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Geometric-Algebra Formulas

for Plane (2D) Geometry

The Geometric Product, and Relations Derived from It

For any two vectors a and b,

a · b = b · a
b ∧ a = −a ∧ b

ab = a · b + a ∧ b

ba = b · a + b ∧ a = a · b− a ∧ b

ab + ba = 2a · b
ab− ba = 2a ∧ b

ab = 2a · b + ba

ab = 2a ∧ b− ba

Definitions of Inner and Outer Products (Macdonald A. 2010 p. 101.)

The inner product

The inner product of a j -vector A and a k -vector B is

A ·B = 〈AB〉k−j . Note that if j>k, then the inner product doesn’t exist.

However, in such a case B ·A = 〈BA〉j−k does exist.

The outer product

The outer product of a j -vector A and a k -vector B is

A ∧B = 〈AB〉k+j .

Relations Involving the Outer Product and the Unit Bivector, i.

For any two vectors a and b,

ia = −ai
a ∧ b = [(ai) · b] i = − [a · (bi)] i = −b ∧ a

Equality of Multivectors

For any two multivectors M and N ,

M = N if and only if for all k, 〈M〉k = 〈N〉k.

Formulas Derived from Projections of Vectors

and Equality of Multivectors

Any two vectors a and b can be written in the form of ”Fourier expansions”

with respect to a third vector, v:

a = (a · v̂) v̂ + [a · (v̂i)] v̂i and b = (b · v̂) v̂ + [b · (v̂i)] v̂i.
Using these expansions,

ab = {(a · v̂) v̂ + [a · (v̂i)] v̂i} {(b · v̂) v̂ + [b · (v̂i)] v̂i}

Equating the scalar parts of both sides of that equation,
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a · b = [a · v̂] [b · v̂] + [a · (v̂i)] [b · (v̂i)], and

a ∧ b = {[a · v̂] [b · (v̂i)]− [a · (v̂i)] [b · (v̂i)]} i.

Also, a2 = [a · v̂]
2

+ [a · (v̂i)]2, and b2 = [b · v̂]
2

+ [b · (v̂i)]2.

Reflections of Vectors, Geometric Products, and Rotation operators

For any vector a, the product v̂av̂ is the reflection of a with respect to the

direction v̂.

For any two vectors a and b, v̂abv̂ = ba, and vabv = v2ba.

Therefore, v̂eθiv̂ = e−θi, and veθiv = v2e−θi.
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The trouble with the very notion of ’application’ [of mathematics

to science, or of one branch of mathematics to another] is that it is

a one-way concept: we apply A to B. To counter this I have invented

the word ’interapplicability’. Mathematicians who work in these do-

mains more often speak of correspondence, which is a symmetric no-

tion. Although I began this discussion [of Descartes’s contributions]

in terms of application, we might better have spoken of Descartes

establishing a correspondence between arithmetic and geometry. I

once in conversation spoke of Descartes arithmetizing geometry; the

person with whom I was speaking, having in mind the way algebraic

problems of the day could now be solved geometrically, observed that

Descartes had geometrized algebra. Exactly so.1

1Hacking, Ian. 2014. Why is there Philosophy of Mathematics at All?. pp. 20-21.

Cambridge University Press, New York. I am grateful to “Lorena”, a student in philosophy

of Mathematics at La Universidad Nacional Autónoma de México, for introducing me to this

book.
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1 Introduction

{Author’s note, 27 January 2016:

This document, in all of its versions, has been prepared for two very different

audiences: for my fellow students of GA, and for experts who are preparing ma-

terials for us, and need to know which GA concepts we understand and apply

readily, and which ones we do not. This new version should be useful to both

audiences. It presents a much easier way to find the circumcenter of a triangle

(pp. 22ff), but preserves the previous solution as Appendix A so that my ear-

lier oversights will be clear to readers. As a plus, that solution makes useful,

time-saving observations on inverses of multivectors, and on transformations of

vector expressions. � }

{Author’s note, 27 January 2016:

I hope that the new material in this version will help students avoid forming

one of my own bad habits when using GA: the tendency to believe that GA can’t

possibly be as convenient as is claimed! That tendency can cause unnecessary

work by leading us to translate geometric products into quantities that are more

familiar, but much less efficient. In 4.2, we’ll learn time-saving maneuvers that

are available to us if we accept that GA’s theorems mean what they say.

A new section ( 2 ) provides background that will help us to formulate key aspects

of geometry problems in ways that can be manipulated via GA to find solutions.

The first three problems in this new version were added after I learned of the

solutions posted on line by Professor Ramon González Calvet, for the incenter

and circumcenter of a triangle. Professor González’s solutions do not use rota-

tions; the contrast between his insights and the ones used here is instructive.

A useful resource not mentioned in the previous version is ”Find tangents to

a circle from a point, using Geometric Algebra” (as GeoGebra worksheet, as

YouTube video). The present version solves that problem using rotations. � }

{Introduction to the version of 31 December 2015:}
This document is part of a series of resources that I am preparing in support

of Professor David Hestenes’s goal of using Geometric Algebra (GA) to inte-

grate high-school algebra, geometry, trigonometry, and physics into a coherent

curriculum.

I will be grateful for any comments, suggestions, and corrections.

One important piece of advice before we start:

Don’t let yourself be intimidated by the equations that arise in

problems like these!

We’ll learn to recognize patterns (for example, products of four vectors that

represent a simple rotation) that will help us simplify complicated equations

readily. Also, I’ve presented more than one way to solve each problem. In addi-
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tion to the way that appeared most reasonable and efficient, I’ve also included

at least one way ”sub-optimal” way, so that students can see that they needn’t

worry about having to find ”the way” to get the job done.

An additional benefit of presenting those sub-optimal ways (some of which,

like 4.5.2 border on the absurd) is that they help demonstrate the coherence

and flexibility of GA’s capacities for expressing and manipulating rotations.

Readers are encouraged to study the following GeoGebra worksheets and

videos before beginning:

”Answering Two Common Objections to Geometric Algebra”

As GeoGebra worksheet

As YouTube video.

”Geometric Algebra: Find unknown vector from two dot products”

As GeoGebra worksheet

As YouTube video

For an more-complete treatment of rotations in plane geometry, be sure to

read Hestenes D. 1999, pp. 78-92. His section on circles (pp. 87-89) is especially

relevant to the present document. Macdonald A. 2010 is invaluable in many

respects, and González Calvet R. 2001, Treatise of Plane Geometry through

Geometric Algebra is a must-read.

What we’ll see in this document ...

• Rotations of vectors as a natural development of the inner, outer, and

geometric products

• How ”construction” problems of classical geometry can be formulated in

terms of rotations and dilations of vectors, then solved by

– recognizing the geometric content of equations that arise; and

– making use of postulates about equality of multivectors.

• How Professor Alan Macdonald’s definitions of the inner and outer prod-

ucts simplify the solution process.

• How to simplify complicated products by

– using basic identities; and

– recognizing products that represent rotations and reflections

• Most importantly: That all this stuff about angles, exponents, and

geometric products really is coherent, and terms like eθi really do follow

the rules of exponents.

The author may be contacted at QueLaMateNoTeMate.webs.com.
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2 Important Facts about Tangents, Chords, and

Angles

This information provided in this section will help us to formulate problems in

symbolic terms that can be manipulated via GA to find solutions. Some of the

relationships listed here are provided for completeness, and are not used in this

document.

1. The mediatrix (perpendicular bisector) of a chord of a circle passes through

the circle’s center.

This important result from classical geometry can be proven simply via

GA. Using the circle’s center as the origin, the chord AB becomes the

vector a− b, and the vector from the center of the circle to the midpoint

of AB is
1

2
(a + b) .

The symbol ”�” is an

alternative to ”QED”: both are

used to show that the proof has

been completed.

According to the postulates of GA, two vectors are perpendicular if and

only if their dot product is zero, so let’s find (a− b) · (a + b). The vectors

a and b are radii of the same circle, so |a| = |b|. Therefore,

(a− b) · (a + b) = a · a− a · b− b · a + b · b
= a2 − b2

= 0. �

This result shows that the line that passes through the circle’s center and

the chord’s midpoint is perpendicular to the chord. Therefore, that line

is the chord’s mediatrix.
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2. Two consequences of the perpendicularity between any chord and the

radius drawn to its midpoint are

(a) that the line connecting the centers of two intersecting circles is per-

pendicular to their common chord;

and

(b) that the line line connecting the centers of two tangent circles passes

through the point of tangency.

3. The two tangents drawn to a circle from an external point are of equal

length: NS = NF .

4. A tangent to a circle is perpendicular to the line that passes through the

circle’s center and the point of tangency.
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For a GA proof of this relationship, see ”Find tangents to a circle from

a point, using Geometric Algebra”(as GeoGebra worksheet, as YouTube

video).

5. An angle inscribed in a circle is equal to half the central angle that sub-

tends the same arc. For example, all of the purple angles—including the

angle formed by the segment BA and the ray
−→
R subtend the same arc

(ABD). For details, see Hestenes D. 1999, p. 89. Therefore, all are equal

to each other, and measure
1

2
∠DCA.

A corollary is that any angle inscribed in a semicircle is a right angle:

6. The measure of an angle whose vertex lies outside a circle is equal to half

the difference between the measures of the central angles that subtend

the arcs cut by the rays that form the angle’s sides. For example, θ =
1

2
(α− β).
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(Note that GA’s sign convention for angles is that counter-clockwise ro-

tations are positive.) A special case of this relationship is the angle

between the tangents drawn to a circle from an external point: θ =
1

2
[(2π − β)− β] = π − β.

7. The measure of an angle whose vertex lies inside a circle is equal to half

the sum the measures of the central angles that subtend the arcs cut by

the lines that form the angle’s sides. For example, θ =
1

2
(α+ β).

3 The Relationship between the Geometric Prod-

uct and Rotations

Let’s begin by reviewing a variation on a sequence of operations that we saw in

the worksheet and video, ”Answering Two Common Objections to Geometric

Algebra”:
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https://www.youtube.com/watch?v=oB0DZiF86Ns

http://tube.geogebra.org/material/simple/id/1565271.

Given any two vectors a and b, we can express b as the vector sum of

its projections upon a and ai, where i is the unit bivector of the plane that

contains a and b. (Please recall that ai is the 90◦ counter-clockwise rotation

of a.)

b = Pa (b) + Pai (b)

= (b · â) â +
[
b ·
(
âi
)]

âi

=
|b|
|a|

a
{
b̂ · â +

[
b̂ ·
(
âi
)]

î
}
.

Looking now at our diagram, we can see that b̂ · â = cos θ and b̂ ·
(
âi
)

=

sin θ.

Therefore, we can write that last result as

b =
|b|
|a|

a (cos θ + sin θi) ,

one geometrical interpretation of which is that b is obtained by rotating a

counterclockwise through the angle θ, and dilating it by the factor |b|/|a|. (Or

by dilating, then rotating; the operations commute.)

Now, we write cos θ + sin θi in exponential form, as eθi, to obtain

b =
|b|
|a|

aeθi.

Before we proceed, we should do a few trial calculations to assure ourselves

that the preceding formulas work, and that we understand them. For example,

we know that if we rotate the vector a clockwise by 90◦ (π/2 radians), then

dilate it by a factor of 2, we obtain the vector 2ai. Let’s see whether that’s the
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result that we obtain from our formulas:

2

1
a
(

cos
π

2
+ sin

π

2
i
)

= 2a (0 + 1i) = 2ai.X

We also know that if we rotate a through the angle θ, then rotate the

resulting vector through the angle φ, the result should be the vector a rotated

through the angle θ + φ. Is that what the formulas tell us? Using the symbol

a′ to represent the vector that’s obtained by the rotation through θ, we have

a′ = a (cos θ + sin θi) .

The rotation of that vector (a′) through the angle φ is then

a′′ = a′ (cosφ+ sinφi)

= [a (cos θ + sin θi)]︸ ︷︷ ︸
a′

(cosφ+ sinφi)

= a
[
cos θ cosφ+ sin θ sinφi2 + (cos θ sinφ+ sin θ cosφ) i

]
= a [(cos θ cosφ− sin θ sinφ) + (cos θ sinφ+ sin θ cosφ) i]

= a [cos (θ + φ) + sin (θ + φ) i] ,

which is a rotated through the angle θ+ φ. We could have obtained that same

result using the exponential form:

a′′ =
[
aeθi

]︸ ︷︷ ︸
a′

eφi

= ae(θ+φ)i

= a [cos (θ + φ) + sin (θ + φ) i] .

These encouraging results should help us see that the formulas that we’ve

developed thus far really do provide convenient ways of expressing and manip-

ulating rotations of vectors symbolically. But now, we’ll do something that at

first sight seems pointless, even if correct. Starting from our result b =
|b|
|a|

aeθi,

where θ is the angle from a to b, we can see that

ab = a
|b|
|a|

aeθi

=
|b|
|a|

a2eθi

=
|b|
|a|
|a|2 eθi

= |a| |b| eθi.

So, the geometric product ab is equal to |a| |b| eθi. This result, too, deserves

some discussion before we continue. Let’s start by considering what happens to
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some third vector v, coplanar with a and b, when we right-multiply that vector

by ab :

v (ab) = v
[
|a| |b| eθi

]
= |a| |b|

[
veθi

]
,

More generally, the product of

any two vectors evaluates to the

sum of a scalar and a bivector,

so in plane (2-D) geometry, the

product of any even number of

vectors must also evaluate to

the sum of a scalar and a

bivector, while the product of

any odd number of vectors

evaluates to a vector. This fact

will be important to us later.

For example, see the margin

note ”A word about what we’re

working toward here” (p. 37 ).

meaning that when right-multiplied by ab, the vector v is dilated by the scalar

factor |a| |b|, then rotated through the angle θ. Hildebrand and Oldenburg

2015 were referring to this property of the geometric property when they said

that geometric products are used for handling transformations. We should

also note that both |b|
|a|
eθi and |a| |b| eθi have the form of the product of (1) a

scalar dilation factor; and (2) an operator that rotates by an angle equal to that

between a and b. Incidentally, this result also shows that the product of any

three coplanar vectors is a vector. We’ll make use of that important fact later.

Of course we should also note that because ab = |a| |b| eθi,

ab

|a| |b|
= eθi.

When we need to rotate vectors to solve ”construction” problems later in this

video, we’ll use that equivalence as a convenient way to obtain an expression

for eθi.

Those of you who’ve studied rotations may be be objecting that the way

to rotate a vector v through the angle θ is to multiply v on the left by e
−θ

2
i
,

and on the right by e
θ

2
i
:

e
−θ

2
i
ve

θ

2
i

= v, rotated ccw by θ.

This is a very brief —and not

entirely satisfactory —

explanation of what i represents

in 3-D rotations. For details,

see Macdonald 2010, pp. 89-91

and 125-127.

That’s true: it’s the form used in 3-D (and higher), with i being the unit

bivector for the plane of rotation. But in 2-D, e
−θ

2
i
ve

θ

2
i

reduces to eθi, as we’ll

now see:

e
−θ

2
i
ve

θ

2
i

=

[
cos

(
−θ

2

)
+ sin

(
−θ

2

)
i

]
v

[
cos

(
θ

2

)
+ sin

(
θ

2

)
i

]
=

[
cos

(
θ

2

)
− sin

(
θ

2

)
i

]
v

[
cos

(
θ

2

)
+ sin

(
θ

2

)
i

]
=

[
cos

(
θ

2

)
v − sin

(
θ

2

)
iv

] [
cos

(
θ

2

)
+ sin

(
θ

2

)
i

]

=

cos

(
θ

2

)
v + sin

(
θ

2

)
vi︸︷︷︸

=−iv

[cos

(
θ

2

)
+ sin

(
θ

2

)
i

]

= v

[
cos

(
θ

2

)
+ sin

(
θ

2

)
i

] [
cos

(
θ

2

)
+ sin

(
θ

2

)
i

]
= ve

θ

2
i
e
θ

2
i

= ve

[
θ

2
i +

θ

2
i

]

= veθi.
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Before we leave the subject of rotations, we should treat the square root of

a rotation operator, such as the square root of the operator eαi that rotates û

into v̂ in the following figure.

There are times when we might wish to express the square root of that

operator in terms of û and v̂. For example, knowing that the central angle

formed by vectors a and b in the following figure is 2θ (page 11),

how could we express the operator that rotates b−x into a−x? That operator

involves a dilation as well as a rotation (except when |b− x| = |a− x|), so let’s

see first how we’d express the pure rotation eθi in terms of â and b̂.

Let’s address that question by adding a few elements to our diagram in

which the operator eαi rotated û into v̂.

16



Note how the familiar scalar

identity (pm)n ≡ pmn applies to

rotation operators as well:

√
eαi =

[
eαi
] 1

2

= e
1
2
(αi)

= e
α

2
i
.

We see that the unit vector that bisects α is
(û− v̂) i√
2 (1− û · v̂)

. Two rotations

through the angle α/2 produce a rotation through α, so

√
eαi = e

α

2
i

= either of û

[
(û− v̂) i√
2 (1− û · v̂)

]
and

[
(û− v̂) i√
2 (1− û · v̂)

]
v̂,

both of which reduce to

e
α

2
i

=
i− ûv̂i√

2 (1− û · v̂)
.

Therefore, in the case of our diagram with the circle that passes through

the points a. b, and x,

we multiply the rotation operator e
α

2
i

by the dilation factor
|a− x|
|b− x|

, and find

17



that

a− x =

[
|a− x|
|b− x|

]
e
α

2
i

=

[
|a− x|
|b− x|

] i− b̂âi√
2
(

1− b̂ · â
)
 .

Now that we know how to find the square root of an operator that produces

a pure rotation, how can we find the square root of an operator of the form λeθi

(with scalar λ), which combines a dilation and a rotation? The exponents in

rotation operators obey all of the usual rules about exponents, so

√
λeθi =

√
λ
√
eθi

=
√
λe

θ

2
i
.

4 Using Exponential Expressions of Rotations

to Solve Geometry Problems

In this section, we’ll see that GA’s ability to manipulate rotations algebraically

enables us to solve a given problem in many different ways. We’ll make extensive

use of our results b = |b|
|a|
aeθi, ab = |a| |b| eθi, and v (ab) = v

[
|a| |b| eθi

]
.

One important piece of advice before we start:

Don’t let yourself be intimidated by the equations
that arise in problems like these!

We’ll learn to recognize patterns (for example, products of four vectors that

represent a simple rotation) that will help us simplify complicated equations

readily.
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4.1 Problem 1

Derive equations for the tangents to a circle from a point outside it.

Identifying Potentially Useful Elements of the Problem We’ll begin by

identifying elements of the problem that might be sufficient to provide sufficient

information for constructing one of the two tangents. The point t is a point

of tangency. In deriving our solution, we’ll used the same symbol —that is, t

—to denote both the point of tangency and the vector to that point from the

external point p. We’ll rely upon context to tell the reader whether t is being

used to refer to the point, or to the vector.

We can solve the problem if we can identify either of the angles θ and α,

or either of the vectors t and t̂. What elements of the problem might help us

identify θ, α, t, and t̂ , and how are all of those quantities related?

|t− c| = r.

Firstly, because ptc is a right triangle, t2 = c2 − r2. From Section 2 , we

find that θ =
1

2
[(π − α)− α] = π

2
− α. Therefore, θ + α =

π

2
. Finally, eθi = ĉt̂,

and eαi =
t− c

|t− c|
(−ĉ) =

(c− t) ĉ

r
.

Formulating a Strategy Now, let’s combine that information in a way that

might lead us to a a solution. A reasonable way to begin is by noting that

19



because θ + α = π

2
, we can write

e(θ+α)i = e
π

2
i
,[

eθi
] [
eαi
]

= i,[
ĉt̂
] [ (c− t) ĉ

r

]
= i.

To put that result in a more-convenient form, we’ll multiply both sides by

c2r |t| (which is also |c|2 r |t|) to obtain

ct (c− t) c = c2r |t| i.

The symbol ”≡” is used to

communicate that the

quantities uvwu and u2wv are

”equivalent”, or ”identical”:

they’re equal for any three

coplanar vectors, not just for

some three particular vectors of

interest.

As shown in the Appendix (7.3) , for any three coplanar vectors u,v and ,

w, uvwu ≡ u2wv. (Note the reversal of the order of v and w.) That identity

enables us to make the following simplifications:

ct (c− t) c = c2r |t| i,
c [t (c− t)] c = c2r |t| i,
c2
(
ct− t2

)
= c2r |t| i,

ct− t2 = r |t| i.

Solving the Equation That last result is quite concise, but is it useful to

us? Yes: to obtain t from ct, we just left-multiply by c−1. The other quantities

in the result that we just obtained are already known to us: t2 = c2 − r2, so

|t| =
√
c2 − r2. The rest is straightforward:

ct− t2 = r |t| i,

ct = c2 − r2 + r
[√

c2 − r2
]
i,

c−1ct =
( c

c2

)
︸ ︷︷ ︸
=c−1

{
c2 − r2 + r

[√
c2 − r2

]
i
}
,

t =
(
c2 − r2

) ( c

c2

)
+ r

[√
c2 − r2

] ( c

c2

)
i,

=

[
1−

(
r

|c|

)2
]
c +

 r

|c|

√
1−

(
r

|c|

)2
 ci.

We’ve now identified one of the points of tangency. Finding the other (t2) turns

out to be easier.
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Remember: ĉĉ = 1, and for any

vector v, vv̂ = v̂v = |v|.

In this case, eθi = t̂2ĉ, and eαi = (−ĉ)
[
t2 − c

r

]
=

ĉ (c− t2)

r
. Using those

expressions in our equation
[
eθi
] [
eαi
]

= i,[
t̂2ĉ
] [ ĉ (c− t2)

r

]
= i,

t̂2ĉĉ (c− t2)

r
= i

t̂2c− t̂2t2 = ri,

t2c− t2t2 = r |t2| i,
t2c− t2

2 = r |t2| i,
t2c = t2

2 + r |t2| i,

∴ t2c = c2 − r2 + r
[√

c2 − r2
]
i.

Comparing that equation to the analogous one that we obtained when

finding t,

ct = c2 − r2 + r
[√
c2 − r2

]
i,

Right-multiplying by c−1, rather

than left-multiplying, has

inverted the sign of the ci term.

we see the right-hand sides are identical, but the order of the multiplication on

the left-hand side is inverted. To solve for t, we left-multiplied by c−1, but we’ll

right-multiply by c−1 to solve for t2. What difference will that make? Let’s

see. . .

t2 =
{
c2 − r2 + r

[√
c2 − r2

]
i
}( c

c2

)
︸ ︷︷ ︸
=c−1

=

[
1−

(
r

|c|

)2
]
c +

 r

|c|

√
1−

(
r

|c|

)2
 ic,

=

[
1−

(
r

|c|

)2
]
c +

 r

|c|

√
1−

(
r

|c|

)2
 (−ci)︸ ︷︷ ︸

=ci

,

=

[
1−

(
r

|c|

)2
]
c−

 r

|c|

√
1−

(
r

|c|

)2
 ci.
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As a contrast that might prove useful, this problem is solved without using

rotations in ”Find tangents to a circle from a point, using Geometric Algebra”

(as GeoGebra worksheet, as YouTube video).

4.2 Problem 2

Derive an equation for the position of the circumcenter of a triangle with respect

to one of its vertices.

Identifying Potentially Useful Elements of the Problem This problem

can be solved in several different ways. For example, because the mediatrix

of any chord in a circle passes through the circle’s center (1 ), we can find the

circumcenter of our triangle by finding the point at which the mediatrices of

any two sides of the triangle intersect. We can also find the circumcenter via

simple trigonometry.

However, we wish to solve this problem by using rotations, so let’s begin by

asking, ”Is the circumcenter involved in the rotation of any identifiable vectors?”

As soon as we add the circumcenter to our previous diagram, and draw vectors

from the circumcenter to any two of the given triangle’s vertices,
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Two methods of solving

problems via rotations:

• Equate two expressions

for the same angle (in

this case, α); and

• Write one vector as a

”rotation + dilation” of

the other. In this case,

c− q is a pure rotation

of b− q because both are

radii of the same circle.

Quite often, the equation

obtained via one of these

methods is much easier to solve

than that obtained via the

other.

we can see that the required circle converts the given triangle into ”three in-

scribed angles” (5). Therefore, we can choose any of the triangle’s vertices the

origin (we’ve chosen a), and write α = 2θ, from which eθieθi = e2θi.

Formulating a Strategy One strategy is to express the equality of angles

that we’ve just identified in terms of products of vectors, in order to obtain an

equation involving q:

eαi = e2θi

eαi =
[
eθi
] [
eθi
][

b− q

|b− q|

] [
c− q

|c− q|

]
=
[
b̂ĉ
] [

b̂ĉ
]
.

Then, we’d expand both sides of the equation that we’ve just obtained, after

which we’d use other manipulations to identify q.

We’ll use that strategy in later problems, but before we dive into it here,

we should also note that c−q is a pure rotation of b−q because both are radii

of the same circle:

[b− q] eαi = c− q

[b− q]
[
eθi
] [
eθi
]

= c− q

[b− q]
[
b̂ĉ
] [

b̂ĉ
]

= c− q,

b
[
b̂ĉ
] [

b̂ĉ
]
=
(
bb̂
)
ĉb̂ĉ

= |b| ĉb̂ĉ

= ĉ
(
|b| b̂

)
ĉ

= ĉbĉ.

from which

b
[
b̂ĉ
] [

b̂ĉ
]
− q

[
b̂ĉ
] [

b̂ĉ
]

= c− q,

q − q
[
b̂ĉ
] [

b̂ĉ
]

= c− b
[
b̂ĉ
] [

b̂ĉ
]
,

q
(

1− b̂ĉb̂ĉ
)

= c− b
[
b̂ĉ
] [

b̂ĉ
]

q
(

1− b̂ĉb̂ĉ
)

= c− ĉbĉ.
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Is that result helpful? Yes, because 1− b̂ĉb̂ĉ has a multiplicative inverse in

GA. Therefore, we can write the following in a purely formal way, then identify

what that inverse is, precisely:

q
(

1− b̂ĉb̂ĉ
)(

1− b̂ĉb̂ĉ
)−1

= (c− ĉbĉ)
(

1− b̂ĉb̂ĉ
)−1

∴ q = (c− ĉbĉ)
(

1− b̂ĉb̂ĉ
)−1

.

Appendix A (p. 60) solves for q

in this way. Although it’s more

complicated than the ways that

we’ll see here shortly, it’s

recommended (along with the

comments thereon) for its

time-saving pointers regarding

inverses of multivectors, and for

its observations on geometric

interpretation of results and

transformations of vectors.
However, is there an even-easier way? Let’s add a few more elements to

our diagram, then examine it again:

We see now that a rotation through our angle θ, in combination with a dilation

by the scalar factor
|d− q|
|b− q|

, will transform the vector b− q into d− q:

d− q =
|d− q|
|b− q|

(b− q) eθi

=
|d− q|
|b− q|

(b− q) b̂ĉ.

The next few paragraphs

indicate how we’d use ordinary

trigonometry to identify the

position of the incenter with

respect to the midpoint of

segment bc. Note also that

|b− c|
2

= |b− d|

= |b− q|
[(

b̂i
)
· ĉ
]

∴ |b− q| = |b− c|
2
(
b̂i
)
· ĉ
.

Determining the value of
|d− q|
|b− q|

is easy enough: d−q is the projection of b−q

upon (b− c) i, so

|d− q| = |b− q| cos θ

= |b− q| b̂ · ĉ;

∴
|d− q|
|b− q|

= b̂ · ĉ.

Putting these observations and results together, our equation

d− q =
|d− q|
|b− q|

(b− q) b̂ĉ
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becomes

d− q =
(
b̂ · ĉ

)
(b− q) b̂ĉ.

To solve that equation for q, we rearrange it as

q
[(

b̂ · ĉ
)
b̂ĉ− 1

]
=
(
b̂ · ĉ

)
b̂ĉ− d,

then right-multiply both sides by
[(

b̂ · ĉ
)
b̂ĉ− 1

]−1

.

That task promises to be somewhat easier than finding q via the equation

that we obtained previously, which was

q = (c− ĉbĉ)
(

1− b̂ĉb̂ĉ
)−1

.

Still, we can do even better. Let’s recall the first strategy that we identified for

finding q: that of writing the rotation operator e2θi as the product of the unit

vector in the direction b−q and the unit vector in the direction c−q. Combining

that idea with the experience we’ve gained subsequently from formulating two

alternative strategies, we can see potential benefit in writing

The unit vector in the direction (b− c) i is the rotation, through the angle

θ, of the unit vector in the direction b− q.

That is,

(b− c) i

|b− c|
=

[
b− q

|b− q|

]
eθi

From our previous work, we can

derive that

|b− q|
|b− c| =

1

2
(
b̂i
)
· ĉ

.

from which

|b− q|
|b− c|

(b− c) i = (b− q) b̂ĉ, and

qb̂ĉ = bb̂ĉ−
 (b− c) i

2
(
b̂i
)
· ĉ


= |b| ĉ−

 (b− c) i

2
(
b̂i
)
· ĉ

.
That equation is the one that we shall now solve.

Solving the Equation In the equation

qb̂ĉ = |b| ĉ−
 (b− c) i

2
(
b̂i
)
· ĉ

,
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q is right-multiplied by b̂ĉ . We can undo those operations by right-multiplying

by ĉb̂, which of course happens to be
(
b̂ĉ
)−1

:

(
qb̂ĉ

)
ĉb̂ =

{
|b| ĉ−

 (b− c) i

2
(
b̂i
)
· ĉ


}
ĉb̂

q = |b| ĉĉb̂−
 (b− c) îcb̂

2
(
b̂i
)
· ĉ


= b +

cĉb̂− bĉb̂

2
(
b̂i
)
· ĉ

i
= b +

 |c| b̂− b
(

2ĉ · b̂− b̂ĉ
)

2
(
b̂i
)
· ĉ

i
= b +

 |c| b̂ + |b| ĉ− 2
(
b̂ · ĉ

)
b

2
(
b̂i
)
· ĉ

i

Appendix A (p. 60) discusses in

detail many aspects of finding

inverses of multivectors. One

quick way to see that
(
b̂ĉ
)−1

is

ĉb̂ is by noting that b̂ĉ = eθi,

the multiplicative inverse of

which is e−θi, which in turn, as

we can deduce from our

diagrams, is ĉb̂.

This answer is satisfactory for computing q, but we can transform it into a

version that’s more useful and informative.

Interpreting the Solution, and Transforming It into a More-Useful

Form Readers are encouraged to review the extensive treatment that this

subject is given in Appendix A (p. 60), for the version of the solution obtained

by solving the equation

q = (c− ĉbĉ)
(

1− b̂ĉb̂ĉ
)−1

.

Here, we’ll transform the solution that we just obtained into a form that shows

that q lies along the mediatrix of segment bc. We begin the transformation by

going back a few steps to

q = b +

cĉb̂− bĉb̂

2
(
b̂i
)
· ĉ

i,
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then continuing

q = b +

cĉb̂− b
(

2b̂ · ĉ− b̂ĉ
)

2
(
b̂i
)
· ĉ

i
= b +

cĉb̂ + bb̂ĉ− 2
(
b̂ · ĉ

)
b

2
(
b̂i
)
· ĉ

i
= b +

c
(
ĉ · b̂ + ĉ ∧ b̂

)
+ b

(
b̂ · ĉ + b̂ ∧ ĉ

)
− 2

(
b̂ · ĉ

)
b

2
(
b̂i
)
· ĉ

i
= b +

 (c− b)
(
b̂ · ĉ

)
+ (b− c)

(
b̂ ∧ ĉ

)
2
(
b̂i
)
· ĉ

i
= b +

 (c− b)
(
b̂ · ĉ

)
+ (b− c)

[(
b̂i
)
· ĉ
]
i

2
(
b̂i
)
· ĉ

i

= b +

 b̂ · ĉ(
b̂i
)
· ĉ

(c− b

2

)
i +

c− b

2

=
b + c

2
+

[
b̂ · ĉ

b̂ · (ĉi)

] [(
b− c

2

)
i

]
.

The geometric significance of that version is shown in the following figure:

As we knew from the classical solution and from trigonometry, q lies along the

mediatrix of segment bc.

4.3 Problem 3

Derive an equation for the position of the incenter of a triangle with respect to

one of its vertices.
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Identifying Potentially Useful Elements of the Problem Although the

problem is posed as one of finding the incenter, we can see that each of the

triangle’s vertices is a point from which tangents are drawn to the required

circle. Thus, we have three cases of Problem 1 (4.1). So, let’s choose one of the

vertices as the origin, then identify elements that might be useful.

One key fact is that from Problem 1, we know that the incenter must lie

along the bisector of the angle formed by the tangents drawn to the circle. Thus

the incenter lies along the direction
b̂ + ĉ

2
. A second is that the radii from the

incenter to the points of tangency are perpendicular to the triangle’s sides. A

third is that the lengths of the tangents from each vertex are equal. From the

latter, we can deduce that the length of the segment cb is equal to the sum of

the lengths of segments cg and bf .

We can also see several rotations that we might be able to formulate via

GA and use to find the answer, so let’s add a few more elements to our figure

so that we can treat those rotations more precisely.
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Although we drew this diagram in order to examine rotations, we can see that

it also helps us refine our initial observations about lengths of segments. Why

not do so now, before moving on to the rotations?

We noted that the sides of the triangle are perpendicular to the radii drawn

from the incenter, so we know that vector f is q’s projection upon b̂:

f =
(
q · b̂

)
b̂.

Because the two tangents drawn to a circle from a given point are equal in

length, we know that |g| = |f |. Therefore,

g =
(
q · b̂

)
ĉ.

Our initial observation that the length of segment bc is the sum of the

lengths of segments cg and bf can also be translated into a ”GA-friendly”

vector equation:

|c− b| = |g − c|+ |f − b|
= |c| − |g|+ |b| − |f |

= |c| − q · b̂ + |b| − q · b̂.

Therefore,

q · b̂ =
|b|+ |c| − |c− b|

2
.

That result is sure to be important; we could solve for q immediately if

we knew the geometric product qb̂, and all we need to do in order to form

that product is to determine the outer product q ∧ b̂. That outer product will

probably arise somewhere in the expressions for rotations that we intend to

examine, so let’s turn to those now.
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One of those rotations is that of vector f through the angle θ to give vector

g:

g = feθi, with eθi = b̂ĉ.

A more-exotic example is illustrated by the following diagram.

We express the vector h in two ways: as q plus the rotation of f − q through

the angle β,

h = q + (f − q) eβi.

and as the vector b plus the rotation of f − b through the angle ψ:

h = b + (f − b) eψi.
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The rotation operator eψi can be written as the geometric product
(
−b̂
)[ c− b

|c− b|

]
=

|b| − b̂c

|c− b|
. To derive an expression for β, we use the theorem about the measure

of an angle drawn from a point exterior to a circle (p. 11). The angles β and

δ are shown as negative (clockwise) angles in our diagram, so β + δ = −2π.

Therefore,

ψ =
1

2

β − (−2π − β)︸ ︷︷ ︸
=δ

 ,
= β + π,

from which β = ψ − π (which is clearly a negative angle).

These observations appear to have provided enough information —and in

”GA-friendly form”—to solve the problem, so let’s formulate a strategy.

Formulating a Strategy Our observations have suggested two strategies:

1. Identify q from the known value of q · b̂ and from the value of q · b̂, which

is still unknown, but which we should be able to determine by analyzing

rotations; and

2. Although the solution via the

second strategy is not presented

in this document, that strategy

does work. Equating the two

expressions for h gives

q + (f − q) eβi = b+ (f − b) eψi ,

q + (q − f) eψi = b+ (f − b) eψi,

and

q (1 + b) eψi = b
(
1− eψi

)
+ 2feψi.

From there, we’d right-multiply

both sides by
(
1 + eψi

)−1
to

solve for q . See Appendix A (p.

60) for the method.

Equate the two expressions that we obtained for the vector h:

h = b + (f − b) eψi.

and

h = q + (f − q) eβi.

with f =
(
q · b̂

)
b̂ =

[
|b|+ |c| − |c− b|

2

]
b̂, and

eβi = e(ψ−π)i = eψi e(−π)i︸ ︷︷ ︸
=−1

= −eψi =
b̂c− |b|
|c− b|

.

An important piece of

information that neither of our

strategies uses.

We’ll use the first strategy because it appears to be simpler. However,

this is a good moment to note that neither of the strategies makes use of an

important observation that we made earlier: the point q lies along the direction
b̂ + ĉ

2
. We can express that observation in terms such as

q ∧
(
b̂ + ĉ

)
= 0, and q ∧ b̂ + q ∧ ĉ = 0.

Let’s summarize the information that we’ve identified as relevant to the

strategy we’ve chosen:
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q · b̂ =
|b|+ |c| − |c− b|

2

q ∧
(
b̂ + ĉ

)
= 0, or equivalently, q ∧ b̂ + q ∧ ĉ = 0.

Having formed q ∧
(
b̂ + ĉ

)
so easily, and recognizing that we’d need to work a

bit to find q∧ĉ, we might ask now whether we’d be better off finding q ·
(
b̂ + ĉ

)
,

so that we can then find q from the geometric product q
(
b̂ + ĉ

)
. This moment

in our solution process is where our initial exploration of lengths of segments

pays off: we found that |g| = |f | = q · b̂ =
|b|+ |c| − |c− b|

2
. That additional

information makes the route clear to us:

q ·
(
b̂ + ĉ

)
= q · b̂ + q · ĉ = |b|+ |c| − |c− b| ;

q ∧
(
b̂ + ĉ

)
= 0;

∴ q
(
b̂ + ĉ

)
= q · b̂ + q · ĉ = |b|+ |c| − |c− b| .

We’ll find q by solving that equation.

Solving the Equation Our equation is

q
(
b̂ + ĉ

)
= q · b̂ + q · ĉ = |b|+ |c| − |c− b|,

which we solve via

q
(
b̂ + ĉ

)(
b̂ + ĉ

)−1

= [|b|+ |c| − |c− b|]
(
b̂ + ĉ

)−1

q = [|b|+ |c| − |c− b|]

 b̂ + ĉ(
b̂ + ĉ

)2


= [|b|+ |c| − |c− b|]

[
b̂ + ĉ

2 + 2b̂ · ĉ

]

=

[
|b|+ |c| − |c− b|

1 + b̂ · ĉ

][
b̂ + ĉ

2

]
.

Interpreting the Solution The incenter lies along the bisector of the angle

formed by sides b and c, at a distance from point a equal to
[
|b|+ |c| − |c− b|

1 + b̂ · ĉ

]
times the length of

b̂ + ĉ

2
.

Because the assumptions that we made about the vertex a apply to all three

vertices of any triangle, our solution is valid for all vertices of every triangle.

Therefore, the incenter is the point of intersection of the bisectors of the three

angles formed by the sides of the triangle. This result is the same as that

obtained via classical geometry.
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4.4 Problem 4

Given two circles, and a point p on one of them, construct the circles that are

tangent to both of the given circles, with p being one of the points of tangency.

This problem has two solutions (i.e., the red and magenta circles). We’ll

find them in four ways, using two different concepts.

4.4.1 Solution Concept 1

In this first solution, we won’t think about the problem in terms of rotating

vectors; instead, we’ll use the expressions that we’ve developed as a means of

expressing angles between pairs of vectors in a convenient way. From there,

we’ll go on to solve for the vectors from the origin to the points of tangency

between the given circles and the ones that we’re asked to construct. Please

note that the solution presented here, although it uses the same ideas as the one

presented in ”Answering Two Common Objections to Geometric Algebra” (on

YouTube, on GeoGebraTube), is considerably ”cleaner” because we’re using

the starting point of the vectors t1 and t2 is used as the origin, rather than the

center of the circle on which p is located.
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The angle between the directions of vectors t1 and p−t1 is θ, in the positive

(i.e., ccw) direction. Because the triangle pt1c2 is isosceles, the angle between

the directions of t1−p and p−c2 is θ as well. Also, |t1| = r1, and |p− c2| = r2.

Therefore,

t1 (p− t1) = |t1| |p− t1| eθi

= r1 |p− t1| eθi;

and

(t1 − p) (p− c2) = |t2| |p− c2| eθi

= r2 |p− t1| eθi,

from which

(t1 − p) (p− c2) =
r2

r1
t1 (p− t1) .

Additional details on the

maneuvers needed here can be

found in Appendix C (page 74 )

and in ”Answering Two

Common Objections to

Geometric Algebra”:

On YouTube

On GeoGebraTube.

In those sources, you’ll also find

other ways to solve such

equations.

Expanding both sides, recognizing that t2
1 = r2

1, and rearranging, we obtain

t1

[(
r2

r1
− 1

)
p + c2

]
= r1r2 + pc2 − p2.

Now, we right-multiply both sides by the inverse of

[(
r2

r1
− 1

)
p + c2

]
to

solve for t1. (Recall that the inverse of a vector v is v/ |v|2.) After rearranging

the right-hand side, we arrive at

t1 =

[
r2
2 − r1r2 + c22 −

(
r2

r1
− 1

)
p2 + 2

(
r2

r1
− 1

)
p · c2

]
p +

[
r1r2 −

r2

r1
p2

]
c2(

r2

r1
− 1

)2

p2 + c22 + 2

(
r2

r1
− 1

)
p · c2

.

To find t2, we recognize that the angles φ are equal.
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Using the same ideas as in the solution for t1, we write

−t2 (p− t2) = |−t2| |p− t2| eφi

= r1 |p− t2| eφi;

and

(t2 − p) (p− c2) = |t2| |p− c2| eφi

= r2 |p− t1| eφi,

which leads to

t2

[(
r2

r1
+ 1

)
p− c2

]
= r1r2 − pc2 + p2,

and

t2 =

[
r2
2 + r1r2 + c22 +

(
r2

r1
+ 1

)
p2 − 2

(
r2

r1
+ 1

)
p · c2

]
p +

[
r2

r1
p2 − r1r2

]
c2(

r2

r1
+ 1

)2

p2 + c22 − 2

(
r2

r1
+ 1

)
p · c2

.

You’ve probably been thinking that the problem asks us to do more than

find t1 and t2: we’re required to identify (that is, to give equations for) the

tangent circles. So, now that we’ve found the points of tangency, how do we

proceed?
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We can also express e
α

2
i

directly

in terms of the vectors c2 − p

and t2. See page 16 .

One possibility is given in Hestenes D. 1999, pp. 88-89. We’ll use the

magenta circle as our example. Knowing t2, we can determine the angle α.

Thus, we know that every point x on the magenta circle satisfies the condition

expressed by the equation

(p− x)
−1

(t2 − x) = δe
α

2
i
,

where δ is a scalar, −∞ < δ <∞ . To each finite value of δ, there corresponds

a unique point x; the absolute value of δ increases without limit (”goes to

infinity”) as x approaches p.

4.4.2 Solution Concept 2

In our second Solution Concept, we makes life more difficult for ourselves—deliberately—in

order to demonstrate ideas that will prove helpful in more-difficult problems

later on. We begin by re-examining our figure, and noting from plane geome-

try, the angle between the vectors p− c3 and t1 − c3 is 2ψ.
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Thus

t1 − c3 = (p− c3) e2ψi.

To obtain an expression for eψi, we can use either

[− (p− c2) i] (t1 − p)

|(−p− c2| i| |t1 − p|
or

(p− t1) t1i

|p− t1| |t1i|
.

We’ll opt for the latter, because it promises to be simpler to use. From the

preceding, we can see that we can obtain the vector t1 − c3 by rotating the

vector p− c3 counterclockwise through the angle ψ twice:

(p− c3) eψieψi = t1 − c3.

A word about what we’re

working toward here: We’re

going to try to form an equation

in which one side is a product of

vectors, and the other is either a

pure scalar or a pure bivector.

Then, we’ll use postulates about

the equality of multivectors to

obtain an equation that we can

solve simply for t1.

That information doesn’t appear useful until we recognize that p − c3 =

−r3

r2
(p− c2), and t1 − c3 = −r3

r1
t1. Making these substitutions, and using the

expression that we chose for eψi, the previous equation becomes

−r3

r2
(p− c2)︸ ︷︷ ︸

=p−c3

[
(p− t1) t1i

|p− t1| |t1i|

] [
(p− t1) t1i

|p− t1| |t1i|

]
= −r3

r1
t1.

We can simplify that result, using |t1i| = r1, thereby finding that

(p− c2) (p− t1) t1i (p− t1) t1i = r1r2 |p− t1|2 t1.

”Switching places of i’s and

vectors” is a common and

important maneuver that we’ll

use many times in this

document. You’ll learn to

simplify it quite soon: just

examine the term on which

you’re working, and count the

number of ”switches” that will

be needed to bring the i’s

together within that term to

make a ”-1”. That is, an ”i2”.

If that number is even, then the

sign of the term inverts; if odd,

the sign remains unchanged. In

the present example, we made

two switches, so the sign

inverted.

Next, we eliminate the two factors i on the left-hand side by ”bringing

them together”. To do so, we just make a series of ”switches” of place between

one of the i’s and an adjacent vector. We use the identify iv ≡ −vi to keep

track of sign changes:

(p− c2) (p− t1) t1i (p− t1) t1i = r1r2 |p− t1|2 t1︸ ︷︷ ︸
Repeating the previous equation

,
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− (p− c2) (p− t1) t1 (p− t1) i︸ ︷︷ ︸
1st switch

t1i = r1r2 |p− t1|2 t1,

(p− c2) (p− t1) t1 (p− t1) t1i︸︷︷︸
2nd

i = r1r2 |p− t1|2 t1,

(p− c2) (p− t1) t1 (p− t1) t1i
2 = r1r2 |p− t1|2 t1,

(p− c2) (p− t1) t1 (p− t1) (−1) = r1r2 |p− t1|2 t1,

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2 t1.

The key equation for Concept 2

Right-multiplying now by t1
−1, we obtain the key equation for Concept 2:

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2 .

The right-hand side is a scalar. That result deserves several comments. The

first is that as we saw earlier, the geometric product of any three coplanar

vectors is another vector in the same plane. Therefore, the geometric product

of any four coplanar vectors is the sum of a scalar and a bivector, only. More to

the point, because (p− c2) (p− t1) t1 (p− t1) evaluates to a scalar, its bivector

part is zero:

〈(p− c2) (p− t1) t1 (p− t1)〉2 = 0.

We’ll see, shortly, how to make use of that fact, but first let’s note an-

other important aspect of our key equation: it contains the sequence of factors

(p− t1) t1 (p− t1), which is of the form uvu. That’s noteworthy because for

any two vectors v and û, the product ûvû is the reflection of v with respect

to û. Hence, (p− t1) t1 (p− t1) is the reflection of t1 with respect to (p− t1),

and multiplied by the factor |p− t1|2. Based upon those observations, and upon

|p− c2| = r2 and t1 = r1, we can see that the equation

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2

tells us that (p− t1) t1 (p− t1) is equal to |p− t1|2 t1 in magnitude, and is

parallel to p− c2, but opposite in direction.

Now that we’ve discussed some of the geometric significance of the equation

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2 ,

we’ll solve that equation in three ways.

Concept 2, Solution Method 1 As noted above, the right-hand side of our

key equation (Page 38)

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2

Now we see why we wanted (p.

37) an equation in which one

side was either a pure scalar or

a pure bivector: The left-hand

side of our key equation is the

product of an even number of

vectors, so it must evaluate to a

multivector that’s the sum of a

scalar and a bivector. Because

the right-hand side is a pure

scalar, the bivector part of the

left-hand side must be zero.

is a scalar. Therefore,

〈(p− c2) (p− t1) t1 (p− t1)〉2 = 0.
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To use that fact, we’ll begin by expanding the left-hand side, then simpli-

fying. (Again, t2
1 = r2

1.)

(p− c2) (p− t1) t1 (p− t1) = ppt1p− ppt1t1 − pt1t1p + pt1t1t1 − c2pt1p

+c2pt1t1 + c2t1t1p− c2t1t1t1

= p2t1p− 2r1
2p2 + r1

2pt1 − c2pt1p + 2r1
2c2p

−r1
2c2t1.

Now, we need to identify the bivector part of the simplified expansion. The

bivector part of a sum of terms is the sum of the terms’ respective bivector

parts. (Note that r1
2p2 is a scalar, so its bivector part is zero.) The only term

whose bivector part might cause us some trouble is c2pt1p. What is 〈c2pt1p〉2?

Several different ways of identifying it are presented in the Appendix (7.2).

The most straightforward way uses the identity that for any two vectors u and

v, uv ≡ 2u · v − vu. Therefore,

〈c2pt1p〉2 = 〈c2 (2p · t1 − t1p)p〉2
= 〈2 (p · t1) c2p− p2c2t1〉2
= 2 (p · t1) c2 ∧ p− p2c2 ∧ t1.

An important identity that’s

useful in solving equations that

arise when working with

rotations:

u ∧ v = [(ui) · v] i
= − [u · (vi)] i.

Using this expression, and our identity that for any two vectors u and v,

u ∧ v = [(ui) · v] i, we arrive at

〈(p− c2) (p− t1) t1 (p− t1)〉2 =
(
p2 − r1

2
)
c2 ∧ t1 −

(
p2 − r1

2
)
p ∧ t1

−2 (p · t1) c2 ∧ p + 2r1
2c2 ∧ p

=
(
p2 − r1

2
)

[(c2i) · t1] i−
(
p2 − r1

2
)

[(pi) · t1] i

−2 (p · t1) [(c2i) · p] i + 2r1
2 [(c2i) · p] i.

Now, we can make use of the fact that 〈(p− c2) (p− t1) t1 (p− t1)〉2 is

zero:

(
p2 − r1

2
)

[(c2i) · t1] i−
(
p2 − r1

2
)

[(pi) · t1] i− 2 (p · t1) [(c2i) · p] i + 2r1
2 [(c2i) · p] i = 0,

which (after eliminating the factor i) we can rearrange as follows :{
[2 (c2i) · p]p +

(
p2 − r2

1

)
(pi− c2i)

}︸ ︷︷ ︸
We′ll call this vector ”z”

·t1 = 2r2
1 (c2i) · p.

Therefore,

t1 · ẑ =
2r2

1 (c2i) · p
|z|

.

That result is useful to us because we also know that t1 = (t1 · ẑ) ẑ +

[t1 · (ẑi)] ẑi, and t2
1 = r2

1. From those facts, we can show that

t1 · (ẑi) = ±
√
r2
1 − (t1 · ẑ)

2
.
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But which root is correct: the positive, or the negative? To answer that ques-

tion, let’s attempt to identify the vector t2.

Looking again at our diagram, we find that

(p− c4) e2ϕi = t2 − c4.

Proceeding now in the same way that we did to find t1,[
−r4

r2
(p− c2)

]
eϕieϕi =

r4

r1
t2[

−r4

r2
(p− c2)

] [
(p− t2) (−t2i)

|p− t2| |−t2i|

]
︸ ︷︷ ︸

=eϕi

[
(p− t2) (−t2i)

|(−t2i)| |−t2i|

]
=
r4

r1
t2

(p− c2) (p− t2) t2 (p− t2) t2 =
r2

r1
|p− t2|2 |t2|2 t2

Therefore,

(p− c2) (p− t2) t2 (p− t2) = r1r2 |p− t2|2 .

Let’s compare that equation to the corresponding one that we obtained for

t1 (Page 38):

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2

The right-hand sides of the two equations have opposite algebraic signs. Those

signs, plus the fact that the right-hand sides are scalars, tell us that the vector

(p− t2) t2 (p− t2) is parallel to p − c2, while the vector (p− t1) t1 (p− t1) is

anti-parallel to it. Therefore, t1 and t2 are not the same vector.

Nevertheless, both of those vectors have the same length (= r1), and

both have the same projection upon z, as we can show by recognizing that

〈(p− c2) (p− t2) t2 (p− t2)〉2 = 0, then proceeding as we did for t1. In this

way we arrive at{
[2 (c2i) · p]p +

(
p2 − r2

1

)
(pi− c2i)

}︸ ︷︷ ︸
This is the same vector ”z” as for t1

·t2 = 2r2
1 (c2i) · p︸ ︷︷ ︸

=t1·z

,
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∴ t2 · ẑ =
2r2

1 (c2i) · p
|z|

= t1 · ẑ.

Their components perpendicular to z are of equal length

(
=
√
r2
1 − (t1 · ẑ)

2

)
,

but are oppositely directed. (That’s why the vectors (p− t2) t1 (p− t1) and

(p− t2) t2 (p− t2) are oppositely directed.) Therefore, the solution obtained

by using the present method is

t =

[
2r2

1 (c2i) · p
|z|

]
ẑ ±


√
r1

2 −
[

2r2
1 (c2i) · p
|z|

]2
 ẑi,

where

z = [2 (c2i) · p]p +
(
p2 − r2

1

)
(pi− c2i) .

That form of the solution is satisfactory for computing t; if we wished,

we could transform it into another form by using ideas presented in the work-

sheet and video, ”Find unknown vector from two dot products” (as GeoGebra

worksheet , as YouTube video).

Concept 2, Solution Method 2 We’ll start from our key equation for this

concept (Page 38):

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2 .

In Solution Method 1 for this concept, we used the fact that the left-

hand side evaluates to a scalar, and thereby arrived at an equation for the dot

product t1 ·z. However, we made no use of the fact the left-hand side evaluates

to the specific scalar −r1r2 |p− t1|2 . In the present Method, we’ll use that

information to find t1’s dot product with a second vector, which we’ll call ŵ1.

Knowing t1’s dot products with those two vectors, we’ll be able to find t1 using

methods developed in the worksheet and video, ”Find unknown vector from two

dot products” (As GeoGebra worksheet , As YouTube video).
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From Method 1, we also know that (p− c2) (p− t1) t1 (p− t1) can be ex-

panded as

(p− c2) (p− t1) t1 (p− t1) = p2t1p + r1
2pt1 − r1

2c2t1 + 2r1
2c2p− 2r1

2p2

− 2 (p · t1) c2p− p2c2t1︸ ︷︷ ︸
=c2pt1p

.

Because |p− t1|2 is (p− t1)
2
,

p2t1p + r1
2pt1 − r1

2c2t1 + 2r1
2c2p− 2r1

2p2 − 2 (p · t1) c2p− p2c2t1 = −r1r2

(
p2 − 2p · t1 + r1

2
)︸ ︷︷ ︸

=(p−t1)2.

Equating the scalar parts of the two sides, and rearranging, we obtain{[
p2 + r1

2 − 2 (r1r2 + c2 · p)
]
p +

(
p2 − r1

2
)
c2

}︸ ︷︷ ︸
We′ll call this w1.

·t1 = 2r1
2
(
p2 − c2 · p

)
−r1r2

(
p2 + r1

2
)
.

Similarly, starting from

(p− c2) (p− t2) t2 (p− t2) = r1r2 |p− t2|2 ,

we find that{[
p2 + r1

2 + 2 (r1r2 − c2 · p)
]
p +

(
p2 − r1

2
)
c2

}︸ ︷︷ ︸
We′ll call this w2.

·t2 = 2r1
2
(
p2 − c2 · p

)
+r1r2

(
p2 + r1

2
)
.

We now have a pair of ”dot-product” equations for each of the vectors t1

and t2:

z · t1 = 2r2
1 (c2i) · p,

w1 · t1 = 2r1
2
(
p2 − c2 · p

)
− r1r2

(
p2 + r1

2
)
.

z · t2 = 2r2
1 (c2i) · p,

w2 · t2 = 2r1
2
(
p2 − c2 · p

)
+ r1r2

(
p2 + r1

2
)
.

In the worksheet and video ”Find unknown vector from two dot products”,

we learned that given the dot products of an unknown vector x with two known

vectors a and b, we can find x by writing it as a linear combination of a and b,

x = αa + βb,

from which we can then form the pair of linear equations

a · x = αa2 + βa · b,

b · x = αa · b + βb2.
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Solving those equations for α and β, we obtain

α =
b2a · x− (a · b) (b · x)

a2b2 − (a · b)
2 ,

β =
a2b · x− (a · b) (a · x)

a2b2 − (a · b)
2 .

Making use of that solution, we find that

t1 = α1w1 + β1z,

where

α1 =
z2w1 · t1 − (w1 · z) (z · t1)

w1
2z2 − (w1 · z)

2 ,

β =
w1

2z · t1 − (w1 · z) (w1 · t1)

w1
2z2 − (w1 · z)

2 ,

w1 =
[
p2 + r1

2 − 2 (r1r2 + c2 · p)
]
p +

(
p2 − r1

2
)
c2,

w2 =
[
p2 + r1

2 + 2 (r1r2 − c2 · p)
]
p +

(
p2 − r1

2
)
c2,

z = [2 (c2i) · p]p +
(
p2 − r2

1

)
(pi− c2i),

w1 · t1 = 2r1
2
(
p2 − c2 · p

)
− r1r2

(
p2 + r1

2
)
,

w1 · t2 = 2r1
2
(
p2 − c2 · p

)
+ r1r2

(
p2 + r1

2
)
,

z · t1 = z · t2 = 2r2
1 (c2i) · p.

Concept 2, Solution Method 3 Anyone who’s studied Geometric Alge-

bra—even casually—knows that the method usually prescribed for solving for

an unknown vector x in a given problem is to find x’s inner and outer products

with a known vector b, then proceed as follows:

x · b + x ∧ b = xb

x = (xb) b−1

Very antiseptic-looking! However, in this section, we’ll learn that x ·b and x∧b
can take quite-complicated forms.

As we did in previous sections, we’ll start with our key equation:

(p− c2) (p− t1) t1 (p− t1) = −r1r2 |p− t1|2 .

Again, we’ll expand the left-hand side. But this time, we’ll maintain p−c2

intact, as a single factor:

(p− c2)
(
pt1p− 2r1

2p + r1
2t1

)︸ ︷︷ ︸
=(p−t1)t1(p−t1)

= −r1r2 |p− t1|2 .
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Examining the left-hand side, we see an interesting possibility: if we left-

multiply by (p− c2)
−1

, and right-multiply by p, we’ll obtain a sum of three

terms: a scalar, and two terms that are scalar multiples of geometric products

of p and t1. On the right-hand side, we’ll obtain a scalar multiple of the product

(p− c2)p:

(p− c2)
−1 [

(p− c2)
(
pt1p− 2r1

2p + r1
2t1

)]
p = (p− c2)

−1
[
−r1r2 |p− t1|2

]
p

p2pt1 + r1
2t1p− 2r1

2p2 = −r1r2 |p− t1|2

(p− c2)
2 (p− c2)p =

r1r2 |p− t1|2

(p− c2)
2

(
c2p− p2

)
.

Now, we can develop expressions for t1 · p and t1 ∧ p. Equating the scalar

parts of both sides, and solving for t1 · p, we find that

t1 · p =
2r1

2p2 (p− c2)
2 − r1r2

(
p2 + r1

2
) (
p2 − c2 · p

)
(p2 + r1

2) (p− c2)
2 − 2r1r2 (p2 − c2 · p)

.

Equating the bivector parts of both sides, we obtain

t1 ∧ p =
r1r2

(
p2 − 2t1 · p + r1

2
)

(p2 − r1
2) (p− c2)

2 [(pi) · c2] i︸ ︷︷ ︸
=p∧c2

.

Note that our expression for t1∧p contains the quantity t1 ·p. That’s fine,

because the expression for t1 ·p allows us to calculate the value of t1 ·p directly

from known quantities (r1, r2, p, and c2), after which we’d use that value to

calculate t1 ∧ p. If we wished, we could also do the work symbolically. That

is, we could substitute our expression for t1 · p into our expression for t1 ∧ p,

then do the algebra to obtain an expression for t1 ∧ p in terms of the known

quantities.

Having obtained these expressions for t1 · p and t1 ∧ p, how do we use

them to determine t1? This is where we need to understand the meaning of the

symbol ”+” in the ”antiseptic” version of the solution

t1 · p + t1 ∧ p = t1p

t1 = (t1p)p−1.

We’ll see a brief explanation here; more details are given in the worksheet

and video ”Answering Two Common Objections to Geometric Algebra” (As

GeoGebra worksheet , As YouTube video). To solve for t1, starting from the

preceding equations, we write

t1 = (t1 · p + t1 ∧ p)︸ ︷︷ ︸
=t1p

p−1

= (t1 · p)p−1 + (t1 ∧ p)p−1

=

[
t1 · p
p2

]
p +

{
t1 ∧ p

p2

}
p.
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Every exterior product (including t1 ∧ p) is a scalar multiple of the unit

bivector i. Therefore, the second term on the right-hand side of the above

equation is a scalar multiple of ip, which is a vector. For that reason, the

second term is also a scalar multiple of −pi, where pi is the 90◦ counter-

clockwise rotation of p.

Therefore, the solution t1 =

[
t1 · p
p2

]
p +

{
t1 ∧ p

p2

}
p

expresses t1 as a linear combination of the vectors p and pi.

The analysis that we’ve just seen shows why we can view the operation

represented by the symbol ”+” in the definition x · b+x∧ p = xb as a ”latent

vector addition” that becomes ”activated” when right-multiplied by a vector.

When multiplied by the vector b−1, the result is x.

With that understanding, we can see how to put the product (t1 ∧ p)p−1

into a form that’s useful to us:

(t1 ∧ p)p−1 =

{
r1r2

(
p2 − 2t1 · p + r1

2
)

(p2 + r1
2) (p− c2)

2 [(pi) · c2] i

}
p

p2︸︷︷︸
=p−1

= −

{
r1r2

(
p2 − 2t1 · p + r1

2
)

p2 (p2 + r1
2) (p− c2)

2 [(pi) · c2]

}
pi.

Therefore, the solution given by the present method is

t1 · p =

2r1
2p2 (p− c2)

2 − r1r2

(
p2 + r1

2
) (
p2 − c2 · p

)
p2
[
(p2 + r1

2) (p− c2)
2 − 2r1r2 (p2 − c2 · p)

]
︸ ︷︷ ︸

=(t1·p)/p2

p

−

{
r1r2

(
p2 − 2t1 · p + r1

2
)

p2 (p2 + r1
2) (p− c2)

2 [(pi) · c2]

}
pi.

Again, this solution could be simplified algebraically. (We’ll omit the solu-

tion for t2.)

4.5 Problem 5

Given a circle and two points outside of it, identify the circles that are tangent

to the given one, and that pass through both of the given points.
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We’ll see three ways to arrive at equations that can be solved for the points

of tangency by using Method 1 from Problem 4, Concept 2 (4.4.2).

4.5.1 Solution Concept 1

How would we proceed after

identifying the points of

tangency?

As is known from classical

geometry, we can construct a

circle if we know any three

points that lie on it. One of the

GA expressions of that truth is

that if c, d, and e are three

known points on a circle, then

every other point x on that

circle must satisfy the condition

expressed by the ”cross-ratio”

equation

(c− x)−1 (d− x)

(c− e)−1 (d− e)
= a scalar.

For details, see Hestenes D.

1999, p. 89.

In our case, for the circle that

contains t1, the known points

would be a, b, and t1, so one

version of the cross-ratio

equation for that circle would be

(a− x)−1 (b− x)

(a− t1)
−1 (b− t1)

= ascalar.

Other versions can be obtained

by interchanging a, b, and t1.

This way is the simplest: we’ll begin by identifying the elements shown in

the following figure:

Now, we obtain two expressions for eθi, and equate them to each other.

We’ll use the fact that |t1i| = |t1| = r:

(a− b) (t1 − b)

|a− b| |t1 − b|
=

(a− t1) t1i

|a− t1| |t1i|︸ ︷︷ ︸
Both sides are expressions for eθi

.

Next, we form an equation in which one side is a product of the vectors

that are involved, and the other side is either a scalar or a bivector:
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(a− t1)
(a− b) (t1 − b)

|a− b| |t1 − b|
t1i = (a− t1)

(a− t1) t1i

|a− t1| |t1i|
t1i

(a− t1) (a− b) (t1 − b) t1i (−i) = |a− t1| |t1 − b| (a− t1) r (−i)

(a− t1) (a− b) (t1 − b) t1 = − |a− t1| |t1 − b| (a− t1) ri.

The right-hand side is a bivector, so 〈(a− t1) (a− b) (t1 − b) t1〉0 = 0. A

convenient way to expand (a− t1) (a− b) (t1 − b) t1 is via

[
a2 − ab− t1a + t1b

] [
t1

2 + t1b
]
,

which works out to

(
b2 − r2

)
at1 −

(
a2 − r2

)
bt1 + r2

(
a2 − b2

)
− r2ab + t1abt1.

Therefore,

〈
(
b2 − r2

)
at1 −

(
a2 − r2

)
bt1 + r2

(
a2 − b2

)
− r2ab + t1abt1〉0 = 0.

The term t1abt1 is interesting. At the beginning of 4.4.2, we saw that the

product ûvû evaluates to a vector: specifically, the reflection of v with respect

to û. Similarly, the product ûvwû is the reflection of the geometric product

vw. But let’s see exactly why that is, and what it means. We’ll discover that

the scalar part of vw: is unaffected by the reflection, but the bivector part is

reversed, so that ûvwû = wv:

ûvwû = û (v ·w + v ∧w) û

= û (v ·w) û + û (v ∧w) û

= û2 (v ·w) + û [(vi) ·w] iû

= v ·w + û [−v · (wi)] (−ûi)
= v ·w + û2 [(wi) · v] i

= w · v + w ∧ v

= wv.

Another interesting aspect of the product ûvwû is that the reflection of the

exterior product of v and w is equal to the exterior product of the two vectors’

reflections:

ûvwû = ûv (ûû)wû

= (ûvû) (ûwû) .

That observation provides a geometric interpretation of why reflecting a bivector

changes its sign: the direction of the turn from v to w reverses.
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Returning now to t1abt1, we see that

t1abt1 = |t1| t̂1ab |t1| t̂1

= |t1|2 t̂1abt̂1

= r2ba.

We derived that equivalence so we could deal with the term t1abt1 in the

equation

〈
(
b2 − r2

)
at1 −

(
a2 − r2

)
bt1 + r2

(
a2 − b2

)
− r2ab + t1abt1〉0 = 0.

Making that substitution, and taking the scalar part of each term,

(
b2 − r2

)
a · t1 −

(
a2 − r2

)
b · t1 + r2

(
a2 − b2

)
− r2a · b + r2a · b = 0,{(

b2 − r2
)
a−

(
a2 − r2

)
b
}
· t1 = r2

(
b2 − a2

)
.

We can solve that equation as we did in Problem 4, Concept 2, Method

1. Rather that do so immediately, we’ll first derive it starting from a different

concept, which will help show that all this stuff about angles, exponents, and

geometric products really is coherent, and that terms like eθi really do follow

the rules of exponents.

4.5.2 Solution Concept 2

This is one of the ”sub-optimal” (to the point of absurdity!) solution strate-

gies, referred to in the Introduction, that help demonstrate the coherence and

flexibility of GA’s capacities for expressing and manipulating rotations.

By adding the mediatrix of the segment ab to our previous diagram, and

analyzing a bit,
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we can show, using plane geometry or Hestenes 1999 pp. 87-90, that

ψ = α+ β,

where the algebraic signs of α and β follow GA’s usual right-hand convention.

Therefore, eψi = e(α+β)i = eαieβi, which we’ll express as[
t1 [(b− a) i]

|t1| |(b− a) i|

]
︸ ︷︷ ︸

=eψi

=

[
t1 (a− t1)

|t1| |a− t1|

]
︸ ︷︷ ︸

=eαi

[
t1 (b− t1)

|t1| |b− t1|

]
︸ ︷︷ ︸

eβi

.

Now, using manipulations that we’ve seen previously,

t1
−1

[
t1 [(b− a) i]

|t1| |(b− a) i|

]
= t1

−1

[
t1 (a− t1)

|t1| |a− t1|

] [
t1 (b− t1)

|t1| |b− t1|

]
,

(b− a) i

|b− a|
=

(a− t1) t1 (b− t1)

r |a− t1| |b− t1|

(b− a)
(b− a) i

|b− a|
= (b− a)

(a− t1) t1 (b− t1)

r |a− t1| |b− t1|

|b− a|2 i
|b− a|

=
(b− a) (a− t1) t1 (b− t1)

r |a− t1| |b− t1|

we arrive at

(b− a) (a− t1) t1 (b− t1) = r |b− a| |a− t1| |b− t1| i.

For t2, the corresponding equation is

(b− a) (a− t2) t2 (b− t2) = r |b− a| |a− t2| |b− t2| i.
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The right-hand sides of each of those equations is a bivector. Therefore (in

the case of t1),

〈(b− a) (a− t1) t1 (b− t1)〉0 = 0.

Expanding the left-hand side, we obtain

bat1b− r2ba− r2b2 + r2bt1 − a2t1b + r2a2 + r2ba− r2at1.

From the work that we did earlier in this problem, on the product t1abt1, we

know that 〈t1abt1〉0 = b2a · t1. Using that result, we find that

〈(b− a) (a− t1) t1 (b− t1)〉0 = b2a·t1−rsb2+r2b·t1−a2t1·b+r2a2−r2a·t1,

which we set equal to zero, then rearrange as

{(
b2 − r2

)
a−

(
a2 − r2

)
b
}
· t1 = r2

(
b2 − a2

)
.

This is the same equation at which we arrived in 4.5.1. From 4.4.2 , we know

that there are two solutions, which turn out to be

t =
r2
(
b2 − a2

)
|z|

ẑ ±


√√√√r1

2 −

[
r2
(
b2 − a2

)
|z|

]2
 ẑi,

where z =
(
b2 − r2

)
a−

(
a2 − r2

)
b.

4.5.3 Solution Concept 3

This concept serves to demonstrate the coherence and flexibility of GA’s capac-

ities for expressing and manipulating rotations without being quite as ”absurd”

as the previous. Actually, it’s quite practical. Here, we’ll treat only the solution

for t1.
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From classical plane geometry, we know that θ = 1
2 (α− β), where the

positive direction of each angle is given by GA’s usual right-hand rule. Using

ideas that we’ve seen several times now, we write

eθi = e

(
α

2
− β

2

)
i

eθi =
[
e
α

2
i
] [
e
−β

2
i

]
(it1) (b− a)

|it1| |b− a|︸ ︷︷ ︸
=eθi

=

[
(it1) (b− t1)

|it1| |b− t1|

]
︸ ︷︷ ︸

=e

α

2
i

[
(t1i) (a− t1)

|t1i| |a− t1|

]
︸ ︷︷ ︸

=e
−β

2
i

b− a

|b− a|
=

[
b− t1

|b− t1|

] [
(t1i) (a− t1)

r1 |a− t1|

]
(b− a) (b− t1) t1i (a− t1) = r1 |b− a| |b− t1| |a− t1|

(b− a) (b− t1) t1 (a− t1) i = −r1 |b− a| |b− t1| |a− t1|

(b− a) (b− t1) t1 (a− t1) = r1 |b− a| |b− t1| |a− t1| i︸ ︷︷ ︸
A bivector

〈(b− a) (b− t1) t1 (a− t1)〉0 = 0.

Now, we proceed as we did in Concept 1 and Concept 2 for this problem. Again,

we’d arrive at equation

{(
b2 − r2

)
a−

(
a2 − r2

)
b
}
· t1 = r2

(
b2 − a2

)
,

from which we’d find t1 and t2 as before.
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4.6 Problem 6

Given two points on the same side of a given line, find the circles tangent to

the given line. and that pass through the given points.

The term ”a given line” needs some explanation in the context of a problem

like this one. In classical geometry, the line and points would be presented to

us on a sheet of paper: we wouldn’t need to do anything to characterize their

positions before getting down to work with a ruler, a compass, and a good,

sharp pencil. However, to solve the problem via GA, someone needs to specify

the location and orientation of the line for us in terms of quantities that GA

can manipulate.

A reasonable way to do so (we’ll see another one in 4.6.4) is by using some

convenient point q on the line as our origin, and specifying direction via the

vector ĝ:

Having found the point of

tangency for one of the required

circles, we’d give the equation

for that circle in the form of a

cross ratio. (See p. 46 .)

Then, we can solve for the two points of tangency using either of the meth-

ods that we saw in Problem 5.
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4.6.1 Solution Concept 1

In our first solution for the present problem, the vector ĝ plays the same role

that t1i did in Problem 5:

To solve this problem, we equate two expressions for eθi, then proceed to

obtain an equation in which one side is either a scalar (only) or a bivector(only):

ĝ (b− t1)

|b− t1|
=

(t1 − a) (b− a)

|t1 − a| |b− a|
,

ĝ (b− λ1ĝ)

|b− λ1ĝ|
=

(λ1ĝ − a) (b− a)

|λ1ĝ − a| |b− a|
,

(b− λ1ĝ) ĝ (λ1ĝ − a) (b− a) = |b− a| |λ1ĝ − a| |b− λ1ĝ|.

The right-hand side is a scalar, so the bivector part of the left-hand side is equal

to zero. The expansion of the left-hand side is

λ1b
2 − λ1ba− bĝab + a2bĝ − λ1

2ĝb + λ1
2ĝa + λ1ab− λ1a

2.

From our work in Problem 5, Solution Concept 2, we know that bĝab = −b2ĝa.
Using that fact, the bivector part of the left-hand side is

2λ1a ∧ b + b2ĝ ∧ a− a2ĝ ∧ b− λ1
2ĝ ∧ b + λ1

2ĝ ∧ a.

Setting it equal to zero, we arrive (after some rearranging) at

λ1
2 [ĝ ∧ a− ĝ ∧ b] + λ1 [2a ∧ b] +

[
b2ĝ ∧ a− a2ĝ ∧ b

]
= 0,

and
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λ1
2 [(ĝi) · a− (ĝi) · b] + λ1 [2 (ai) · b] +

[
b2 (ĝi) · a− a2 (ĝi) · b

]
= 0.

The solutions to that quadratic are

λ =
− (ai) · b±

√
[(ai) · b]

2
+ (a2 + b2) [(ĝi) · a] [(ĝi) · b]− a2 [(ĝi) · b]

2 − b2 [(ĝi) · a]
2

(ĝi) · a− (ĝi) · b
.

4.6.2 Solution Concept 2

We could have derived the same quadratic using the method that we saw in

Problem 5, Solution Concept 2. The vector ĝi plays (in some respects) the

same role that t1 did in Problem 5, Solution Concept 2:

As in Problem 5, ψ = α+ β, where the algebraic signs of α and β follow GA’s

usual right-hand convention. Therefore,

eψi = e(α+β)i = eαieβi,

which we’ll express as

[
ĝi [(b− a) i]

|ĝi| |(b− a) i|

]
︸ ︷︷ ︸

=eψi

=

[
ĝi (a− t1)

|ĝi| |a− t1|

]
︸ ︷︷ ︸

=eαi

[
ĝi (b− t1)

|ĝi| |b− t1|

]
︸ ︷︷ ︸

eβi

.

From there,

[
ĝi [(b− a) i]

|ĝi| |(b− a) i|

]
︸ ︷︷ ︸

=eψi

=

[
ĝi (a− t1)

|ĝi| |a− t1|

]
︸ ︷︷ ︸

=eαi

[
ĝi (b− t1)

|ĝi| |b− t1|

]
︸ ︷︷ ︸

eβi

,

(b− a) i

|b− a|
=

(a− t1) ĝi (b− t1)

|a− t1| |b− t1|
,
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(b− a) i

|b− a|
= − (a− t1) ĝ (b− t1) i

|a− t1| |b− t1|
,

(a− t1) ĝ (b− t1)

|a− t1| |b− t1|
= − (b− a)

|b− a|
,

(b− a) (a− t1) ĝ (b− t1) = − |b− a| |a− t1| |b− t1|.

Here’s the expansion of the left-hand side:

baĝb− baĝt1 − bt1ĝb + bt1ĝt1 − a2ĝb + a2ĝt1 + at1ĝb− at1ĝt1.

From our work in 4.5.2, we know that baĝb = b2ĝa. Using that fact, and making

the substitution t1 = λ1ĝ, the left-hand side becomes

b2ĝa− λ1ba− λ1b
2 + λ2

1bĝ − a2ĝb + λ1a
2 + λ1ab− λ2

1aĝ.

Setting the bivector part of that expression equal to zero, we obtain the same

quadratic that we solved at the end of Solution Concept 1.

4.6.3 Solution Concept 3

As mentioned at the beginning of this problem, the location and orientation of

the given line need to be specified in terms of quantities that GA can manipulate.

In this third Solution Concept, we specify the line’s orientation via the unit

vector of the line’s direction, and the line’s position via the vector h. We also

take the unusual step of using a as the origin, thereby simplifying the solution

process.

Equating two expressions for eθi, we have
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ĝ (b− s)

|b− s|
=

sb

|s| |b|
,

from which we then obtain

sĝ (b− s) b = |s| |b− s| |b|︸ ︷︷ ︸
scalar

.

Now, as in previous solutions of our three problems, we expand the left-hand

side, then find its bivector part , and set it equal to zero:

〈b2sĝ − (2s · ĝ − ĝs) sb〉2 = 0,

〈b2sĝ − (2s · ĝ) sb− s2ĝb〉2 = 0,

b2s ∧ ĝ − (2s · ĝ) s ∧ b− s2ĝ ∧ b〉2 = 0.

From our diagram, s = h+γĝ. Making this substitution, the preceding equation

becomes (after some manipulation)

[(ĝi) · b] γ2 + 2 [(hi) · b] γ + (ĝi) ·
(
b2h− h2b

)
.

The solutions to that quadratic are

γ =
− (hi) · b±

√
[(hi) · b]

2 − [(ĝi) · b] [(ĝi) · (b2h− h2b)]

(ĝi) · b
.

4.6.4 Solution Concept 4

This concept is closely related to the previous one, and very much in the spirit

of GA: Since we’re expressing the position of the line by means of a vector (h)

that’s perpendicular to the line, why use a separate vector (ĝ) to express the

line’s direction? Instead, we can use the vector ĥi:
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Equating two expressions for eθi, we have

ĥi (b− s)

|b− s|
=

sb

|s| |b|
,

from which we then obtain

bsĥi (b− s) = |s| |b− s| |b|︸ ︷︷ ︸
scalar

,

bsĥ (s− b) i = |s| |b− s| |b|,

bsĥ (s− b) = − |s| |b− s| |b| i︸ ︷︷ ︸
bivector

,

bsĥs− bsĥb︸ ︷︷ ︸
=b2ĥs

= − |s| |b− s| |b| i,

bs
[
2ĥ · s− sĥ

]
︸ ︷︷ ︸

=ĥs

−b2ĥs = − |s| |b− s| |b| i,

2
(
ĥ · s

)
bs− s2bĥ− b2ĥs = − |s| |b− s| |b| i.

The right-hand side is a bivector, so the scalar part of the left-hand side is

zero:

2
(
ĥ · s

)
b · s− s2b · ĥ− b2ĥ · s = 0.

From our diagram, s = h + γĥi. Therefore, ĥ · s = ĥ · h = |h|, and

s2 = h2 + γ2. Making those substitutions,
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2 |h|
[
b · h + γb ·

(
ĥi
)]
−
(
h2 + γ2

)
b · ĥ− b2 |h| = 0,[

ĥ · b
]
γ2 −

[
2 |h| b ·

(
ĥi
)]
γ + b2 |h|+ h2b · ĥ︸ ︷︷ ︸

=|h|2b·ĥ

−2 |h| b · h = 0,

[
ĥ · b

]
γ2 − [2 (hi) · b] γ + b2 |h| − |h|h · b = 0

The solutions to that quadratic are

γ =
(hi) · b±

√
[(hi) · b]

2
+ [h · b]

2 − b2 [h · b]

ĥ · b
.

We can simplify that equation by recalling that the vector b is the vector

sum of its projections upon the directions ĥ and ĥi:

b =
(
b · ĥ

)
ĥ +

[
b ·
(
ĥi
)]

ĥi,

from which
(
b · ĥ

)
h +

[
b ·
(
ĥi
)]

hi = |h| b. Therefore, [(hi) · b]
2

+ [h · b]
2

=

b2h2. Using that substitution, the solutions to our quadratic become

γ =
(hi) · b±

√
b2h2 − b2 [h · b]

ĥ · b

=
(hi) · b± |b|

√
h2 − [h · b]

ĥ · b
.

Comparing that version of the solution to the following, which we obtained

by using ĝ to give the direction of the line,

γ =
− (hi) · b±

√
[(hi) · b]

2 − [(ĝi) · b] [(ĝi) · (b2h− h2b)]

(ĝi) · b
,

we can see that the ”ĥ version” is much ”cleaner”, although I must point out

that we could also have cleaned-up the ĝ version with a bit of effort.
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6 Appendix A: Finding the Circumcenter Using

the Inverse of a Multivector

This Appendix presents a solution method that takes considerably more work

than that given in the main text (pp. 23 ff), but which has useful, time-saving

pointers and observations about inverses of multivectors and transformations of

expressions. We begin with the following diagram:

In the main text , we noted that the angle between the vectors b− q and c− q

is 2θ, and therefore that

[b− q] eαi = c− q

[b− q]
[
eθi
] [
eθi
]

= c− q

[b− q]
[
b̂ĉ
] [

b̂ĉ
]

= c− q.

Because c − q and b − q are radii of the same circle, c − q is a pure rotation

(that is, without any dilation) of b− q. Therefore,

[b− q] eαi = c− q

[b− q]
[
eθi
] [
eθi
]

= c− q

[b− q]
[
b̂ĉ
] [

b̂ĉ
]

= c− q,

b
[
b̂ĉ
] [

b̂ĉ
]
=
(
bb̂
)
ĉb̂ĉ

= |b| ĉb̂ĉ

= ĉ
(
|b| b̂

)
ĉ

= ĉbĉ.

from which

b
[
b̂ĉ
] [

b̂ĉ
]
− q

[
b̂ĉ
] [

b̂ĉ
]

= c− q,

q − q
[
b̂ĉ
] [

b̂ĉ
]

= c− b
[
b̂ĉ
] [

b̂ĉ
]
,

q
(

1− b̂ĉb̂ĉ
)

= c− b
[
b̂ĉ
] [

b̂ĉ
]

q
(

1− b̂ĉb̂ĉ
)

= c− ĉbĉ.

60



Is that result helpful? Yes, because 1− b̂ĉb̂ĉ has a multiplicative inverse in

GA. Therefore, we can write the following in a purely formal way, then identify

what that inverse is, precisely:

q
(

1− b̂ĉb̂ĉ
)(

1− b̂ĉb̂ĉ
)−1

= (c− ĉbĉ)
(

1− b̂ĉb̂ĉ
)−1

∴ q = (c− ĉbĉ)
(

1− b̂ĉb̂ĉ
)−1

.

Now here is where we can cause ourselves much unnecessary work if we

don’t familiarize ourselves with GA’s theorems about inverses of multivectors.

Based upon those theorems (Hestenes D. pp. 37, 45-46), the multiplicative

inverse M−1 of a multivector M is

M−1 =
M†

〈M†M〉0 ,

whereM† is the ”reverse” ofM. GA’s theorems also tell us that the reverse of

the sum of two multivectors A and B is

(A+ B)
†

= A† + B†.

I wasted a great deal of time in

my original solution because I

thought —mistakenly—that I

needed to identify the scalar

and bivector parts of b̂ĉb̂ĉ

explicitly in order to find the

inverse of 1− b̂ĉb̂ĉ.

Every scalar is a multivector, and so is the product b̂ĉb̂ĉ. Therefore,(
1− b̂ĉb̂ĉ

)†
= 1† −

(
b̂ĉb̂ĉ

)†
.

Next, we use the fact that the reverse of a scalar is that same scalar, and

that the reverse of a geometric product of vectors is that same product written

in reverse order: (
1− b̂ĉb̂ĉ

)†
= 1† −

(
b̂ĉb̂ĉ

)†
= 1− ĉb̂ĉb̂.

Now we can write

(
1− b̂ĉb̂ĉ

)−1

=

(
1− b̂ĉb̂ĉ

)†
〈
(

1− b̂ĉb̂ĉ
)† (

1− b̂ĉb̂ĉ
)
〉0

=
1− ĉb̂ĉb̂

〈
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)
〉0
.

We’ll leave the numerator as-is, but we’ll expand and simplify the denominator.

First, we’ll see an efficient procedure for effecting the expansion and simplifi-

cation, after which we’ll se my original, less-inspired way, so that students can

see that they needn’t find ”the” way to get the job done.

The efficient procedure begins by expanding
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)

as the

product of two binomials:
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(
1− ĉb̂ĉb̂

)(
1− b̂ĉb̂ĉ

)
= 1− ĉb̂ĉb̂− b̂ĉb̂ĉ +

(
ĉb̂ĉb̂

)(
b̂ĉb̂ĉ

)
︸ ︷︷ ︸

Simplifies to 1

.

b̂ĉb̂ evaluates to a vector

(page 15) .

Next, we write ĉb̂ĉb̂ as ĉ
(
b̂ĉb̂
)

, and b̂ĉb̂ĉ as
(
b̂ĉb̂
)
ĉ.

(
1− ĉb̂ĉb̂

)(
1− b̂ĉb̂ĉ

)
= 2− ĉ

(
b̂ĉb̂
)
−
(
b̂ĉb̂
)
ĉ.

Now, we recall that the denominator is 〈
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)
〉0 rather than(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)

itself, so the bivector terms —, that is, the terms ĉ ∧(
b̂ĉb̂
)

and
(
b̂ĉb̂
)
∧ ĉ —in the geometric products ĉ

(
b̂ĉb̂
)

, and b̂ĉb̂ĉ as
(
b̂ĉb̂
)
ĉ

don’t concern us:

〈
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)
〉0 = 2− ĉ ·

(
b̂ĉb̂
)
−
(
b̂ĉb̂
)
· ĉ.

The two dot products are equal, so we write

〈
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)
〉0 = 2− 2

{
ĉ ·
(
b̂ĉb̂
)}

.

Two indispensable identities:

uv = 2u · v − vu

and uv = 2u ∧ v + vu.

For any two vectors u and v,

u = (u · v̂) v̂ + [u · (v̂i)] v̂i.

Therefore, for the unit vector û,

û2 = 1 = [û · v̂]2 + [u · (v̂i)]2.

Finally, we expand b̂ĉb̂, (for example, as 2ĉ · b̂− b̂ĉ) , then simplify:

〈
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)
〉0 = 2− 2

{
ĉ ·
[(

2b̂ · ĉ− ĉb̂
)
b̂
]}

= 2− 2

ĉ ·

(2b̂ · ĉ
)
b̂− ĉb̂b̂︸︷︷︸

=ĉ


= 2− 2

{
2
(
b̂ · ĉ

)2

− 1

}
= 4− 4

(
b̂ · ĉ

)2

= 4

[
1−

(
b̂ · ĉ

)2
]

= (also ) 4
[(

b̂i
)
· ĉ
]2

and 4
[
b̂ · (ĉi)

]2
.

My less-efficient procedure, mentioned earlier, expresses b̂ĉb̂ĉ as
(
b̂ĉ
)2

,

which then becomes

b̂ĉb̂ĉ =
(
b̂ĉ
)2

=
{
b̂ · ĉ + b̂ ∧ ĉ

}2

=
{
b̂ · ĉ +

[(
b̂i
)
· ĉ
]
i
}2

=
[
b̂ · ĉ

]2
−
[(

b̂i
)
· ĉ
]2

+ 2
[
b̂ · ĉ

] [(
b̂i
)
· ĉ
]
i.
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Similarly,

ĉb̂ĉb̂ =
(
ĉb̂
)2

=
{
ĉ · b̂ + ĉ ∧ b̂

}2

=
{
ĉ · b̂ +

[
(ĉi) · b̂

]
i
}2

=
[
ĉ · b̂

]2
−
[
(ĉi) · b̂

]2
+ 2

[
ĉ · b̂

] [
(ĉi) · b̂

]
i.

The bivector terms have

canceled out, but they would

not have entered into

〈
(
1− ĉb̂ĉb̂

)(
1− b̂ĉb̂ĉ

)
〉0

anyway.

Because
[
(ĉi) · b̂

]
= −

[(
b̂i
)
· ĉ
]
,

ĉb̂ĉb̂ + b̂ĉb̂ĉ = 2

{[
ĉ · b̂

]2
−
[
(ĉi) · b̂

]2}
.

We’ll use that result in our expansion of
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)

, then sim-

plify:

(
1− ĉb̂ĉb̂

)(
1− b̂ĉb̂ĉ

)
= 1− ĉb̂ĉb̂− b̂ĉb̂ĉ +

(
ĉb̂ĉb̂

)(
b̂ĉb̂ĉ

)
= 2− 2

(
ĉb̂ĉb̂ + b̂ĉb̂ĉ

)
= 2− 2

{[
ĉ · b̂

]2
−
[
(ĉi) · b̂

]2}
= 2− 2

{
1− 2

[
(ĉi) · b̂

]2}
= 4

[
(ĉi) · b̂

]2
,

Having shown that 〈
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)
〉0 = 4

[
(ĉi) · b̂

]2
= 4

[(
b̂i
)
· ĉ
]2

,

we can identify
(

1− b̂ĉb̂ĉ
)−1

explicitly:

(
1− b̂ĉb̂ĉ

)−1

=
1− ĉb̂ĉb̂

〈
(

1− ĉb̂ĉb̂
)(

1− b̂ĉb̂ĉ
)
〉0

=
1− ĉb̂ĉb̂

4
[(

b̂i
)
· ĉ
]2 .
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Now we’re ready to solve for the circumcenter, q, via

q = (c− ĉbĉ)
(

1− b̂ĉb̂ĉ
)−1

= (c− ĉbĉ)

 1− ĉb̂ĉb̂

4
[(

b̂i
)
· ĉ
]2


=
c− b̂cb̂ + b− ĉbĉ

4
[(

b̂i
)
· ĉ
]2

=
c− b̂cb̂

4
[(

b̂i
)
· ĉ
]2 +

b− ĉbĉ

4
[(

b̂i
)
· ĉ
]2 .

We’ll transform that result after examining it a bit. The vector b̂cb̂ is the

reflection of c with respect to the direction of b (7.1) . Similarly, ĉbĉ is the

reflection of b with respect to the direction of c (page 73). Thus, the vectors

c− b̂cb̂ and b− ĉbĉ are as shown:

cb− bc = 2c ∧ b.

The perpendicularities shown here can be demonstrated in several ways. One

of the easiest is by using the definition of the dot product given on p. 51 of

Macdonald A. 2010. For example,(
c− b̂cb̂

)
· b = 〈

(
c− b̂cb̂

)
b〉0

= 〈cb− b̂cb̂b〉0
= 〈cb− bc〉0
= 0.

Therefore, our result

q =
c− b̂cb̂

4
[(

b̂i
)
· ĉ
]2 +

b− ĉbĉ

4
[(

b̂i
)
· ĉ
]2
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As our diagram suggests, our

answer has the form of a linear

combination of bi and ci.

is as illustrated below:

Interpreting the Solution, and Transforming It into a More-Useful

Form We shouldn’t be surprised to find that the vector q is the sum of vectors

that are perpendicular to the triangle’s sides, because we know that every vector

v can be written as a linear combination of any two non-parallel vectors that

are coplanar with it. The sides of a triangle cannot be parallel to each other;

therefore, neither can the vectors that are perpendicular to them. Hence, the

vector q is guaranteed to be some linear combination of the vectors that are

perpendicular to the triangle’s sides.

However, that rather dismissive analysis cannot have told us the whole

story about the vector q, because the point q is the point of intersection of the

mediatrices of the triangle’s sides. Therefore, we must be able to write q as

q = λ [(b− c) i], where λ is some scalar:
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So, what is the value of λ? To determine it, let’s go back to our equation

q =
c− b̂cb̂ + b− ĉbĉ

4
[(

b̂i
)
· ĉ
]2 .

The transformations that we’ll

use to introduce bi and ci are

useful in other contexts as well.

For example, the projection of a

vector u upon a vector v is

[(u · (v̂)] v̂. If we need to

express that projection in terms

of û and ûi, we can do so via

either of the transformations

given here. However, those may

not be the most-efficient

methods.

That equation doesn’t mention bi or ci explicitly, but we can introduce

them in at least two ways. One is to recognize that b̂ can be written as

b̂ =
[
b̂ · ĉ

]
ĉ +

[
b̂ · (ĉi)

]
ĉi.

Using that substitution, we can transform the vector b̂cb̂ into a linear combi-

nation of c and ci:

b̂cb̂ =
{[

b̂ · ĉ
]
ĉ +

[
b̂ · (ĉi)

]
ĉi
}
c
{[

b̂ · ĉ
]
ĉ +

[
b̂ · (ĉi)

]
ĉi
}

= (after simplifying)

{[
b̂ · ĉ

]2
−
[
b̂ · (ĉi)

]2}
c + 2

{[
b̂ · ĉ

] [
b̂ · (ĉi)

]}
ci.

Therefore,

c− b̂cb̂ = c−
{[

b̂ · ĉ
]2
−
[
b̂ · (ĉi)

]2}
c− 2

{[
b̂ · ĉ

] [
b̂ · (ĉi)

]}
ci

=

1−
[
b̂ · ĉ

]2
︸ ︷︷ ︸

=[b̂·(ĉi)]
2

+
[
b̂ · (ĉi)

]2
 c− 2

{[
b̂ · ĉ

] [
b̂ · (ĉi)

]}
ci

= 2
[
b̂ · (ĉi)

]2
c− 2

{[
b̂ · ĉ

] [
b̂ · (ĉi)

]}
ci.

We can transform b− ĉbĉ, similarly, by writing ĉ as

ĉ =
[
ĉ · b̂

]
b̂ +

[
ĉ ·
(
b̂i
)]

b̂i.

After expanding and simplifying, we obtain

b− ĉbĉ = 2
[
ĉ ·
(
b̂i
)]2

b− 2
{[

ĉ · b̂
] [

ĉ ·
(
b̂i
)]}

bi

= 2
[
b̂ · (ĉi)

]2
b + 2

{[
b̂ · ĉ

] [
b̂ · (ĉi)

]}
bi.

Using these transformations of c− b̂cb̂ and b− ĉbĉ,

c− b̂cb̂ + b− ĉbĉ = 2
[
b̂ · (ĉi)

]2
(b + c) + 2

{[
b̂ · ĉ

] [
b̂ · (ĉi)

]}
[(b− c) i].
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Now we can put our expression for q in the desired form:

q =
c− b̂cb̂ + b− ĉbĉ

4
[(

b̂i
)
· ĉ
]2

=
2
[
b̂ · (ĉi)

]2
(b + c) + 2

{[
b̂ · ĉ

] [
b̂ · (ĉi)

]}
[(b− c) i]

4
[(

b̂i
)
· ĉ
]2

=
b + c

2
+

[
b̂ · ĉ

b̂ · (ĉi)

] [
(b− c) i

2

]
.

I confess that when I first saw

this possibility, I had a hard

time believing that it could be

legitimate.

A second way of transforming b̂cb̂ and ĉbĉ provides a surprising example

of GA’s flexibility. Treating b̂cb̂ first,

b̂cb̂ = b̂ (|c| ĉ) b̂

= (|c|) b̂ĉb̂

= (cĉ) b̂ĉb̂

= c
(
ĉb̂ĉb̂

)
= c

{[
b̂ · ĉ

]2
−
[(

b̂i
)
· ĉ
]2

+ 2
[
b̂ · ĉ

] [
(ĉi) · b̂

]
i

}
︸ ︷︷ ︸

We saw this expansion earlier.

=

{[
b̂ · ĉ

]2
−
[
b̂ · (ĉi)

]2}
c + 2

[
b̂ · ĉ

] [
b̂ · (ĉi)

]
ci,

which is the result that we obtained by substituting
[
b̂ · ĉ

]
ĉ+

[
b̂ · (ĉi)

]
ĉi
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for b̂ in b̂cb̂. Applying the same ideas to ĉbĉ,

ĉbĉ = ĉ
(
|b| b̂

)
ĉ

= (|b|) ĉb̂ĉ

=
(
bb̂
)
ĉb̂ĉ

= b
(
b̂ĉb̂ĉ

)
= b

{[
ĉ · b̂

]2
−
[
(ĉi) · b̂

]2
+ 2

[
ĉ · b̂

] [(
b̂i
)
· ĉ
]
i

}
︸ ︷︷ ︸

We saw this expansion earlier.

=

{[
b̂ · ĉ

]2
−
[
b̂ · (ĉi)

]2}
b− 2

[
b̂ · ĉ

] [
b̂ · (ĉi)

]
ci,

Again, this is the result that we obtained earlier.
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7 Appendix B: Useful Transformations of Prod-

ucts of Three and Four vectors

Readers may wish to consult Macdonald A. 2010’s definitions of the dot and

wedge products (p. 101) regarding some steps in the transformations. Those

definitions can be invaluable as sources for ideas about transformations.

Note that some of this material is taken directly from the main text, with-

out modification.

7.1 Transforming Products of the Form ûvû

As noted in 4.4.2, for any two vectors û and v, the product ûvû (which evaluates

to a vector) is the reflection of v with respect to û. Therefore,

ûvû = v − 2
[
v ·
(
ûi
)]

ûi.

We also note that because u = |u| û,

uvu = u2 (ûvû) = u2v − 2 [v · (ui)]ui.
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7.2 Useful Transformations of 〈c2pt1p〉2

In 4.4.2 , we used the identity uv ≡ 2u · v − vu to derive an expression for

〈c2pt1p〉2 as follows:

〈c2pt1p〉2 = 〈c2 (2p · t1 − t1p)p〉2
= 〈2 (p · t1) c2p− p2c2t1〉2
= 2 (p · t1) c2 ∧ p− p2c2 ∧ t1

= 2 (pi · t1) [(c2i) · p] i− p2 [(c2i) · t1] i.

In this section, we’ll derive other expressions that are equivalent to 〈c2pt1p〉2.

For convenience, we’ll omit the subscripts from c2 and t1.

Version 1

This version may be the simplest. In the main text, we saw that we wish to

obtain equivalents that contain only two types of terms: products of the known

vectors c and p, and products of t with those known vectors. We can do so as

follows:

cptp = c (pt)p

= c (p · t + p ∧ t)p

= (p · t) cp + c (p ∧ t)p

= (p · t) cp + c [(pi) · t] i︸ ︷︷ ︸
=p∧t

p

= (p · t) cp + [(pi) · t]︸ ︷︷ ︸
a scalar

cip

= (p · t) cp + [(pi) · t] c (−pi)
= (p · t) cp− [(pi) · t] cpi.

We need to find the bivector part of that result:

〈cptp〉2 = 〈(t · p) cp− [t · (pi)] cpi〉2
= t · p〈cp〉2 − [t · (pi)] 〈cpi〉2
= (t · p) [ci · (p)] i︸ ︷︷ ︸

=c∧p

− [t · (pi)] 〈(c · p + c ∧ p) i〉2

= (t · p) [ci · (p)] i︸ ︷︷ ︸
=c∧p

− [t · (pi)] [〈(c · p) i〉2 + 〈(c ∧ p) i〉2] .

Now, we note that (c ∧ p) i is a scalar, so 〈(c ∧ p) i〉2 = 0:

(c ∧ p) i = [ci · p] ii

= − (ci) · p.

Therefore,
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〈cptp〉2 = (t · p) [ci · (p)] i− [t · (pi)] (c · p) i.

Version 2

cptp = cp {(t · p̂) p̂ + [t · (p̂i)] p̂i}

= c

(t · p̂) pp̂p︸︷︷︸
=|p|2p̂

+ [t · (p̂i)]pp̂ip


= c {(t · p)p− [t · (p̂i)]pp̂pi}
= c {(t · p)p− [t · (pi)]pi}
= (t · p) cp− [t · (pi)] cpi.

We arrived at that same expression in Version 1, then proceeded from there to

obtain

〈cptp〉2 = (t · p) [ci · (p)] i− [t · (pi)] (c · p) i,

Version 3

In the main text, we used the identity ab = 2a · b− 2ba to find an equivalent

for 〈cptp〉2. Now, we’ll use the identity ab = 2a ∧ b + 2ba.

cptp = c (pt)p

= c [2p ∧ t + tp]p

= 2 [(pi) · t] cip + p2cp.

Now, using ideas that we saw in Versions 1 and 2, we find that

〈cptp〉2 = p2 [(ci) · t] i− 2c · p [(pi) · t] i.

Version 4

As noted in 4.4.2, for any two vectors û and v, the product ûvû (which evaluates

to a vector) is the reflection of v with respect to û. Therefore,

ûvû = v − 2
[
v ·
(
ûi
)]

ûi.
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We also note that because u = |u| û,

uvu = u2 (ûvû) = u2v − 2 [v · (ui)]ui.

From that result, we can see that

cptp = p2c
{
t− 2

[
t ·
(
p̂i
)]

p̂i
}

= p2ct− 2 [t · (pi)] cpi.

We want to find the bivector part:

〈cptp〉2 = p2c ∧ t− 2 [t · (pi)] 〈cpi〉2
= p2 [ci · t] i− 2 [t · (pi)] (c · p) i.

See Version 1 for details on handling of 〈cpi〉2.

Version 5

The method we’ll use for our last version is nothing fancy: just ”brute force

and ignorance”. But for that same reason, the method is useful when dealing

with products of four distinct vectors, in which cases there are no symmetries,

etc. of which we can take advantage:

cptp = {cp) {tp}

=

c · p + [(ci) · p] i︸ ︷︷ ︸
=c∧p


t · p + [(ti) · p] i︸ ︷︷ ︸

=t∧p

 .

The expansion of that product will produce three types of terms: scalars with

scalars; bivectors with bivectors; and scalars with bivectors. Only the last of

these evaluate to bivectors, so
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〈cptp〉2 = (c · p) [(ti) · p] i + [(ci) · p] i (t · p).

As noted earlier in this Appendix, we want an equivalent of 〈cptp〉2 that con-

tains only two types of products: those of known vectors c and p, and those of

t with c and p. For that reason, we transform (ti) · p into − (t) · pi, to give us

〈cptp〉2 = [(ci) · p] (t · p) i− (c · p) [(pi) · t] i.

7.3 Transformations of Products of the Form uvwu

At the beginning of 4.4.2, we saw that the product ûvû evaluates to a vector:

specifically, the reflection of v with respect to û. Similarly, the product ûvwû

is the reflection of the geometric product vw. But let’s see exactly why that is,

and what it means. We’ll discover that the scalar part of vw: is unaffected by

the reflection, bu the bivector part is reversed, so that ûvwû = wv:

ûvwû = û (v ·w + v ∧w) û

= û (v ·w) û + û (v ∧w) û

= û2 (v ·w) + û [(vi) ·w] iû

= v ·w + û [−v · (wi)] (−ûi)
= v ·w + û2 [(wi) · v] i

= w · v + w ∧ v

= wv.

Another interesting aspect of the product ûvwû is that the reflection of the

exterior product of v and w is equal to the exterior product of the two vectors’

reflections:

ûvwû = ûv (ûû)wû

= (ûvû) (ûwû) .

That observation provides a geometric interpretation of why reflecting a bivector

changes its sign: the direction of the turn from v to w reverses.
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8 Appendix C: Another Derivation of the Rela-

tionship between Points of Tangency among

Circles

In this Appendix, we’ll encounter a potential difficulty that can arise when

solving problems involving tangency, after which we’ll deal with that difficulty

via a maneuver that is often available to us. The problem that we’ll solve is

Using the information shown for the situation in the following diagram,

derive an equation for t2 in terms of t1, c2, r1, and r2.

We’ll begin by equating two expressions for the rotation operator eθi:

[i (t2 − c2)] (t1 − t2)

|t2 − c2| |t1 − t2|
=

(t2 − t1) t1i

|t2 − t1| |t1|
.

NOTE: t1
2 = r1

2, but

t2
2 6= r2

2.

Making the substitutions |t1| = r1 and |t2 − c2| = r2, and switching places

between vectors and the bivector i while changing algebraic signs accordingly

(page 37), we obtain

(t2 − c2) (t1 − t2) i

r2 |t1 − t2|
=

(t2 − t1) t1i

|t2 − t1| r1
, then

(t2 − c2) (t1 − t2) =

(
r2

r1

)
(t2 − t1) t1, and finally(

1− r2

r1

)
t2t1 + c2t2 − t22 = c2t1 − r1r2.

This is the maneuver mentioned

in the introduction to this

Appendix.

The terms c2t2 and t2
2 are troublesome. What might we do about them?

There should be some relationship between those terms and r2 because
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(t2 − c2)
2

= r2
2:

(t2 − c2)
2

= r2
2

t2
2 − 2t2 · c2 + c2

2 = r2
2

∴ 2t2 · c2 − t22 = c2
2 − r2

2.

Does that result help us to deal with the troublesome combination ”c2t2−t22”?

Since the relationship we’ve just found between c2, t2, and r2 involves t2 · c2

rather than t2c2, let’s write c2t2 − t22 as

c2t2 − t22 = c2 · t2 + c2 ∧ t2 − t22.

We see now that there might be a role here for the relationship 2t2·c2−t22 =

c2
2 − r2

2 that we found between c2, t2, and r2.

c2t2 − t22 = c2 · t2 + c2 ∧ t2 − t22

= 2c2 · t2 − t22 − c2 · t2 + c2 ∧ t2

= c2
2 − r2

2 − c2 · t2 + c2 ∧ t2.

With this substitution, our earlier equation

(
1− r2

r1

)
t2t1 + c2t2 − t22 = c2t1 − r1r2

becomes

(
1− r2

r1

)
t2t1 + c2

2 − r2
2 − c2 · t2 + c2 ∧ t2 = c2t1 − r1r2.

This is a good time to pause and recall that we want to derive an equation

for t2. From experience, we know that to do so, we’ll want to transform the

equation we just obtained into one that has the form

A product of t2 and some known vector = Some knownmultivector,

where the ”known vector” may be a linear combination of known vectors. For

example, of t1 —which we’re treating as known—and c2. Similarly, the known

multivector may be the sum of known scalars, known bivectors, and products

of known vectors. As a first step in writing an equation of that form, let’s move

all terms that don’t involve t2 to the right-hand side:

(
1− r2

r1

)
t2t1 − c2 · t2 + c2 ∧ t2 = r2

2 − r1r2 − c22 + c2t1.
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The t2t1 term is a right-multiplication of t2 by the known vector t1. Now,

if we can transform −c2 · t2 +c2∧ t2 into a right-multiplication of t2, we’ll have

a left-hand side of the form that we desire. You’ve probably seen already what

we need to do:(
1− r2

r1

)
t2t1 − c2 · t2 + c2 ∧ t2 = r2

2 − r1r2 − c22 + c2t1(
1− r2

r1

)
t2t1 − c2 · t2 − t2 ∧ c2 = r2

2 − r1r2 − c22 + c2t1(
1− r2

r1

)
t2t1 − t2c2 = r2

2 − r1r2 − c22 + c2t1

t2

[(
1− r2

r1

)
t1 − c2

]
= r2

2 − r1r2 − c22 + c2t1.

Now, we solve for t2 via

t2 =
[
r2

2 − r1r2 − c22 + c2t1

] [(
1− r2

r1

)
t1 − c2

]−1

.

To effect the operations on the right-hand side, we may choose to write c2t1 as

c2 · t1 + [(c2i) · t1] i. If we do so, then the expression for t2 becomes

t2 =

[
2r2

2 − r1r2 +

(
r2

r1
− 2

)
c2

2 − r2
3

r1

]
t1 +

(
r1

2 + c2
2 − r2

2
)
c2 + 2 [(c2i) · t1] c2i

c22 + (r1 − r2)
2 −

[
2

(
1− r2

r1

)
c2

]
· t1

.

How would the equation for t3 in the following situation differ from the

equation for t2 that we just derived?
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