SPECIAL RELATIVITY WITH MASSIVE AND NON-MASSIVE PARTICLES

A. Blato

Creative Commons Attribution 3.0 License (2016) Buenos Aires Argentina

In special relativity, this article presents a relativistic dynamics of massive and non-massive particles which can be applied in any inertial reference frame.

Introduction

In special relativity, the total position ($\bar{\mathbf{r}}$) of a (massive or non-massive) particle is always zero.

 $\bar{\mathbf{r}} = 0$

The total position $(\bar{\mathbf{r}})$ of a (massive or non-massive) particle is defined by the kinetic position $(\hat{\mathbf{r}})$ and the dynamic position $(\check{\mathbf{r}})$ as follows:

 $\hat{\mathbf{r}} - \check{\mathbf{r}} = 0$

The kinetic position ($\hat{\mathbf{r}}$) of a (massive or non-massive) particle is given by:

$$\hat{\mathbf{r}} \doteq \frac{1}{\mu} \int m \, \mathbf{v} \, dt$$

where (μ) is an arbitrary (universal) constant, (m) is the relativistic mass of the particle, (\mathbf{v}) is the velocity of the particle and (t) is time.

The dynamic position ($\check{\mathbf{r}}$) of a (massive or non-massive) particle is given by:

$$\check{\mathbf{r}} \doteq \frac{1}{\mu} \iint \mathbf{F} \, dt \, dt$$

where (μ) is the arbitrary (universal) constant, (\mathbf{F}) is the net force acting on the particle and (t) is time.

The relativistic mass (m) of a massive particle is given by:

$$m \doteq \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$

where (m_o) is the rest mass of the massive particle, (v) is the speed of the massive particle and (c) is the speed of light in vacuum.

The relativistic mass (m) of a non-massive particle is given by:

$$m \doteq \frac{h\nu}{c^2}$$

where (h) is the Planck constant, (ν) is the frequency of the non-massive particle and (c) is the speed of light in vacuum.

Now, the total position ($\bar{\mathbf{r}}$) of a (massive or non-massive) particle can also be expressed as follows:

$$\frac{1}{\mu} \left[\int m \, \mathbf{v} \, dt - \iint \mathbf{F} \, dt \, dt \right] = 0$$

Differentiating the above equation with respect to time, yields:

$$\frac{1}{\mu} \left[m \mathbf{v} - \int \mathbf{F} \, dt \right] = 0$$

Differentiating again with respect to time, we have:

$$\frac{1}{\mu} \left[m \mathbf{a} + \frac{dm}{dt} \mathbf{v} - \mathbf{F} \right] = 0$$

Multiplying by (μ) and rearranging, we finally obtain:

$$\mathbf{F} = m \mathbf{a} + \frac{dm}{dt} \mathbf{v}$$

This equation (similar to Newton's second law for $v \ll c$) will be used in the next section of this article.

The Relativistic Dynamics

If we consider a (massive or non-massive) particle with relativistic mass m then the linear momentum **P** of the particle, the angular momentum **L** of the particle, the net force **F** acting on the particle, the work W done by the net force acting on the particle, and the kinetic energy K of the particle, for an inertial reference frame, are given by:

$$\mathbf{P} \doteq m \mathbf{v}$$
$$\mathbf{L} \doteq \mathbf{P} \times \mathbf{r}$$
$$\mathbf{F} = \frac{d\mathbf{P}}{dt} = m \mathbf{a} + \frac{dm}{dt} \mathbf{v}$$
$$W \doteq \int_{1}^{2} \mathbf{F} \cdot d\mathbf{r} = \int_{1}^{2} \frac{d\mathbf{P}}{dt} \cdot d\mathbf{r} = \Delta \mathbf{K}$$
$$\mathbf{K} \doteq m c^{2}$$

where $(\mathbf{r}, \mathbf{v}, \mathbf{a})$ are the position, the velocity and the acceleration of the particle relative to the inertial reference frame and (c) is the speed of light in vacuum. The kinetic energy (K_o) of a massive particle at rest is $(m_o c^2)$

Bibliography

A. Einstein, Relativity: The Special and General Theory.

E. Mach, The Science of Mechanics.

W. Pauli, Theory of Relativity.

A. French, Special Relativity.

Appendix

System of Equations

$$\begin{bmatrix} \mathbf{I} \\ \downarrow dt \downarrow \\ \hline \mathbf{I} \\ \mathbf{I$$