1918 until 1929 
in  [2], [3], [4] to base electrodynamics on real gravitational curvature foreclosed any such real 
curvature explanation.  This is because Weyl’s initial attempt was rooted in invariance under a 
non-unitary local transformation ( , )teψ ψ ψΛ′→ = x  which re-gauges the magnitude of a 

wavefunction, rather than under the correct transformation ( , )i tU eψ ψ ψ ψΛ′→ = = x  with an 
imaginary exponent that simply redirects the phase.  Specifically, the latter correct phase 

transformation is associated with an imaginary, not real, curvature that places a factor 1i = −  
into the geodesic deviation 2 2/D Dµξ τ  when expressed in terms of the commutativity ; ;, vµ ∂ ∂   

of spacetime derivatives.  So at best, electrodynamics can be understood on the basis of a 
mathematically-imaginary spacetime curvature.  The alteration of time flow in electrodynamics 
that we suggest here, is therefore much more akin to the time dilation of special relativity than it 
is to the gravitational redshifts and blueshifts of general relativity.  It may transpire entirely in flat 
spacetime, and real spacetime curvature only becomes implicated when the energies added to 2mc  
reach sufficient magnitude beyond their linear limits shown in (2.10) to curve the nearby 
spacetime. 

 
Also importantly, the similarity of the ratios 2

0 /q mcφ  and 2 2/v c  as the driving number 

in 2
01 /em q mcγ φ= −  and 2 21/ 1 /v v cγ = − , respectively, is more than just an analogy.  Just as 

v c<  (a.k.a. 2 2mv mc< ) is a fundamental limit on the motion of material subluminal particles, so 
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too, it turns out that 2
0q mcφ <  is a material limit on the strength of the interaction energy between 

a test charge q with mass m interacting with the sources of the proper potential 0φ .  This transpires 

by requiring particle and antiparticle energies to always be positive and time to always flow 
forward in accordance with Feynman-Stueckelberg, and by maintaining the speed of light as the 
material limit which it is known to be.  Further, it turns out that when 0 /ek Q rφ =  is the Coulomb 

potential whereby this limit becomes 2/ek Qq r mc<  (a.k.a. 2/er k Qq mc> ), we find that there is 

a lower physical limit on how close two interacting charges can get to one another, thereby solving 
the long-standing problem of how to circumvent the 0r =  singularity in Coulomb’s law. 

 
To be sure, these electromagnetic time dilations are miniscule for everyday 

electromagnetic interactions, as are special relativistic time dilations for everyday motion.  So 
testing of /dt dτ  changes for electrodynamics may perhaps be best pursued with experimental 
approaches similar to those used to test relativistic time dilations.  As a very simple example to 
establish a numeric benchmark, consider two bodies with charges 1 CQ q= =  (Coulomb) 
separated by 1 mr =  (meter).  In this event, the Coulomb interaction energy has a magnitude 

9
0/ 1/ 4 8.897 10  Je ek Qq r k πε= = = ×  (Joules).  Yet, if the test particle which we take to have the 

charge q has a rest mass 1 kgm =  (kilogram), then the electrodynamic time dilation factor 

contained in (2.10) is 2 7
01 / 1 / 4 1 10 1.0000001em ek cγ µ π −= + = + = + = .  This is a very tiny time 

dilation for a tremendously energetic interaction. The release of this much energy per second 
would yield a power of approximately 8.99 GW (gigawatts), which roughly approximates seven 
or eight nuclear power plants, or roughly four times the power of the Hoover Dam, or the power 
output of a single space shuttle launch, or the power of about seventy five jet engines, or that of a 
single lightning bolt.  For a special relativistic comparison, consider an airplane which flies one 
mile in six seconds, versus light which travels a bit over one million miles in six seconds.  Here, 

6/ 10v c −≅   and the time dilation is 2 21/ 1 / 1.0000000000005v v cγ = − ≅ .  So in fact the 

exemplary electrodynamic time dilation  is substantially less miniscule than this exemplary special 
relativistic dilation.  However in daily experience where one encounters watts and kilowatts not 
gigawatts, these time dilations would be of similar magnitude. 
 
 In short, in order to be able to obtain equation (2.1) for gravitational and electrodynamic 
motion from the minimized proper time variation (1.1) in a way that preserves the integrity of the 
metric and the background fields independently of the /q m ratio for a given test charge and 
thereby achieves the conceptually-attractive goal of understanding electrodynamic motion to be 
geodesic motion just like gravitational motion, we are forced to recognize that attractive 
electrodynamic interactions inherently dilate and repulsive interactions inherently contract time 
itself, as an observable physical effect.  This is identical to how relative motion dilates time, and 
to how gravitational fields dilate (redshift) or contract (blueshift) time.  In this way, it becomes 
possible to have a spacetime metric which – although a function of the electrical charge and inertial 
mass of test particles – also remains invariant with respect to those charges and masses and 
particularly with respect to a re-gauging of the charge-to-mass ratio.  This preserves the integrity 
of the field theory, and establishes that electrodynamic motion is in fact geodesic motion which 

satisfies the minimized proper time variation 0
B

A
dδ τ= ∫  from (1.1).  As a result, it becomes 
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possible to lay an entirely geometrodynamic foundation for classical electrodynamics in four 
spacetime dimensions. 
 
 In the next section we shall review in detail exactly how (2.1), which includes gravitational 
and electrodynamic motion, is deductively derived from minimizing the action (1.1) using the line 
element (2.5) and the related equation (2.6) for the canonical energy-momentum.  As we shall see 
in (3.4), this derivation produces an additional term in the Lorentz force that is not gauge-invariant, 
and thus leaves an unobservable ambiguity in the physical motion.  To address this, as reviewed 
in section 4, it is necessary to impose two conditions on the gauge field.  The first condition fixes 
the gauge field to the Maxwell Lagrangian in lieu of the often-imposed Lorenz gauge, but still 
leaves some residual ambiguity in the gauge field.  The second condition fixes the additional 
Lorentz force term to zero, thereby removing the remaining gauge ambiguity.  Then, in section 5, 
we reformulate the former Lagrangian-based gauge condition in terms of the Maxwell action.  In 
sections 6 and 7, respectively, we use these gauge conditions to uncover a covariant scalar equation 
for power, and a scalar field equation for energy flux, in the presence of both gravitational and 
electrodynamic interactions and sources.  In essence, sections 3 through 7 directly explicate the 
derivation of the Lorentz force (2.1) from the minimized variation (1.1) and the immediate 
consequences of this in terms of required gauge fixing conditions and resulting power and energy 
flux equations.  Section 8 then shows precisely how the time dilation and contraction summarized 
above, as well as the time flow / energy relation (2.10), are derived by simply requiring that the 
metric line element must remain invariant and the background fields in spacetime must remain 
unchanged, under a re-gauging of the electrodynamic charge-to-mass ratio /q m.  Finally, section 
9 contains concluding remarks. 
 
3. Derivation of Lorentz Force Geodesic Motion from Variation Minimization 
 
 The foundational calculation to derive (2.1) including the Lorentz force from the 
minimized variation (1.1) begins with the spacetime metric 2 2c d g dx dxµ ν

µντ =  which is multiplied 

through by 2m  and turned into the free particle energy-momentum relation 2 2m c g p pµ ν
µν=  

containing the mechanical momentum /p mdx dµ µ τ= .  This in turn is readily turned into Dirac’s 

( ) 0i mµ
µγ ψ∂ − =  for a free electron in flat spacetime making use of { }1

2 ,µν µ νη γ γ= .  Then, we 

simply use Weyl’s well-known gauge prescription [4] which transforms the mechanical 
momentum to the canonical momentum /p p qA cµ µ µ µπ→ ≡ +   thus the energy-momentum 

relation to 2 2m c g µ ν
µνπ π=  in (2.6), and the ordinary derivatives to gauge-covariant derivatives 

iqAσ σ σ σ∂ → ≡ ∂ −D  and thus Dirac’s equation to ( ) 0i mµ
µγ ψ− =D  for interacting particles.  All 

of this emerges by requiring “gauge” symmetry under the local phase transformation 
( , )i tU eϕ ϕ ϕ ϕΛ′→ = = x  acting generally on the scalar fields ϕ φ=  of the Klein-Gordon equation 

and the fermion fields ϕ ψ=  of Dirac’s equation, redirecting phase but preserving magnitude.  
This is all well-known, so it is not necessary to detail this further.  The point is that the relation 

2 2m c g µ ν
µνπ π=  in (2.6) is easily derived from the metric 2 2c d g dx dxµ ν

µντ =  using local gauge 

symmetry, and that nothing more is needed to furnish the starting point to minimize the variation 
and arrive at the combined gravitational and electrodynamic motion (2.1). 
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 Starting with (2.6) and dividing through by 2 2m c , we form the number 1 as such: 
 

2 2 2 2
1

dx q dx q u q u q U U
g A A g A A g

cd mc cd mc c mc c mc c c

µ ν µ ν µ ν
µ ν µ ν

µν µν µντ τ
     

= + + = + + =     
     

. (3.1) 

 
This will be useful in a variety of circumstances.  The above includes the mechanical four-velocity 

/u dx dµ µ τ≡  and a canonical four-velocity defined by /U u qA mcµ µ µ≡ + .  From here, we shall 
work in natural units 1c =  and use dimensional rebalancing to restore c only after a final result. 
 
 The first place that “1” above will be useful is in (1.1), where, distributing the expression 
after the first equality while absorbing gµν  into the electrodynamic term indices, we write: 

 

( )
.52

2
0 1 2

B B

A A

dx dx q dx q
d d g A A A

d d m d m

µ ν σ
σ

µν σ σδ τ δ τ
τ τ τ

 
= = + + 

 
∫ ∫ . (3.2) 

 
From here, we carry out the variational calculation, which deductively culminates in: 
 

( )

( ) ( )

2

2

2

2

1

20
1

2

B B

A A

d x dx dx
g g g

d d dd d
q dx q

A A A A
m d

g
x

m

ν µ ν

αν µ να ν αµ

σ
σ

α

α µν
α

ασ σ α σ

τ τ ττ τ

τ

δδ
∂

 
− + − ∂ − ∂ 
 = =
 

+ ∂ − ∂ + 
 

∂
∫ ∫ . (3.3) 

 
Going from (3.2) to (3.3) is straightforward.  The top line contains the same result usually obtained 
for gravitational geodesics, which is the result of setting 0q =  in (3.2).  This is the calculation 
Einstein first presented in §9 of [1], and does not need to be reviewed further.  The terms on the 
bottom line emerge as a direct and immediate consequence of starting with the canonical 

2 2m c g µ ν
µνπ π=  rather than the ordinary mechanical 2 2m c g p pµ ν

µν=  energy-momentum 

relation, which is to say, the bottom line is a result merely of mandating local gauge symmetry.  
Some specific guides to note when performing the detailed calculation include: a) we assume no 
variation in the charge-to-mass ratio, i.e., that ( )/ 0e mδ = , over the path from A to B; b) applied 

to gauge field terms, the variations are xA Aα
ασ σδ δ= ∂  and ( ) ( )xA A A Aα

α
σ σ

σ σδ δ= ∂ ; c) we 

also use / /dA d A dx dα
σ α στ τ=∂ ; and d) there is an integration-by-parts in the calculation.  This 

integration-by-parts produces a boundary term ( ) ( ) 0
BB

A A
d A x A xσ σ

σ σδ δ= =∫  that can be 

eliminated, and for the remaining term causes the sign reversal appearing in A Aα σ σ α∂ − ∂ . 

 
 The proper time 0dτ ≠  for material worldlines, and between the boundaries at A and B 

the variation 0xσδ ≠ .  So the large parenthetical expression in (3.3) must be zero.  The connection 
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( )1
2 g g ggβ

µν α µ
αβ

µ να ν αµν−Γ = − ∂∂ − ∂  and field strength ; ;F A A A Aασ α σ σ α α σ σ α= ∂ − ∂ = ∂ − ∂ .  So 

with c restored, this enables us to extract: 
 

( )
2 2

2 2 2

1

2

d x dx dx q dx q
F A A

d d d m cd m c
β β

µ

β µ ν σ
β

ν
σ

σ στ τ τ τ
= − ∂+Γ + . (3.4) 

 
This clearly reproduces (2.1) and includes the Lorentz force motion alongside the gravitational 
geodesic, all obtained from the minimized variation (3.2).  Therefore, (3.4) does represent geodesic 
motion, although when contrasted to the Lorentz motion it contains an additional term ( )A Aσβ

σ∂  

that we shall shortly review in depth. 
 

As with (1.3), we may view (3.4) in an alternative albeit equivalent way that highlights 
how Lorentz motion plus the extra term is now merely a consequence of local gauge symmetry:   
It is well-known how imposing gauge symmetry spawns the heuristic rules iqAσ σ σ σ∂ → ≡ ∂ −D  

and /p p qA cµ µ µ µπ→ ≡ +  for gauge-covariant derivatives and canonical momentum, and 
2 2 2 2m c g p p m c gµ ν µ ν

µν µνπ π= → =  for the energy momentum relation.  Here, referring to (1.3), 

we see another heuristic rule which emerges in lockstep with these others, namely: 
 

( )
2

2 22
0

1Du du u Du q q
F u A A

D d D m
u u

c m c

β β β β
ββ µ ν β

µν
β σ σ

σ στ τ τ τ
+Γ →= Α ≡ ≡ − ∂− =D

D
, (3.5) 

 
which in the absence of gravitation we may write as: 
 

( )
2

2 22
0

1du u du q q
F u A A

d d mc m c

β β β
β σ

σ
βσ

στ τ τ
∂ =≡→ − −D

D
. (3.6) 

 
In the above, /uβ τD D  symbolizes the gauge-covariant or canonical acceleration, which 

is rooted in the further heuristic ( )/dx x dx q mc d Aµ µ µ µτ→ ≡ +D  defined in (2.5).  And more 

generally, using the boldface D  notation whenever there are both gravitational and electrodynamic 
fields, we have used / 0uβ β τΑ ≡ =D D  to denote the gravitationally- and gauge-covariant 

acceleration.  The equation / 0uβ τ =D D  in (3.5) states that covariant canonical acceleration is 
gravitationally-covariant and gauge-covariant, which we shall refer to generally as “canonical 
covariance.”  Yet, when shown in terms of mechanical four-velocities /u dx dµ µ τ= , the 
mechanical acceleration contains the geodesic motion of gravitation and the Lorentz force motion 
of electrodynamics.  In the absence of any charge or electromagnetic potential / field the above 
reverts back to / / 0Du D du d u uβ β β µ ν

µντ τ + Γ= =  for gravitationally-covariant motion (1.3).  In 

the absence of gravitation we reduce to (3.6) for the canonically-covariant Lorentz force alone.  
And in the absence of both gravitation and electromagnetism what remains is merely / 0du dβ τ =  
for the Newtonian inertial motion governed by special relativity alone.  From this view, all physical 
motion is inertial and geodesic because / 0uβ τ ≡D D ; the motion is simply covariantly and 
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canonically-inertial with any gravitational curvature and any canonical gauge elements.  What we 
observe physically are the mechanical counterparts to the covariant canonical motion. 

 
All of the above provides a conceptually-compelling view of classical physical motion.  

However, (3.4) yields a term ( )A Aσβ
σ∂  which is not ordinarily a part of the Lorentz force law.  

And in fact, this term needs to be removed for one empirical reason and two theoretical reasons:  
The empirical reason is that this term is not part of the well-established, well-corroborated. 
universally-observed Lorentz Force law (2.1).  The first theoretical reason is that the motion cannot 
depend upon a term ( )A Aσ

β σ∂  which in turn depends upon and changes as a function of the 

unobservable local phase ( , )tΛ x .  Specifically, the gauge transformation qA qA qAσ σ σ σ′→ = − ∂ Λ  

would introduce the phase into (3.4) and thus leave the observable motion ambiguous and in 
violation of gauge symmetry.  The second theoretical reason is that by removing this term, (3.4) 
now does fully describe the Lorentz motion as geodesic motion, which is conceptually attractive. 
So the question arises whether there is some clear natural basis upon which this term does in fact 
get removed in the physical world. 

 
A simple fix would be to modify the metric (2.5) by subtracting out the second-order term 

with A Aσ
σ , and to then start the variation of (3.2) on the basis of: 

 
2 2

2 2 2 2
2 2 2 2

q q q q
c d x x d A A dx d A dx d A d A A

m c mc mc m c
σ σ σ σ σ

σ σ σ σ στ τ τ τ τ  = − = + + −  
  

D D . (3.7) 

 
When turned into the number “1” as in (3.1) and then used in the variation as in (3.2), it is clear 
that this will result in (3.4) but without the extra term ( )A Aσβ

σ∂  because the source of that term 

is subtracted out of (3.7).  So the result is the Lorentz force plus gravitational motion, precisely, as 
desired.  However, this approach loses some conceptual strength, because the Lorentz force does 
not emerge simply from applying local gauge symmetry and the heuristic rules which emerge from 
this symmetry as reviewed in equations (3.5) and (3.6).  Now the rule becomes: apply gauge 
symmetry, and then take the extra step of subtracting off the A Aσ

σ  term to get a desired result.  

Occam's razor would in this circumstance compel us to see if this second step can be eliminated, 
and whether the term ( )A Aσβ

σ∂  can be removed from (3.4) in some other, more natural way. 

 
As we shall now see in sections 4 through 7, this extra term in (3.4), and the process for its 

prospective removal from (3.4), is intimately connected with gauge fixing, Maxwell’s electric 
charge equation, the electrodynamic Lagrangian and action, electrodynamic and gravitational 
power, and the sources T µν  in Einstein’s field equation for gravitation.  
 
4. The Lagrangian Gauge and the Geodesic Gauge, and Canonically-Inertial Motion 
 
 To study the extra term ( )A Aσβ

σ∂  in (3.4), we start with Maxwell’s equation ;J Fβ αβ
α= ∂  

for the electric charge density.  Via the usual expression ; ;F A A A Aαβ α β β α α β β α= ∂ − ∂ = ∂ − ∂  for 
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the field strength we write this in terms of the gauge fields as ; ; 0J A Aβ α β β α
α α− ∂ ∂ + ∂ ∂ = .  But 

we do not use the Lorenz condition ; 0Aα
α∂ =  to fix the gauge; rather for now we leave this term 

as is.  We then multiply this Maxwell equation through by Aβ , thus writing the scalar equation: 

 

; ; 0A J A A A Aβ α β β α
β β α β α− ∂ ∂ + ∂ ∂ = . (4.1) 

 
For the second term above we have ( ); ; ;A A A A A Aα β α β α β

β α α β α β− ∂ ∂ = ∂ ∂ − ∂ ∂ , using the product 

rule.  We may also form the identity ( )1
2A A A Aα β α β

β β∂ = ∂ .  Using both of these in (4.1) yields: 

 

( )1
; ; ;2 0A J A A A A A Aβ α β α β β α

β α β α β β α+ ∂ ∂ − ∂ ∂ + ∂ ∂ = . (4.2) 

 
The second term 1

; 4A A A A F Fα β α β αβ
α β α β αβ∂ ∂ = ∂ ∂ = , and with this, the first two terms are 

equivalent to minus the electrodynamic Lagrangian density, 1
4 emA J F Fβ αβ

β αβ+ = −L .  Therefore, 

(4.2) is simply: 
 

( )1
; ;2 emA A A Aα β β α
α β β α− ∂ ∂ + ∂ ∂ = L . (4.3) 

 
Again, this is an alternative way of saying that ;A J A Fβ αβ

β β α= ∂ , which is a four-dimensional 

scalar product of Maxwell’s charge equation with the gauge field.  Note that ; ; ;A Aα α
β α β α∂ ∂ = ∂ ∂  

because the gravitationally-covariant derivative of any scalar is equal to the ordinary derivative of 
the same.  As is easily seen, the first term above contains the extra term ( )A Aσβ

σ∂  that appeared 

in (3.4).  And the second term contains ; Aα
α∂  which in the Lorenz gauge is fixed to ; 0Aα

α∂ = .  

The latter is a covariant scalar condition which removes one degree of freedom from the gauge 
field Aα .   
 

Now, because photons which comprise the gauge field are massless, we are not required 
to use ; 0Aα

α∂ =  as we would be if photons were massive.  Instead, we are permitted to fix the 

gauge directly to the physical Maxwell Lagrangian by setting: 
 

; emA Aβ α
β α∂ ∂ ≡ L . (4.4) 

 
This is also a covariant scalar gauge condition which removes one degree of freedom, so it would 
be a suitable replacement for the Lorenz gauge.  For obvious reasons we shall refer to this as the 
“Lagrangian gauge.”  If we were to impose this condition, then as a consequence of combining 
(4.4) with Maxwell’s equation represented via (4.3), we would also find (renaming indexes) that: 
 

( ); 0A Aβ α
β α∂ ∂ = . (4.5) 
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Therefore, at the very least, the four-gradient ( ); A Aβ α
β α∂ ∂  of the term ( )A Aσβ

σ∂  would become 

zero.  The question now is: may we and should we adopt the Lagrangian gauge (4.4), and also, the 
stronger condition that ( ) 0A Aβ σ

σ∂ =  itself? 

 
 Were we to impose the condition ( ) 0A Aβ σ

σ∂ =  and thus add further constraint beyond 

the covariant scalar relation (4.4), then (4.5) would still remain true and thus be compatible with 
the Lagrangian gauge condition (4.4).  And all of this would remain compatible with the scalar 
representation (4.3) of Maxwell’s equation in ;A J A Fβ αβ

β β α= ∂ .  So there is no apparent conflict 

or contradiction that arises from setting ( ) 0A Aβ σ
σ∂ = .  But it is also well-known that a covariant 

scalar gauge condition such as the Lorenz gauge ; 0Aα
α∂ =  or the Lagrangian gauge of (4.4) still 

leaves some residual ambiguity in the gauge field, which ambiguity still needs to be removed.  The 
question is how we do so.  Because setting ( ) 0A Aβ σ

σ∂ =  would be an even stronger constraint 

than (4.5), clearly this would squeeze out some further ambiguity.  The question now is whether 
this would remove just enough ambiguity to eliminate all residual ambiguity, and at the same time 
not over-determine the results by imposing too much constraint. 
 
 This brings us back to (3.4).  As noted in the paragraph prior to (3.7), a gauge 
transformation qA qA qAσ σ σ σ′→ = − ∂ Λ  applied to (3.4) would leave the physical motion 

ambiguous because of the extra term ( )A Aσβ
σ∂ .  Further, there is no way to completely remove 

this ambiguity without removing this term entirely.  The weaker condition (4.5) which via (4.3) is 
a proxy for the Lagrangian gauge (4.4), which in turn is a substitute for the Lorenz gauge, would 
remove all traces of this extra term from the third-derivative expression that would result were we 
to take 2 2

; /d x dβ
β τ∂  by applying ;β∂  to (3.4).  But there would still remain some ambiguity at the 

second derivative which is (3.4) because of what happens when we apply the transformation 
qA qA qAσ σ σ σ′→ = − ∂ Λ .  Therefore, to remove all ambiguity from the physical motion, we do 

need to apply the stronger condition ( ) 0A Aβ σ
σ∂ = .  Once we do so, all of the remaining ambiguity 

is removed from the physical motion of (3.4), and the result is no more and no less than the Lorentz 
force law.  And because the Lorentz force law is entirely symmetric under the gauge transformation 
qA qA qAσ σ σ σ′→ = − ∂ Λ , we are assured that not only have we removed all physical ambiguity by 

setting ( ) 0A Aβ σ
σ∂ = , but also that we have not removed too much ambiguity so as to over-

determine the physical result. Rather, we have precisely determined the physical result.  And, we 
are assured from the derivation (4.1) through (4.5) that there is no contradiction whatsoever with 
Maxwell’s equation ;J Fβ αβ

α= ∂ . 

 
 Therefore, we shall now formally take the following two steps:  First, to covariantly remove 
one degree of freedom from the gauge field, we shall fix the gauge using the Lagrangian gauge 
condition ; emA Aβ α

β α∂ ∂ =L  of (4.4).  This is in lieu of applying the Lorenz gauge condition 
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; 0Aα
α∂ = .  Second, to remove any additional ambiguity from the gauge field, we shall impose the 

condition: 
 

( ) 0A Aβ α
α∂ ≡  (4.6) 

 
on the four-gradient of the scalar quantityA Aα

α .  The d'Alembertian of this scalar will then also 

be zero as shown in (4.5), which is fully compatible with Maxwell’s electric charge equation 

;J Fβ αβ
α= ∂ .  By imposing both conditions (4.4) and (4.6), the result in (3.4) now reduces to: 

 
2

2

d x dx dx q dx
F

d d d m cd

β
β

µν

µ ν σ
β

στ τ τ τ
+−Γ= . (4.7) 

 
Note, because we now have ; emA Aβ α

β α∂ ∂ = L , that the additional use of the Lorenz gauge 

; 0Aα
α∂ =  is not permitted: imposing this condition would cause 0em =L  and thereby over-

determine the physical results. 
 

Now, the Lorentz force law has been derived from the minimized variation 0
B

A
dδ τ= ∫  of 

(1.1) starting at (3.2) by merely requiring local gauge symmetry and, true to Occam's razor, nothing 
more.  The extra term ( )A Aβ α

α∂  has been removed not by the unnatural fix of (3.7), but rather by 

the natural solution of fixing the gauge to entirely remove any ambiguity from the physical motion 
without over-determination.  Following all of this, (3.5) reduces to: 
 

0
u Du q du q

F u F u
D m d

u
m

uβ µ ν
µ

β β β
β β σ β σ

σ σντ τ τ
Α = ≡ − −+Γ= =D

D
, (4.8) 

 
and the combined Lorentz and gravitational acceleration truly is geodesic motion.  Specifically, 
the motion (4.8) is inertial in both a gravitationally- and canonically-covariant manner. As a 
shorthand, we shall refer to this simply as “canonically-inertial motion.” This is a generalization 
of Newtonian inertial motion / 0du dβ τ =  to the circumstance where gravitational and 
electromagnetic fields are present and the test particle has a charge q that interacts with the 
electromagnetic fields.  Here, the canonical / 0uβ τ =D D  instead, while the mechanical motion 

/ 0du dβ τ ≠ , which is not  inertial, describes what is observed when the motion is referred to the 
coordinates xβ  of /u dx dβ β τ=  and then clocked in relation to the proper time linear metric 
element dτ .  Given all of this, we shall refer to (4.6) as the “geodesic gauge” condition. 
 
 The foregoing is yet another example of the general heuristic rule that when gauge fields 
and charges are present, canonical quantities behave in the same way that their counterpart 
mechanical quantities behave in the absence of the gauge fields and charges.  Thus, for example, 
the mechanical ( ) 0i mµ

µγ ψ∂ − =  is inherited by Dirac’s canonical ( ) 0i mµ
µγ ψ− =D ; while the 

mechanical energy relation 2 2m c g p pµ ν
µν=  is inherited by the canonical 2 2m c g µ ν

µνπ π=  of 
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(2.6); and the mechanical / 0du dβ τ =  is inherited (absent gravitation) by the canonical 
/ 0uβ τ =D D  for the Lorentz force, see (3.6) without the extra term.  And for yet another example, 

absent gauge fields and charges, the momenta along different space axes are compatible, 

, 0i jp p  =  .  But once gauge fields and charges are added, then it is the canonical , 0i jπ π  =   

which inherit this compatibility.  Using p qAµ µ µπ ≡ +  and the canonical commutativity relation 

,i j i jp A i A  = − ∂  ℏ , it is then straightforward to show that the mechanical momenta 

,i j ijp p iq F  =  ℏ  now become incompatible, where , /ij i j j i i jF A A iq A A = ∂ − ∂ −   ℏ  are the 

space components of a non-abelian field strength.  For the electromagnetic field which is abelian, 
this becomes ,i j ijk kp p iq Bε  =  ℏ  where kB = B  is the magnetic field bivector and the Levi-Civita 

tensor 123 1ε = −  given that the lower-indexed 123 1ε ≡ + .  So the magnetic fields measure the 

incompatibility of the mechanical momentum components.   
 

This last example, via the heuristic interchange i pµ µ∂ ⇔ , is simply a variant of the 

fundamental premise that in gauge theory, the field strength is an imaginary measure 
, iqFµ ν µνφ φ  = − D D  of the extent to which the gauge-covariant (canonical) derivatives do not 

commute when acting on a generalized field φ .  This is why Hermann Weyl pursued gauge theory 
to begin with, as an effort to generalize into electrodynamics, general relativistic curvatures for 
which ; ;,R A Aα

βµν α ν µ β = ∂ ∂  .  And this is why F µν  is often referred to as the  “curvature” tensor.  

However, as discussed after (2.10), it took Weyl just over a decade [2], [3], [4] to finally realize 
that ,qF iµν µ νφ φ =  D D  must bear an imaginary, not real, relation to curvature, and that the root 

symmetry was not under a re-gauging, but rather under a re-phasing, of electron wavefunctions.  
 
 Now, let us explore some further significant results which arise from the Lagrangian gauge 
(4.4) and the geodesic gauge (4.6).  As noted at the end of the previous section, these result relate 
to the electrodynamic Lagrangian and action (the former already seen in the Lagrangian gauge 

; emA Aβ α
β α∂ ∂ =L  of (4.4)), electrodynamic and gravitational power, and the sources T µν  in 

Einstein’s equation. 
 
5. The Electrodynamic Action in Lagrangian Gauge 
 
 It is very illustrative to rewrite the Lagrangian gauge (4.4) using the product rule as  
 

( ); ; ;em A A A A A Aβ α β α β α
β α β α β α= ∂ ∂ = ∂ ∂ − ∂ ∂L , (5.1) 

 
and then obtain the electrodynamic action 4

em emS d x= ∫ L .  Once inside the action integral, we may 

set ( )4
; 0d x A Aβ α

β α∂ ∂ =∫  via the boundary condition ( , ) 0A tβ =x  at the extremum ,t = ±∞x .  

What we then end up with is an action: 
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( )4 4 4
;em emS d x d x A A d x A A A Aβ α β α α σ β

β α β α σα β= = − ∂ ∂ = − ∂ ∂ + Γ ∂∫ ∫ ∫L , (5.2) 

 

noting also that g gα
σα σΓ = ∂ − −  where g is the metric tensor determinant.  In flat spacetime, 

with 0gσ∂ − = , this becomes the very simple action: 

 

( )24 4
em emS d x d x Aαα= = − ∂∫ ∫L . (5.3) 

 
It will be seen that (5.3) is analogous to the Rξ  gauge conditions, which are ordinarily written as 

( )2
/ 2Aα

αδ ξ= − ∂L .  However, (5.2) and (5.3) are not local conditions; they are global because 

they represent an integral over the entire volume of the four-dimensional spacetime. 
 

Once we are working with the action, we are but a step away from Quantum 
Electrodynamics, which is generated through the path integration ( )exp /em emZ DA iSα= ∫ ℏ .  As 

usual, we may start with 1
4 emA J F Fβ αβ

β αβ+ = −L  to obtain the electrodynamic action 

( )( )4 1
2emS d x A g A J Aµν σ µ ν µ

µ σ ν µ= ∂ ∂ − ∂ ∂ −∫ .  Note that this has no expressly-appearing 

gravitationally-covariant derivatives, because of the cancellations that occur via 
; ;F A A A Aαβ α β β α α β β α= ∂ − ∂ = ∂ − ∂ .  However, there is an implicit gravitational term, because 

;J Fβ αβ
α= ∂ .  This is the exact origin starting at (4.1) of the ;α∂  appearing in (5.1) and (5.2).  Then 

we use Gaussian integration to path integrate as usual.  But the upshot of (5.2) is to tell us that: 
 

( )( ) ( )( )24 41
2emS d x A g A J A d x A A Aµν α µ ν α α α σ β

µ α ν α α σα β= ∂ ∂ − ∂ ∂ − = − ∂ + Γ ∂∫ ∫ . (5.4) 

 
This provides a second expression for the action based on employing the Lagrangian gauge (4.4) 
in the process of deducing the combined gravitational and Lorentz force motion of (4.7) and (4.8) 
from the minimized variation (1.1) as applied in (3.2).  The other constraint, of course, is the 
geodesic gauge condition ( ) 0A Aβ α

α∂ =  of (4.6) to which we now turn.  This constraint leads to 

a relation for electrodynamic and gravitational power, and leads to a direct connection with the 
sources T µν in Einstein’s equation. 
 
6. The Geodesic Gauge and the Electro-Gravitational Power Equation 
 

Next, we study the effect of the geodesic gauge condition (4.6) on the canonical energy-
momentum relation (2.6).  We first return to (2.6), which, with indices summed and with 1c = , 
we expand without commuting the left-right ordering of the momenta and the gauge fields, to 
obtain 2 2m p p qA p qp A q A Aσ σ σ σ

σ σ σ σ= + + + .  The reason we refrain from commuting is to 

highlight that were we to combine the two middle terms into 2qA p qp A qA pσ σ σ
σ σ σ+ =  we would 

need to commute pσ  and Aσ  which needs to be done with care given the Heisenberg commutation 
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relation ,j jp B i B  = − ∂  ℏ  for any field ( , )B t x  which is a function of the spacetime coordinates.  

And as to the time component, we would also want to be mindful of the Heisenberg equation of 
motion [ ]0 0,H O i O= − ∂ℏ  for an operator O with no explicit time dependence, together with 

relationship 0 0H pψ ψ=  between the Hamiltonian 0H  operator and the observable energy 

0p E=  which contains its eigenvalues.  Therefore, even if we were to commute the energy with 

the time component of the potential 0A φ=  thus setting 0
0, 0p A  =  , we would still have to 

recognize that j j j
j j jp A A p i A= − ∂ℏ  and thus include a term of the form j

ji A− ∂ℏ  if not i Aσ
σ− ∂ℏ

, if it was our desire to move beyond classical physics and account for the quantum mechanical 
non-commutativity. 

 
For present purposes, to be completely general, let us use the relationship 

,p A i Aσ σ
σ σ  = − ∂  ℏ  a.k.a. p A A p i Aσ σ σ

σ σ σ= − ∂ℏ  covariantly extended into the time dimension, 

recognizing that we may always restrict this to the space components by setting 0
0, 0p A  =  , thus 

0
0 0A∂ = , and may additionally ignore quantum effects entirely by setting , 0j

jp A  =  , thus the 

space divergence 0j
j A∂ = ⋅ =A∇ .  Therefore, we start by writing (2.6), with 1c= =ℏ , as: 

 
2 22m p p qA p q A A iq Aσ σ σ σ

σ σ σ σ= + + − ∂ . (6.1) 

 
The final term Aσ

σ∂  arises from the commutativity just discussed, and may be removed or ignored 

under the circumstances just discussed. 
 
Now, let us take the covariant spacetime gradient ;β∂  of the above.  The rest mass is 

invariant, and so its four-gradient ; 0m mβ β∂ = ∂ = .  Therefore, after reduction we obtain:  

 

( )21 1
; ; ; ; ;2 20 p p q A p qA p q A A iq Aσ σ σ σ σ

σ β β σ σ β β σ β σ= ∂ + ∂ + ∂ + ∂ − ∂ ∂ . (6.2) 

 
Now we apply the geodesic gauge (4.6), so the term ( ) ( ); 0A A A Aσ σ

β σ β σ∂ = ∂ =  is removed.  We 

may also use the field strength to replace ; ;A F Aβ σ βσ σ β∂ = + ∂ .  Additionally, p muσ σ=  is the 

ordinary mechanical momentum, so we can divide out m, whereby p uσ σ→  throughout the 
contravariant momentum terms in the above.  Thus, segregating the field strength term on the left, 
(6.2) becomes: 
 

( )1
; ; ; ;2 /qF u p u qA u q A u i q m Aσ σ σ σ σ

βσ σ β σ β σ β β σ= − ∂ − ∂ − ∂ + ∂ ∂ . (6.3) 

 
We of course recognize qF uσ

βσ  as a variant of the Lorentz force term in (2.1). 
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 Now, we wish to express the terms on the right in relation to the passage of proper time, 
that is, as derivatives along the curve, see (3.5) and (3.7).  For the next-to-last term in (6.3) we 
may substitute ; /A u dA d A uσ τ σ

σ β β σβ ττ∂ = − Γ  derived using the gravitationally-covariant 

derivative and the chain rule.  So also with ; A Aσ σ
β σ β σ∂ ∂ = ∂ ∂ , (6.3) advances to: 

 

( ); ;

1
/

2

dA
qF u p u qA u q q A u i q m A

d
βσ σ σ τ σ σ

βσ σ β σ β σβ τ β στ
= − ∂ − ∂ − + Γ + ∂ ∂ . (6.4) 

 
As to the remaining terms, we now multiply by /u dx dβ β τ=  throughout, giving us a ;u uβ σ

β∂ in 

the first two terms after the equality.  Then we may similarly derive and then substitute 

; /u u du d u uβ σ σ σ β τ
β βττ∂ = + Γ .  Also writing p muσ σ=  for the remaining mechanical momentum, 

and seeing that the terms with A u uτ β σ
σβ τΓ  cancel identically, and using the chain rule in the final 

term ( )/ / /u A d d A dA dβ σ σ σ
β σ σ στ τ∂ ∂ = ∂ = ∂ , with renamed indices and 1c= =ℏ  restored, we 

now have: 
 

1

2

dAq q du q q dA
F u u mu A u m u u u i

c c d c d mc d

σ σ
µ ν σ σ µ νσ

µν σ σ µν σ στ τ τ
 = − + − − Γ + ∂ 
 

ℏ . (6.5) 

 
This ( )/q c F u uµ ν

µν  term on the left is a scalar number, and it has dimensions of power.  

So this is an expression for electrodynamic and gravitational power.  However, because Fµν  is an 

antisymmetric tensor, this term vanishes identically.  Therefore, moving all of the mechanical and 
gravitational terms to the left and keeping the electrodynamic terms on the right, we may 
consolidate to: 
 

( ) 1

2

du q d q dA
mu u u A u i

d c d mc d

σ σ
σ µ ν σ

σ µν σ στ τ τ
 

+ Γ = − + ∂ 
 

ℏ . (6.6) 

 
It is easily seen that when the right hand side becomes zero in the absence of electrodynamics, the 
left hand side contains the gravitational geodesic motion (1.1).  The final term may also be 
vanished by setting 0=ℏ , i.e., in the classical limit.  In terms of spacetime coordinates with all 
terms expanded, and isolating all the acceleration terms on the left, another way to express this is: 
 

2

2

1

2

dx dxq d x dx dx q dA q dA
m A m i

d c d d d c d d mc d

σ µ ν σ σ
σσ σ

σ µν στ τ τ τ τ τ τ
  + = − Γ − + ∂  

   
ℏ . (6.7) 

 
In the absence of gravitation, we merely set 0σ

µνΓ = .  And if we neglect the non-commutativity 

discussed in the first paragraph of this section, then we may set 0=ℏ  to vanish the final term.  The 
effect of the geodesic gauge (4.6) in all of the foregoing, starting at (6.3), is to have removed the 
terms A Aσ

σ  which are of second order in the gauge field. 
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 Now let us see how this connects to Einstein’s equation and gravitational curvature. 
 
7. The Electro-Gravitational Energy Flux Field Equation  
 
 As already reviewed, by fixing to the Lagrangian gauge ; emA Aβ α

β α∂ ∂ ≡ L  of (4.4) in lieu 

of the Lorenz gauge ; 0Aα
α∂ = , Maxwell’s equation ;J Fβ αβ

α= ∂  also constrains us to require the 

relation ( ); 0A Aβ α
β α∂ ∂ =  of (4.5).  The stronger geodesic gauge ( ) 0A Aβ α

α∂ ≡  of (4.6) was used 

to remove the remaining gauge ambiguity from the equation of motion (3.4), or (3.5), thereby 
producing the combined gravitational and Lorentz force law of motion (4.7).  This raises an 
interesting question: if we want to explore the impact on the equation of motion of the weaker 
condition ( ); 0A Aβ α

β α∂ ∂ =  which is required for compatibility with Maxwell’s equation, then it 

is clear that this impact can be seen by taking the covariant gradient ;β∂  of the original equation 

of motion (3.4) from before we imposed the stronger condition of (4.6).  What makes this 
interesting is that this ties together the sources in both the Einstein equation for gravitation and 
Maxwell’s equation for electric charges, as we shall now see. 
 
 Mindful that 1

4 emA J F Fβ αβ
β αβ+ = −L , we start by taking the covariant gradient ;β∂  of 

(3.5), and then applying (4.3) which stems from Maxwell’s charge equation, to obtain: 
 

( ) ( )
2

; ; ; ; ;2
0em

u Du q q
F u A A

D m m

β β
β β σ β α

β β β β σ β ατ τ
∂ Α = ∂ = ∂ − ∂ + − ∂ ∂ =D

D
L . (7.1) 

 
To be clear, the above via the development laid out from (3.2) to (3.5) is a direct deductive 

consequence of taking the variation 0
B

A
dδ τ= ∫  based on the canonical mass-energy-momentum 

relation 2 2m c g µ ν
µνπ π=  of (2.6) in combination with Maxwell’s charge equation ;J Fβ αβ

α= ∂ .  

No additional assumptions are used to obtain (7.1), and in particular, no gauge conditions have yet 
been imposed on (7.1). 
 
 First, let us focus on the term ; /Du Dβ

β τ∂ .  Using the expression ; ;,R B Bα
βµν α ν µ β = ∂ ∂   

which relates the Riemann tensor to the degree to which gravitationally-covariant derivatives do 
not commute when operating on an arbitrary vector Bα , from which we deduce 

; ;,R u R u uα αβ β
ν α βν α ν β = = ∂ ∂   for the velocity four-vector uβ , it is easily seen that: 

 

; ; ; ; ; ; ; ; ; ; ;

Du x x x
u u u u u u u R u u

D

β ν ν ν
β β β ν β ν β µ ν

β β ν β ν β ν β ν ν β µντ τ τ τ
 ∂ ∂ ∂∂ = ∂ ∂ = ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ − ∂ ∂ ∂ 

. (7.2) 
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So the Ricci tensor which is part of the Einstein equation 1
2T R g Rµν µν µνκ− = −  and thus related 

to the energy tensor Tµν  which is the source of gravitation, is seen to be contained in (7.1).  This 

is especially direct using the inverse form ( )1
2R T g Tµν µν µνκ= − − . 

 
 Next let us insert (7.2) into (7.1) and also expand terms while applying Maxwell’s 

;J Fβ
σ β σ= ∂ .  With some index renaming, this now yields a scalar equation: 

 

( )

; ; ; ; ; ; ;

2

;2
0em

u q q
R u u J u u u u u F u

m m

q
A A

m

β
β µ ν β σ ν β ν β β σ

β β µν σ β ν ν β σ β

β α
β α

τ
∂ Α = ∂ = − − + ∂ ∂ + ∂ ∂ − ∂

+ − ∂ ∂ =

D

D

L

. (7.3) 

 
We now find both gravitational sources in ( )1

2R T g Tµν µν µνκ= − −  and electric charge sources 

0 ;J Fβ
σ β σµ = ∂  (with 2

0 01/ cµ ε=  balancing dimensionality) all as part of the same dynamical 

equation.  Now, to eliminate the entire second line of (7.3), we impose the Lagrangian gauge 
condition ; emA Aβ α

β α∂ ∂ ≡ L  of (4.4) which covariantly removes just as much freedom from this 

equation as does the Lorenz gauge ; 0Aα
α∂ = .  We may also write ; ; ;u uν ν

µ ν µ ν∂ ∂ = ∂ ∂  because 

; uν
ν∂  is a scalar.  We also multiply the above through by m, while noting that mR u uµ ν

µν  has 

dimensions of energy per area i.e. energy flux.  We then restore c so as to give all terms this same 
dimensionality, while mindful that 48 /G cκ π=  and 2

0 0 1cµ ε = .  And, we make explicit use of 

( )1
2R T g Tµν µν µνκ= − −  while isolating all sources on the left.  With all of this, these sources are 

now seen to bring about motion via the differential equation: 
 

( )1
0 ; ; ; ;2 /T mu u Tmu u qJ u m u u mu u q c F uµ ν σ σ µ ν µ ν τ σ

µν σ σ ν µ µ ν σ τκ κ µ− + + = ∂ ∂ + ∂ ∂ − ∂ . (7.4) 

 
This is a combined differential equation for the gravitational and electrodynamic motion of 
material bodies with a four-velocity uν  and its first  and second covariant derivatives contained in 
the foregoing.  Because all terms have dimensions of energy per area, i.e. energy flux, we recognize 
this to be a scalar energy flux equation. 
 

In general one may find it helpful to keep this equation in the form of (7.4).  To the extent 
one wishes to be more explicit about the derivatives involved in (7.4), we may expand using 

; u u uµ µ µ σ
ν ν σν∂ = ∂ + Γ  and the like.  So the first term after the equality is: 

 

; ; 2m u u m u u mu u mu uµ ν µ ν µ σ ν ν µ σ τ
ν µ ν µ σν µ τµ σν∂ ∂ = ∂ ∂ + Γ ∂ + Γ Γ . (7.5) 

 
Because 0uν

ν∂ =  by the chain rule, we have ; u uν ν σ
ν σν∂ = Γ .  Noting as well that 

( )1
2/ 1/g g g gν

σν σ σΓ = ∂ − − = ∂ , with further use of the chain rule the next term in (7.4) is: 
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( );

2 2 2

2 2 2

1 1

2

1 1 1 1

2

dx g dx
mu u mu u m

d x g x d

dg d g g d x
m

g d g d g x d

µ σ
µ ν µ ν σ

µ ν µ σν µ σ

σ

σ

τ τ

τ τ τ

 ∂ ∂∂ ∂ = ∂ Γ =  ∂ ∂ 

 ∂ = − + +   ∂  

. (7.6) 

 
Placing (7.5) and (7.6) into (7.4) and also expanding the ;F uτ σ

σ τ∂  term, we then obtain the final 

expanded form of the energy flux equation: 
 

1
02

2 2 2

2 2 2

2

1 1 1 1 1 1

2 2 2

T mu u Tmu u qJ u

m u u mu u mu u

dg d g g d x q q
m m m F u F u

g d g d g x d c c

µ ν σ σ
µν σ σ

µ ν µ σ ν α β µ ν
ν µ σν µ µβ να

σ
τ σ σ τ α

σ τ ατ σσ

κ κ µ

τ τ τ

− + +

= ∂ ∂ + Γ ∂ + Γ Γ

∂ − + + − ∂ − Γ  ∂ 

. (7.7) 

 
In regions of spacetime where there is no gravitating matter, i.e., in vacuo, we set 0Tµν =  and 

0T =  above, and then solve for the motion, given only the probability density contained in the 

time component of 0J uσ σ σρ ψγ ψ= = .  In the further absence of electrodynamic sources we set 

0Jσ =  so the entire top line of the above equation becomes zero.   

 
One interesting way to use (7.7) is to remove all energy sources except for the Maxwell-

Poynting electromagnetic field tensor which is 2 1
0 44 c T F F g F Fσ αβ

µν σµ ν µν αβπµ = − +  with 

dimensional balancing, with 2
0 0 1cµ ε = .  This tensor of course has no trace, which is related to 

why electromagnetic fields travel at the speed of light and photons are massless.  So when this is 
the only energy present – and recognizing that this energy still gravitates and thus affects the metric 
and the spacetime curvature – then, with the source term 0cqJ uσ

σµ  isolated on the left, and with 

the constants reorganized via 2 4
0/ 4 / 2 ec G c kκ πµ π=  to display the embedded ratio / eG k  of 

Newton’s to Coulomb’s constant, (7.7) becomes: 
 

0

4 4

2 2 2

2 2 2

2
2 8

1 1 1 1 1 1

2 2 2

e e

qJ u

G G
m u u mu u F F mu u F F mu u

c k c k

dg d g g d x q q
m m m F u F u

g d g d g x d c c

σ
σ

µ ν µ σ ν α β σ µ ν αβ σ
ν µ σν µ µβ να σµ ν αβ σ

σ
τ σ σ τ α

σ τ ατ σσ

µ

π π

τ τ τ

 
= ∂ ∂ + Γ ∂ + Γ Γ − + 

 

∂ − + + − ∂ − Γ  ∂ 

.(7.8) 

 
An equation free of electrodynamic source charges then results from setting 0Jσ =  in the above. 

 
 It is important to keep in mind that (7.7) may  be derived directly from the known Lorentz 
force law (2.1) as represented in (4.8), even had we not obtained this from the minimization of the 
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action (1.1).  This is because (7.7) is simply the spacetime gradient ;β∂  applied to (4.8) as starting 

at (7.1), and (4.8) is true whether or not we obtain it from a variation.  But the motivation to operate 
on the Lorentz force law in this way comes from the fact that when we do obtain the Lorentz force 
from a variation, Maxwell’s equation ;J Fβ αβ

α= ∂  together with the Lagrangian gauge 

; emA Aβ α
β α∂ ∂ = L  of (4.4) mandate the gauge condition ( ); 0A Aβ α

β α∂ ∂ = , which is a weaker 

condition than the geodesic gauge ( ) 0A Aβ α
α∂ ≡  of (4.6).  So when we study the impact of this 

weaker condition ( ); 0A Aβ α
β α∂ ∂ =  on the Lorentz force, the result is the energy flux field 

equation (7.7).  When we impose the stronger condition ( ) 0A Aβ α
α∂ ≡ , the result is the Lorentz 

force itself.  What is important about (7.7) and (7.8) is that they put the energy source tensor Tµν  

or the spacetime curvature Rµν  (as chosen for best convenience in any given calculation), directly 

into the dynamical equation for energy flux. 
 

Having now reviewed how the combined gravitational and Lorentz motion (2.1) is derived 
from the variational equation (1.1), and the required gauge conditions and the immediately-
consequent power and energy flux equations, we now show how to derive the electrodynamic time 
dilation and contraction summarized in section 2.  Again, this is premised on requiring the line 
element to remain invariant and the background fields in spacetime to remain unchanged, under a 
re-gauging of the electrodynamic charge-to-mass ratio /q m. 
 
8. Electrodynamic Time Dilation and Contraction 
 
 As noted earlier, the number “1” constructed in (3.1) is useful in a variety of circumstances.  
Another such circumstance is to explicitly introduce the Lorentz contraction factor 

2 21/ 1 /v v cγ = −  and the ordinary four-velocity ( )/ 1, /v c cµ = v .  With gµν µνη= , it is easily 

shown and well-known that ( )( ) 2/ 1v vv v cµ ν
µνη γ γ = , which is another “1.”  So if we write (3.1) 

in flat spacetime as 2/ 1U U cµ ν
µνη = , we see that the canonical velocity U µ , not the mechanical 

velocity uµ , is related expressly to vγ  and vµ  by: 

 

vU vµ µγ= . (8.1) 

 
This may then be generalized into curved spacetime.  Additionally, we may ascertain from the 
final equality in (3.1), when combined with (8.1), that: 
 

v

q dx q
U u A A v

mc d mc

µ
µ µ µ µ µγ

τ
= + = + = . (8.2) 

 
This may be conversely rewritten in terms of the ordinary mechanical velocity as: 
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v

dx q q
u U A v A

d mc mc

µ
µ µ µ µ µγ

τ
= = − = − . (8.3) 

 
 With these relationships, we return to (2.9), which states that the line element dτ  must be 
invariant, and the metric tensor gµν  and the gauge field Aµ  [the latter now subject to the 

Lagrangian and geodesic gauge conditions (4.4) and (4.6)] must be unchanged under a rescaling 
of / /q m q m′ ′→ .  Thus, it is (2.9) which defines the coordinate transformation x xµ µ′→  leading 
to electrodynamic time dilation and contraction.  Now we show exactly how this occurs. 
 
 Generally, we will wish to compare the rate at which time flows for a massive body which 
has a net charge of zero and so is neutral, in relation to a material body with a nonzero net charge.  
We assume for now that there is no gravitation.  Via (2.9), this means that we shall set 0q =  
(neutrality) and leave q′  as it is (i.e., charged).  Therefore, (2.9) becomes: 
 

2 2 q q
c d g dx dx g dx d A dx d A

m c m c
µ ν µ µ ν ν

µν µντ τ τ′ ′  ′ ′= = + +  ′ ′  
. (8.4) 

 
From this, we can immediately extract the coordinate transformation: 
 

q
dx dx d A

m c
µ µ µτ′′ = −

′
. (8.5) 

 
Because the coordinates xµ  are associated with a neutral net charge, as a notational convenience 
we shall drop the primes from the mass and charge and write this as ( )/dx dx q mc d Aµ µ µτ′ = − .  

Thus, dx µ′  represents the coordinates of the body with /q m, and dxµ  the coordinates of the 
neutral body.  With this notational adjustment, and dividing through by dτ , we obtain the relation: 
 

dx dx q q
u A u A

d d mc mc

µ µ
µ µ µ µ

τ τ
′′ = = − = − . (8.6) 

 
The time component of this with ( ),x ctµ = x  and ( ),Aµ φ= A  is easily seen to be: 

 

2

dt dt q

d d mc

φ
τ τ
′

= − . (8.7) 

 
So in the rest frame where / 1dt dτ =  for the neutral body (because we have posited no gravitation 
for now) and ( )0,0Aµ φ=  with 0φ  being the proper scalar potential, this becomes: 

 

0
2

1em

qdt

d mc

φγ
τ
′

≡ = − . (8.8) 
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This is where we define the factor emγ , first introduced between (2.9) and (2.10), to be the rate of 

time flow for a net-charged body q in a proper potential 0φ , in relation to the rate of time flow for 

a net-neutral body, all at relative rest.  And this is where the dimensionless ratio 2
0 /q mcφ  which 

is central to this variable time flow first arises.  As obtained from (8.4), the above (8.8) is what 
allows the Lorentz force motion (2.1) to be deduced from the minimized variation (1.1) without 
compromising the integrity of the background fields. 
 
 Now, because ( )0,Aµ φ= 0  at rest, the question also arises how to specify Aµ  generally 

when there is motion.  Specifically, the choice would be between 0 /A U cµ µφ=  using the 

canonical velocity, or 0 /A u cµ µφ=  using the mechanical velocity.  But we see from vU vµ µγ=  in 

(8.1) that 0 /A U cµ µφ=  is the proper choice, that is: 

 

0 0/ /vA U c v cµ µ µφ φ γ= = , (8.9) 

 
because at rest ( )/ 1,vv cµγ = 0 , and this yields the correct result that ( )0,Aµ φ= 0  at rest. 

 
 With (8.9) we may now obtain several other important results.  Using this in (8.3) yields: 
 

0
2

1 v em v em

qdx
u v v U

d mc

µ
µ µ µ µφ γ γ γ γ

τ
 = = − = = 
 

. (8.10) 

 
So we see that the mechanical velocity uµ  is related to the canonical velocity U µ  through a 
multiplicative factor given by emγ .  The inverse result / emU uµ µ γ=  can be combined with (8.2) 

with everything multiplied through by m to also obtain: 
 

1 1

em em

q
mU mu p mu A

c
µ µ µ µ µ µπ

γ γ
= = = + = . (8.11) 

 
This contains the relationship empµ µγ π=  between the mechanical and canonical momentum, 

mirroring emu Uµ µγ=  in (8.10).  For the gauge field itself, we may combine (8.9) and (8.10) thus: 

 

0 0 0 0 0
2

1 1
1v

v
em em

U v u q
A v

c c c c mc

µ µ µ
µ µφ φ γ φ φ φ γ

γ γ
 = = = = − 
 

. (8.12) 

 
Then, we may multiply (8.10) through by mc to obtain the energy-dimensioned four 

vector, and also use (8.11), to write: 
 

em v em em

dx
cp mcu mc mc v mc U c

d

µ
µ µ µ µ µγ γ γ γ π

τ
= = = = = . (8.13) 
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All of this finally leads us to take the time component of (8.13) in the non-relativistic limit, namely: 
 

0
22

0 2 2 2 2 2 20 0
02 2 22

2

1 1 1 1
1 1

2 2 2
1

em v

q
q qvmcE cp mc mc mc mc mv q v
mc c cv

c

φ
φ φγ γ φ

−   = = = ≅ − + = + − −  
  −

.(8.14) 

 
This is how the key energy relationship (2.10) originates.  Here, in succession, we see 1) 

the rest energy 2mc , 2) the kinetic energy of the mass m, 3) the electrical interaction energy of the 
charged mass, and 4) the kinetic energy of the electrical energy.  If we then choose a Coulomb 
proper potential 0 /ek Q rφ = −  so that the charges have opposite signs and so are attracting in the 

same way that gravitation attracts, then we arrive precisely at the first four terms of (2.10). 
 
 Then to add gravitation, it is convenient to start with the metric (2.5) in the form 

2 2c d g Dx Dxµ ν
µντ ′ ′=  for the charged mass that has the x µ′  coordinates.  We take this mass to be 

at rest in the gravitational field so that 2 2
00d g Dtτ ′= , a.k.a. 00/ 1/Dt d gτ′ = .  Earlier, we set 

/ 1dt dτ =  to arrive at (8.8), which was appropriate for a neutral body because we assumed an 
absence of gravitation.  But when gravitation is present, then even for a neutral body, we must use 
(8.8) in the form 2

0/ / /dt d dt d q mcτ τ φ′ = − , because time dilation and contraction in the 

gravitational field will cause /dt dτ  to be some number that is not precisely equal to 1.  That is, 
/dt dτ  cannot be summarily set to 1 once there is gravitation.  So, if we were to write out 

2 2c d g Dx Dxµ ν
µντ ′ ′=  using ( )/Dx dx q mc d Aµ µ µτ′ ′= + , and also use (8.8) in the form 

2
0/ / /dt d dt d q mcτ τ φ′ = −  for the reasons just mentioned, we obtain: 

 

0 0 0
2 2 2

00

1 q q qDt dt dt dt

d d mc d mc mc dg

φ φ φ
τ τ τ τ
′ ′

= = + = − + = . (8.15) 

 

The electrodynamic terms cancel, leaving the usual relationship 00/ 1/ gdt d gτ γ= ≡  for time 

dilation or contraction for a particle at rest in a gravitational field.  This then supplements 

em v g em vγ γ γ γ γ→  in (8.10), (8.13) and (8.14).  Particularly, (8.14) now becomes 
0 2

g em vE cp mcγ γ γ= = , which is synonymous with (2.10), and it then becomes possible to 

simultaneously represent the combined effects of gravitation, electrodynamics and motion, upon 
time and energy.  The widely-corroborated, well-established energy relation 0 2

g em vE cp mcγ γ γ= =  

shown in (2.10) , then results directly from merging (8.14) and (8.15).   
 
9. Conclusion 
 

The fact that (2.10) correctly reproduces widely-corroborated, well-established energy 
relations, is an important point of validation that the geometro-electrodynamic viewpoint which 
has been presented here is empirically correct.  However, the mainspring which enables everything 
to fit together without contradiction is the time flow relationship 
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2 2

0 0
2 2 22 2

00

1 / 1
1 1 1

21 /
g em v

q mc qdt GM v

d c r mc cg v c

φ φγ γ γ
τ

 +   = = ≅ + + +   
  −  

 (9.1) 

  
contained within (8.14) when supplemented by (8.15) and applied to gravitation in the Newtonian 
limit.  This is the time-component of the four-velocity, by which (8.10) becomes extended to: 
 

g em v g em

dx
u v U

d

µ
µ µ µγ γ γ γ γ

τ
= = = . (9.2) 

 
This is turn is the four velocity that appears throughout the key dynamical equations developed 
here.  For example, this four velocity (9.2) with the time component (9.1) appears in the equation 
of motion (4.8) itself, in the power equations (6.6) and (6.7), and in the energy flux equations (7.7) 
and (7.8).  Given the direct relation between (9.1) and the energy relation (2.10), it should be clear 
that the energies and powers governed by these dynamical equations are the energies of motion, 
and of gravitational and electrodynamic interaction, all taken together. 
 
 Consequently, it becomes most important to perform experimental tests of these predicted 
time flow changes for charged bodies in electromagnetic fields.  Although these time flow relations 
(9.1) go hand-in-hand with the energy relations (2.10), it is (9.1) which nevertheless is the 
theoretical foundation of the energy relations (2.10).  That is, the widely-corroborated energy 
relations (2.10) are seen in the present analysis to be rooted in geometrodynamic measurement of 
the flow rates of time.  Experimental observation of a change in the rate at which time flows for 
charged bodies in electromagnetic fields in accordance with (9.1) – or possibly the explanation of 
additional known physics on the basis of these time flow rates – would therefore support the 
validity of this geometrodynamic foundation for classical electrodynamics in four spacetime 
dimensions. 
 
The author wishes to acknowledge and thank Joy Christian for his encouragement and his input 
throughout the conduct of this research. 
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