A RELATIONAL FORMULATION OF SPECIAL RELATIVITY

A. Blato

Creative Commons Attribution 3.0 License (2016) Buenos Aires Argentina

This article presents a relational formulation of special relativity whose kinematic and dynamic quantities are invariant under transformations between inertial reference frames. In addition, a new universal force is presented.

Introduction

From an auxiliary massive particle (called auxiliary-point) can be obtained kinematic quantities (such as relational time, relational position, etc.) that are invariant under transformations between inertial reference frames.

An auxiliary-point is an arbitrary massive particle free of external forces (or that the net force acting on it is zero)

The relational time (\bar{t}) , the relational position (\bar{r}) , the relational velocity (\bar{v}) and the relational acceleration (\bar{a}) of a (massive or non-massive) particle relative to an inertial reference frame S are given by:

$$
\begin{aligned}\n\bar{t} &= \gamma \left(t - \frac{\mathbf{r} \cdot \boldsymbol{\psi}}{c^2} \right) \\
\bar{\mathbf{r}} &= \left[\mathbf{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{r} \cdot \boldsymbol{\psi}) \, \boldsymbol{\psi}}{c^2} - \gamma \, \boldsymbol{\psi} \, t \right] \\
\bar{\mathbf{v}} &= \left[\mathbf{v} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{v} \cdot \boldsymbol{\psi}) \, \boldsymbol{\psi}}{c^2} - \gamma \, \boldsymbol{\psi} \right] \frac{1}{\gamma \left(1 - \frac{\mathbf{v} \cdot \boldsymbol{\psi}}{c^2} \right)} \\
\bar{\mathbf{a}} &= \left[\mathbf{a} - \frac{\gamma}{\gamma + 1} \frac{(\mathbf{a} \cdot \boldsymbol{\psi}) \, \boldsymbol{\psi}}{c^2} + \frac{(\mathbf{a} \times \mathbf{v}) \times \boldsymbol{\psi}}{c^2} \right] \frac{1}{\gamma^2 \left(1 - \frac{\mathbf{v} \cdot \boldsymbol{\psi}}{c^2} \right)^3}\n\end{aligned}
$$

where (t, r, v, a) are the time, the position, the velocity and the acceleration of the particle relative to the inertial reference frame S, (ψ) is the velocity of the auxiliary-point relative to the inertial reference frame S and (c) is the speed of light in vacuum. (ψ) is a constant. $\gamma = (1 - \psi \cdot \psi/c^2)^{-1/2}$

The relational frequency ($\bar{\nu}$) of a non-massive particle relative to an inertial reference frame S is given by:

$$
\bar{\nu} = \nu \frac{\left(1 - \frac{\mathbf{c} \cdot \boldsymbol{\psi}}{c^2}\right)}{\sqrt{1 - \frac{\boldsymbol{\psi} \cdot \boldsymbol{\psi}}{c^2}}}
$$

where (ν) is the frequency of the non-massive particle relative to the inertial reference frame S , (c) is the velocity of the non-massive particle relative to the inertial reference frame S, (ψ) is the velocity of the auxiliary-point relative to the inertial reference frame S and (c) is the speed of light in vacuum.

The relational mass (m) of a massive particle is given by:

$$
m \doteq \frac{m_o}{\sqrt{1 - \frac{\bar{\mathbf{v}} \cdot \bar{\mathbf{v}}}{c^2}}}
$$

where (m_o) is the rest mass of the massive particle, (\bar{v}) is the relational velocity of the massive particle and (c) is the speed of light in vacuum.

The relational mass (m) of a non-massive particle is given by:

$$
m\ \doteq\ \frac{h\,\bar\nu}{c^2}
$$

where (h) is the Planck constant, $(\bar{\nu})$ is the relational frequency of the nonmassive particle and (c) is the speed of light in vacuum.

Observations

§ In arbitrary inertial reference frames ($\bar{t}_{\alpha} \neq \tau_{\alpha}$ or $\bar{\mathbf{r}}_{\alpha} \neq 0$) (α = auxiliary-point) a constant must be add in the definition of relational time such that the relational time and the proper time of the auxiliary-point are the same ($\bar{t}_{\alpha} = \tau_{\alpha}$) and another constant must be add in the definition of relational position such that the relational position of the auxiliary-point is zero ($\bar{r}_{\alpha} = 0$)

§ In the particular case of an isolated system of (massive or non-massive) particles, inertial observers should preferably use an auxiliary-point such that the linear momentum of the isolated system of particles is zero ($\sum_z m_z \bar{\mathbf{v}}_z = 0$)

The Relational Dynamics

If we consider a (massive or non-massive) particle with relational mass m then the linear momentum P of the particle, the angular momentum L of the particle, the net force \bf{F} acting on the particle, the work W done by the net force acting on the particle, and the kinetic energy K of the particle, for an inertial reference frame, are given by:

$$
\mathbf{P} \doteq m\,\bar{\mathbf{v}}
$$

 $\mathbf{L} \doteq \mathbf{P} \times \bar{\mathbf{r}} = m \bar{\mathbf{v}} \times \bar{\mathbf{r}}$

$$
\mathbf{F} = \frac{d\mathbf{P}}{d\bar{t}} = m\,\bar{\mathbf{a}} + \frac{dm}{d\bar{t}}\,\bar{\mathbf{v}}
$$

$$
\mathbf{W} \doteq \int_{1}^{2} \mathbf{F} \cdot d\bar{\mathbf{r}} = \int_{1}^{2} \frac{d\mathbf{P}}{d\bar{t}} \cdot d\bar{\mathbf{r}} = \Delta \mathbf{K}
$$

$$
\mathbf{K} \doteq m c^{2}
$$

where (\bar{t} , \bar{r} , \bar{v} , \bar{a}) are the relational time, the relational position, the relational velocity and the relational acceleration of the particle relative to the inertial reference frame and (c) is the speed of light in vacuum. The kinetic energy (K_o) of a massive particle at rest is $(m_o c^2)$

Forces and fields must be expressed only with relational quantities (the Lorentz force must be expressed with the relational velocity \bar{v} , the electric field must be expressed with the relational position \bar{r} , etc.)

Conclusions

§ In this article, the quantities $(\bar{t}, \bar{r}, \bar{v}, \bar{a}, \bar{\nu}, m, P, L, F, W, K)$ are invariant under transformations between inertial reference frames.

§ However, this article considers (1) that it would also be possible to obtain kinematic and dynamic quantities ($\bar{t}, \bar{r}, \bar{v}, \bar{a}, \bar{\nu}, m, P, L, F, W, K$) that would be invariant under transformations between inertial and non-inertial reference frames and (2) that the dynamic quantities (m, P, L, F, W, K) would also be given by the equations of this article.

The Kinetic Force

In an isolated system of (massive or non-massive) particles, the kinetic force \mathbf{K}_{ij} exerted on a particle i with relational mass m_i by another particle j with relational mass m_i is given by:

$$
\mathbf{K}_{ij} = -\frac{d}{d\bar{t}_i} \left[\frac{m_i m_j}{\mathrm{M}} \left(\bar{\mathbf{v}}_i - \bar{\mathbf{v}}_j \right) \right]
$$

where \bar{t}_i is the relational time of the particle i, \bar{v}_i is the relational velocity of the particle *i*, \bar{v}_j is the relational velocity of the particle *j* and M ($= \sum_z m_z$) is the relational mass of the isolated system of particles.

From the above equation it follows that the net kinetic force \mathbf{K}_i (= $\sum_z \mathbf{K}_{iz}$) acting on the particle i is given by:

$$
\mathbf{K}_i = -\frac{d}{d\bar{t}_i} \left[m_i \,\bar{\mathbf{v}}_i \,\right]
$$

where \bar{t}_i is the relational time of the particle i, m_i is the relational mass of the particle *i* and \bar{v}_i is the relational velocity of the particle *i*.

Now, substituting ($\mathbf{F}_i = d(m_i \bar{\mathbf{v}}_i)/d\bar{t}_i$) and rearranging, we obtain:

$$
\mathbf{T}_i \ \doteq \ \mathbf{K}_i + \mathbf{F}_i \ = \ 0
$$

Therefore, in an isolated system of (massive or non-massive) particles, the total force \mathbf{T}_i acting on a particle i is always zero.

Inertial observers must use an auxiliary-point such that the linear momentum of the isolated system of particles is zero ($\sum_{z} m_{z} \bar{\mathbf{v}}_{z} = 0$)

Bibliography

A. Einstein, Relativity: The Special and General Theory.

E. Mach, The Science of Mechanics.

W. Pauli, Theory of Relativity.

A. French, Special Relativity.

Appendix I

Generalized Lorentz Transformations

The time (t') , the position (\mathbf{r}') , the velocity (\mathbf{v}') and the acceleration (\mathbf{a}') of a (massive or non-massive) particle relative to an inertial reference frame S' are given by:

$$
t' = \gamma \left(t - \frac{\mathbf{r} \cdot \mathbf{V}}{c^2} \right)
$$

\n
$$
\mathbf{r}' = \left[\mathbf{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{r} \cdot \mathbf{V}) \mathbf{V}}{c^2} - \gamma \mathbf{V} t \right]
$$

\n
$$
\mathbf{v}' = \left[\mathbf{v} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{v} \cdot \mathbf{V}) \mathbf{V}}{c^2} - \gamma \mathbf{V} \right] \frac{1}{\gamma (1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2})}
$$

\n
$$
\mathbf{a}' = \left[\mathbf{a} - \frac{\gamma}{\gamma + 1} \frac{(\mathbf{a} \cdot \mathbf{V}) \mathbf{V}}{c^2} + \frac{(\mathbf{a} \times \mathbf{v}) \times \mathbf{V}}{c^2} \right] \frac{1}{\gamma^2 (1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2})^3}
$$

where (t, r, v, a) are the time, the position, the velocity and the acceleration of the particle relative to an inertial reference frame S , (V) is the velocity of the inertial reference frame S' relative to the inertial reference frame S and (c) is the speed of light in vacuum. (V) is a constant. $\gamma = (1 - V \cdot V/c^2)^{-1/2}$

Transformation of Frequency

The frequency (ν') of a non-massive particle relative to an inertial reference frame S' is given by:

$$
\nu' = \nu \frac{\left(1 - \frac{\mathbf{c} \cdot \mathbf{V}}{c^2}\right)}{\sqrt{1 - \frac{\mathbf{V} \cdot \mathbf{V}}{c^2}}}
$$

where (ν) is the frequency of the non-massive particle relative to an inertial reference frame S, $\left(c \right)$ is the velocity of the non-massive particle relative to the inertial reference frame S , (V) is the velocity of the inertial reference frame S' relative to the inertial reference frame S and (c) is the speed of light in vacuum.

Appendix II

System of Equations

$$
\begin{array}{|c|c|c|c|}\n\hline\n\text{[1]} & & \downarrow d\bar{t} \downarrow \\
\hline\n\text{[4]} & \leftarrow \times \bar{\mathbf{r}} \leftarrow \text{ [2]} \\
\downarrow d\bar{t} \downarrow & & \downarrow d\bar{t} \downarrow \\
\hline\n\text{[5]} & \leftarrow \times \bar{\mathbf{r}} \leftarrow \text{ [3]} & \rightarrow \int d\bar{\mathbf{r}} \rightarrow \text{ [6]} \\
\hline\n\text{[1]} & \frac{1}{\mu} \left[\int \mathbf{P} d\bar{t} - \int \int \mathbf{F} d\bar{t} d\bar{t} \right] = 0 \\
\text{[2]} & \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} d\bar{t} \right] = 0 \\
\text{[3]} & \frac{1}{\mu} \left[\frac{d\mathbf{P}}{d\bar{t}} - \mathbf{F} \right] = 0 \\
\text{[4]} & \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} d\bar{t} \right] \times \bar{\mathbf{r}} = 0 \\
\text{[5]} & \frac{1}{\mu} \left[\frac{d\mathbf{P}}{d\bar{t}} - \mathbf{F} \right] \times \bar{\mathbf{r}} = 0 \\
\text{[6]} & \frac{1}{\mu} \left[\int \frac{d\mathbf{P}}{d\bar{t}} \cdot d\bar{\mathbf{r}} - \int \mathbf{F} \cdot d\bar{\mathbf{r}} \right] = 0\n\end{array}
$$

 $[\mu]$ is an arbitrary (universal) constant with dimension of mass.

Appendix III

System of Equations

[1] ↓ dt¯↓ [4] ← × ¯r ← [2] ↓ dt¯↓ ↓ dt¯↓ [5] ← × ¯r ← [3] → R d¯r → [6] [1] ¹ µ Z m v¯ dt¯ − Z Z ^F dt d¯ ^t¯ = 0 [2] ¹ µ m v¯ − Z F dt¯ = 0 [3] ¹ µ m a¯ + dm dt¯ v¯ − F = 0 [4] ¹ µ m v¯ − Z F dt¯ × ¯r = 0 [5] ¹ µ m a¯ + dm dt¯ v¯ − F × ¯r = 0 [6] ¹ µ m c² − Z F · d¯r = 0

 $[\mu]$ is an arbitrary (universal) constant with dimension of mass.