
Embedded Systems Programming OCTOBER 2004   33

f
e

a
t

u
r

e

E D  K L I N G M A N

hen designing with an embedded microprocessor, you always
have to take into account, if not begin with, the actual pinout
of the device. Each pin on a given microprocessor is uniquely
defined by the manufacturer and must be used in a specific
manner to achieve a specific function. Part of learning to
design with embedded processors is learning the pin defini-

tions. In contrast, field programmable gate array (FPGA) devices come to the
design with pins completely undefined (except for power and ground). You have
to define the FPGA’s pins yourself. This gives you incredible flexibility but also
forces you to think through the use of each pin. 

This article describes ways you can define FPGA pins and gives you an exam-
ple of a straightforward project—an 8051-compatible peripheral bus. The project
results in an FPGA-based peripheral device, the F51, that connects directly to an
8051 microcontroller and supports a variety of 8051 peripheral functions. 

We can start designing the project using the Universal Design Methodology
(UDM). Bob Zeidman wrote a Beginner’s Corner on how to design an FPGA
using UDM, so I thought we’d just plug our parameters into his outline. The
result, shown in the sidebar, is the first step in our project.

The ins and outs of an FPGA
FPGAs can contain millions of logic gates yet every FPGA, regardless of the
complexity of its internal design, must communicate with external devices
through its I/O pins. Although this statement is trivially true, it doesn’t follow
that the I/O assignments are trivial. Indeed, the I/O pins on some FPGAs are
the most complex part of the chip.

For all practical purposes, the internal logic gates are idealized; they accept 1's
and 0's as input and produce a 1 or 0 as output. I/O pins, on the other hand, pro-
vide various drive levels, slew capabilities, and often specific interface ability for,
among others, PCI and Low Voltage Differential Signaling (LVDS). Several glob-

FPGA Design from
the Outside In

FPGAs enable everyone to be a chip designer. This installment shows how to design 
the bus interface for a generic peripheral chip.
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al buffers exist that allow an I/O pin to
drive “global” lines that span the FPGA
(in contrast with shorter lines for con-
necting local elements). Such global
lines are normally dedicated to clock
lines or reset lines that typically span
the device. Most other pins are con-
nected to general-purpose I/O
buffers.

Review of 8051 I/O
Although the 32 I/O pins of a typical
8051 microprocessor provide a com-
plex set of capabilities, we’ll focus on
the 8051 data bus and associated con-
trol signal as shown in Figure 1.

The multiplexed address and data
bus operates in a straightforward
manner. At the beginning of a bus
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A UDM outline for our F51 project*

• An external block diagram showing how device fits into system:

• An external block diagram showing each functional section:

• A description of I/O pins, including output drive capabilities and input threshold

levels: information is in the text of this article

• Timing estimate, initialization setup and hold-times for input pins, propagation

times for output pins, and clock cycle times: 20 to 100MHz typical I/O speeds

• Logic estimate—gate count or chip count: one chip, gates as needed

• Physical specification; package type, physical size, connector requirements, etc.:

208 PQFP ( 208 pin—plastic quad flat pack)

• Power consumption target: unspecified

• Price target: $5 to $20 depending on quantity and gate count

• Test Procedures: to be specified in later article

* Outline is based on Zeidman, Bob, “Universal Design Methodology,” Beginner’s Corner,

Embedded Systems Programming, Dec. 2003, p.55.
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transaction the address latch enable
(ALE) signal allows the 8-bit address
to be latched from the data bus, then
the bus is freed for data to be written
or read by the 8051.

If the 8051 is writing data, it
appears on the bus following the
address information, and the active-
low write signal, WR_, indicates that the
data is available. The falling edge of
WR_is typically used to capture the data
from the bus.

If data is to be read into the 8051,
then, after the address appears, the
8051 leaves the bus in a high-imped-
ance state, allowing some external
device to drive its data onto the bus.
The falling edge of the active-low read

strobe signal, RD_, indicates that the
bus is available; the 8051 drives the ris-
ing edge of RD_ to indicate that the
data has been captured. 

As Figure 2 shows, the simplest way
an 8051 can interface to an FPGA is
through its data bus (port 0), and the
RD_, WR_, and ALE control signals. In
addition, we assume that there are
other peripherals, so we add a chip-
select signal, CS_, which will tell our
FPGA to pay attention to the data bus
and control signals only when it (the
FPGA) is selected. If CS_ is not low
(active), the FPGA must assume that
another peripheral device is being
read or written and ignore all other
8051 signals. Finally, we provide an
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FIGURE 1  8051 data bus and control signals

FIGURE 2  An 8051-compatible FPGA interface that allows an 8051 to read 
or write to an FPGA using 8051 data bus and control strobes
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output signal from the FPGA that
will typically provide a “ready” indi-
cator that may be used to interrupt
the 8051. The 8051 signals will fit
the FPGA like a hand in a glove.
Each 8051 control signal will have a
corresponding FPGA I/O pin
“shaped” to respond to the signal.
When we’re done, we’ll have an

8051-compatible peripheral inter-
face that will serve for an almost infi-
nite variety of possible FPGA-based
peripherals.

Bidirectional I/O
It’s easy to design an FPGA with pins
that are always inputs or always out-
puts; bidirectional pins are much
trickier. You’ll need to know when to
drive the pins, when to read from the
pins, and when to leave the pins in a
neutral high-impedance state. As a
general rule, tri-state circuitry is not
implemented inside FPGAs, for manu-
facturing process reasons. However,
I/O pins typically offer tri-state capa-
bility. The desired effect of tri-stating
internal signals is usually handled via
multiplexers. 

In order to construct a bidirec-
tional I/O, we need to consider the
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FIGURE 3  IF THEN ELSE
construct
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FIGURE 4  The same Verilog construct with signals renamed 
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FIGURE 5  The inout line is a bidirectional signal
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major elements of FPGA logic: nets
and registers. A net is a connecting
element that follows a driving volt-
age. A register is a driving element
that produces and maintains a dri-
ving voltage or logic level. Nets con-
vey values, while registers store 
values.

The Verilog hardware-design lan-
guage contains a construct familiar to all
C programmers, the IF THEN ELSE
construct. Brian Kernighan and Dennis
Ritchie (The C Programming Language,
Second Edition, Prentice Hall Software
Series, 1988) introduce the conditional
expression, written with the ternary
operator “?:” via:

expr1 ? expr2 : expr3

as an alternative means of treating
the IF THEN ELSE construct, where
expr1 is a condition selecting either
expr2 or expr3. If the condition is
true, select the second expression;
otherwise select the third expres-
sion.

The Kernighan and Ritchie exam-
ple considers the statements:

if ( a > b )

q = a;

else 

q = b;

and rewrites them as:

q = ( a > b ) ? a : b ;

/ * q = max (a,b) */

Verilog provides the same con-
struct, but Verilog programmers tend
to think in terms of the more graphi-
cal interpretation as shown in Figure
3. The meaning is exactly the same as
in C. If the selector, a > b is true, out-
put q is assigned value a, else value b.

Now let’s take the above construct
shown in Figure 3 and replace the con-
dition (a > b) with the output_enable
signal and rename variable a to out-
put_data. This is simple enough, but
now let’s do something useful and let
variable b become the high-impedance
state, z. If q is the output, our diagram
changes to Figure 4.

Now when the output_enable is
true, the output data appears at out-
put, else the output is in the high-
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In order to construct a bidirectional I/O, we need to consider the

major elements of FPGA logic: nets and registers. A net is a 

connecting element that follows a driving voltage. A register is a 

driving element that produces, and maintains a driving voltage or

logic level. 



impedance state. For those who aren’t
sure about what high-impedance sig-
nals do, here’s a primer. Only one
source at a time should drive a signal
wire or else they’ll fight with one
another. You then get into conflicting
signals, questions of relative drive
strength, and other issues best avoid-
ed. A high-impedance signal has effec-
tively zero strength, so a wire in the
high-impedance state can be driven by
another signal. 

We can now tie the output wire in
Figure 4 to another wire; let’s call it
input and add a buffer as shown in
Figure 5. Notice that we’ve renamed
the output_enable symbol oe.

The inout line is a bidirectional sig-
nal that can be driven from some-
where outside the chip when oeis false
or by output data—simply called out
in Figure 5—when oe is true. This is
exactly what we need for our bidirec-
tional 8051 data bus. When the 8051
writes to us, it will drive data into the
FPGA. When the 8051 reads from us
the out data should appear. This sug-
gests that the output-enable signal, oe,
should be some function of the 8051’s
read-strobe signal, RD_. The rectangle
or “pad” on the schematic represents
an I/O pin that will be connected to a
corresponding 8051 data bus pin.

Fortunately for us, the elements
described above are available as
Verilog primitives, specifically bufand
bufif1. The simple buffer, buf, simply
passes its input to its output.

The bufif1 primitive has two
inputs, control and data, and one out-
put. If the control input is “1” the out-
put passes the same value as the data
input. When the control input is “0”,
the output is Z (high-impedance).

Figure 6 shows the Verilog symbols
are straightforward, as are the corre-
sponding truth tables. Note that
Verilog variables can assume four
states; 0, 1, X, and Z. Of course 0 and
1 are the usual logic states, also known
as low and high or false and true. The
two new state states are X and Z. Z is
the high-impedance state, which can
be overridden by any driven signal, 0
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For those who aren’t sure about what high-impedance signals do,

here’s a primer. Only one source at a time should drive a signal wire or

else they’ll fight with one another. 

FIGURE 6  Verilog primitive buffers
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LISTING 1  BusPin module

module BusPin ( IN, PIN, OUT, OE );

output IN; // signal from module into FPGA

inout PIN; // bi-directional port represented by PIN

input OUT; // signal from FPGA into BusPin module

input OE; // control signal determining BusPin direction

buf i_buf ( IN, PIN ) // IN = PIN

bufif1 o_buf ( PIN, OUT, OE ); // PIN = OE ? OUT : Z

endmodule
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or 1. Thus, if a wire in a high-imped-
ance state is tied to (wire-or’ed with)
another wire driven high or low, the
result is determined by the other wire
state. This technique provides a conve-
nient means of tying multiple signals
together in such a way that they will
not fight. Of course, the control sig-
nals must be manipulated such that all
but one of the signals is forced to the
high-impedance state at any time. 

The states 0, 1, and Z are generally
familiar, but what is X? X is the
unknown state. If logic is poorly
designed, a system can get into an
unknown state, and such states gener-
ally propagate as unknowns. While
actual hardware is always in some
state, the concept of the unknown
state is extremely useful during hard-
ware simulations. For example, if a
simulator shows valid signals in green
and unknown signals in red, then it’s

While actual hardware is always in some state, the concept of the

unknown state is extremely useful during hardware simulations. 

LISTING 2  Using Verilog’s 
high-level keyword “assign”

module IN_BUF ( OUT, IN );
output OUT;
input IN;
assign OUT = IN;

endmodule

module OUT_BUF ( OUT, IN );
output OUT;
input IN;
assign OUT = IN;

endmodule

LISTING 3   Format for 
instantiating modules 

module_name  instance_name (

.port1_name ( wire1_name ),

.port2_name ( wire2_name ),

.

.

.portN_name ( wireN_name )

);

FIGURE 7  Symbolic representation of bidirectional I/O pin
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easier to determine just when and
where a logic error occurs. Because
unknown inputs produce unknown
outputs, the red waveforms typically
spread quickly as the design falls apart.

Instantiation of elements
When designing systems from primi-
tive elements or combinations of
primitive elements, we need to instan-
tiate, or make instances of, our ele-
ments. This is done by specifying the
type of element, followed by the name of
the element, followed by a list of argu-
ments in parenthesis. The output of
primitive elements is typically listed
first. For example, we can instantiate:

buf i_buf ( out, in );

bufif1 o_buf ( out, in, oe );

User-designed subsystems, or mod-
ules, have ports for communications
with the world and are defined by
specifying the type module, followed by
the user-specified module name, fol-
lowed by a port list in parenthesis, fol-
lowed by port definitions, port names,
and other module specifications, all
terminated by the keyword endmodule.
If we assume that “PIN” is an actual
I/O pin of the FPGA and we wish it to
be one of the bidirectional pins con-
nected to the 8051 data bus, our
description of a “BusPin” module can
be achieved as shown in Listing 1.

Because it’s expressed in terms of
the Verilog primitives buf and bufif1
any Verilog synthesizer can map this
module into FPGA elements. (I’m
indebted to Muzzafer Kal for this par-
ticularly clear implementation of a
bidirectional I/O pin shown in Figure
7.) Note that, in addition to being able
to handle this generic bidirectional
I/O pin, most FPGA manufacturers
provide specific I/O pin primitives
that can be used in place of the gener-
ic module. Because the keywords asso-
ciated with manufacturer-specific I/O
differ for each manufacturer, we’ll use
the generic BusPin. 
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When designing systems from primitive elements or combinations of

primitive elements, we need to instantiate, or make instances of, 

our elements. This is done by specifying the type of element, followed

by the name of the element, followed by a list of arguments 

in parenthesis.  

FIGURE 8  Illustrating the FPGA main module, I/O modules, and core 
module

Core module

Main module

In_buf

ale aleale_

In_buf

wr_ wrwr_i

In_buf

rd_ rdrd_i

Out_buf

int_ intint_0

BusPin0

D0
D0_i

D0_o

D0_oe

in0

out0

oe0

BusPin1

D1
D1_i

D1_o

D1_oe

in1

out1

oe1

BusPin7

D7
D7_i

D7_o

D7_oe

in7

out7

oe7

8051
data

bus

:

:
:

IO modules



In similar fashion, we can define
input pins and output pins as generic
modules. In these cases, because we
don’t need to handle the tricky bidirec-
tionality, we don’t even need to specify
the low-level primitive buffers, but can
simply use the high-level Verilog keyword
“assign” as shown in Listing 2.

The first thing you might think,
when looking at these module defini-
tions is, “why use two modules that
have identical definitions but different
names?” Because we’ll have input sig-
nals from the 8051 and output signals
to the 8051, things will get very con-
fusing if we try to use the same module
name for both. As you’ll see, things get
confusing enough as it is.

Remember that although we’re
defining modules for use with the
FPGA design, the modules will provide
INPUT and OUTPUT channels to and
from the FPGA, and should be named
from this perspective, that is, IN and
OUT are defined from the FPGA’s
point of view.

Modules, connectivity
Regardless of the programming lan-
guage you use, a subroutine that’s never
called is a meaningless piece of code. In
the same sense, a module that’s not con-
nected to anything is a meaningless
module. Subroutines that are actually
called maintain a connection in the form
of a return address on a stack. For sub-
routines this is essentially hidden infor-
mation and changes dynamically as the
routine is called from different locations.
For hardware modules the information
is static and not hidden. Each port of a
module must be associated with a con-
nection, and the connection is typically
described via the keyword “wire.” When
we want to include an instance of a mod-
ule in a design, we specify each port
name with the associated wire name in
parenthesis. In general, modules are
instantiated in the format shown in
Listing 3. 

This is a very important format,
and you should return to study it if you
get confused. 

Tying things together
We now have enough pieces defined
to begin describing the F51 device
that forms the basis of our FPGA-
based 8051 peripheral. Before pro-
ceeding, let’s mention one more con-
vention. It’s considered good form to
define the “main” module and
include only the I/O pins and a core
module, with no logic, per se, outside
of the core module. Figure 8 illustrates
the FPGA main module, I/O modules,
and core module. Listing 4 shows the for-
mat for instantiation modules.

Little project, big payoff
Although this may seem like a lot of
work for little result, that’s not real-

ly the case. In order to reach this
point, we first decided upon a goal,
which, in this case, was to create an
8051-compatible peripheral inter-
face based on an FPGA. Next we
reviewed the 8051 bus and control
protocol. Realizing that we needed a
bidirectional data bus, we investigat-
ed Verilog primitives from which
such a bus could be built. Then we
described the manner in which such
primitives could be combined into a
module representing an I/O pin.
Because we need multiple pin mod-
ules and will need other functional
modules, we then described a key
formalism by which any main mod-
ule is decomposed into pin mod-
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Regardless of the programming language you use, a subroutine that’s

never called is a meaningless piece of code. In the same sense, a mod-

ule that’s not connected to anything is a meaningless module. 



ules, representing connection to the
outside world (that is, external to
the FPGA) and a core module that
will perform all logical functions.
This required us to review the inter-
module connection formalism by
which ports of different modules are
connected by wires using port
names and wire names. We ended
up with a Verilog implementation of
a universal FPGA peripheral to an
8051 microprocessor. While the
internal logic hasn’t yet been devel-
oped, that will be the easy part.

Note that we’ve ignored several
pins that will always be present.
These include ground and supply
voltage pins, as well as a clock-input
pin and a reset-signal input pin. In
addition, unless the peripheral
we’re designing is purely computa-
tional (accepting data from the
8051 and returning a result), we’ll
also need more I/O pins to inter-
face to a controlled subsystem.
These pins would, of course, be spe-
cific to the device being monitored
or controlled, and therefore can’t
be universally specified. The addi-
tion of a clock buffer and a reset
buffer should provide a nice exer-
cise for you to implement as a review
of the principles involved.

In a future article we’ll look into
the F51 core module to see how to
actually use these signals, as well as
describe a test bench to exercise the
F51 chip.

Finally, if you still feel that we have
reached a minimal result, I can sin-
cerely say that I wish someone had
given me this design for free! esp

Ed Klingman worked as a research physi-
cist at NASA for seven years, before
founding Cybernetic Micro Systems, Inc,
now celebrating its 25th anniversary.
He’s the author of the Prentice-Hall text-
books Microprocessor Systems Design,
Vols. I and II and numerous technical
papers, and has been awarded 20 U.S.
patents. You can reach him at kling-
man@geneman.com.
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Although this may seem like a lot of work for little result, that’s not

really the case. . . . I can sincerely say that I wish someone had given

me this design for free! 

LISTING 4   Format for  instantiating modules 

module F51 ( ale,

wr_,

rd_,

data,

int_

);

input ale;

input wr_;

input rd_;

inout [7:0] data;

output int_;

wire ale_i;

wire wr_i;

wire rd_i;

wire int_o;

IN_BUF ale_in ( ale_i, ale );

IN_BUF wr_in ( wr_i, wr_ );

IN_BUF rd_in ( rd_i, rd_ );

OUT_BUF int_out ( int_, int_o );

BUS_PIN data0 ( in0, D0, out0, oe );

BUS_PIN data1 ( in1, D1, out1, oe );

.

.

BUS_PIN data7 ( in7, D7, out7, oe );

F51_core F51_core ( .ale ( ale_i ),

.wr ( wr_i );

.rd  ( rd_i ),

DATA_BUS

.int ( int_o ))

endmodule


	return: 


