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Simple theory of thermal failure in electric circuits with a negative temperature 

coefficient of resistance  

I. INTRODUCTION 

Using a simple mathematical model, the paper clearly illustrates elevated risks of thermal failure 

in the electric systems with a negative temperature coefficient of resistance (in particular, for the 

electronics elements made of carbon and semiconductors). If the temperature coefficient of 

resistance is positive, the thermal equilibrium exists at any temperature below the melting point. But 

if the temperature coefficient of resistance is negative, there are three potential cases depending on 

cooling: (1) for a relatively low cooling rate, a thermal equilibrium is not feasible and the 

temperature goes up unlimitedly; (2) for a relatively high cooling rate, there are two thermal 

equilibrium states, stable and unstable; (3) in the borderline case, there is just one unstable thermal 

equilibrium.  

As known, the heat produced in an undercooled electric circuit elevates a risk of thermal failure (for 

instance, Central Processing Units can generate a notable heat and crash if overheated). Such a risk 

is higher in the electric circuits with negative temperature coefficients of resistance [1-4], in 

particular for the elements made of semiconductors (silicon, germanium, etc.). The goal is to 

illustrate the relevant thermal effects using a simple engineering theory.  

II. SIMPLE MATHEMATICAL MODEL 

Consider an electrical circuit consisting of a constant voltage source and resistor (FIG. 1) with the 

electrical resistance  

 t)α(1 
0

RR       (1)        

where 0R is the resistance at Celsius scale temperature t , α  is the temperature coefficient of 

resistance which is positive for most conductors (the electrical resistance increases with 

temperature).  However for graphite, amorphous carbon, and semiconductors (in particular, 

germanium), the temperature coefficient of resistance is negative (the electrical resistance decreases 
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with temperature). Let the output thermal power transferred from the resistor into ambient air be 

described by equation 

A tPout        (2)  

where A is a positive constant referred to as the surface heat conductance, or coefficient of heat 

transfer [5]. 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 1. Simplified model of air- cooled electrical circuit  

 

Eq. (2) is valid if the forced or free thermal convection is a dominant mechanism of heat transfer 

and the Celsius scale temperature of ambient air equals zero. The latter condition is not principal 

because the results obtained can be also applied if the ambient temperature amb t is different from 

zero: in this case, (a) the value  t represents the difference between the circuit temperature and 

ambient temperature, (b)  
0

R is approximated by the circuit resistance at the ambient 

temperature amb t .  The heat input is given by 

R

U
P

2

in        (3) 

where U is the constant voltage applied to the resistor. Using Eqs (1) - (3), the condition of thermal 

equilibrium  outin PP   can be written as 

 
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(4) 

that can be transformed into quadratic equation 
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with two roots 
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representing the thermal equilibrium points. Here, the dimensionless parameter 
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     (6) 

It should be noted that such thermal equilibriums may be unstable or even in contradiction to the 

real physical properties. 

Consider two main cases:  

(1) the temperature coefficient of resistance is positive  0  α   ,  

(2) the temperature coefficient of resistance is negative  0  α   . 

III.  THERMAL EQUILIBRIUM IF 0  α   

Here, the lower root of Eq. (5) is physically unreal because in this case the electrical resistance 

given by Eq. (1) gets negative. The higher root of Eq. (5) can be obtained by plotting the left and 

right parts of Eq. (4) in the 2-D coordinate system for temperature (X) and thermal power (Y). Here, 

the left part of Eq. (4), describing the input power, is represented by the hyperbola HG. The straight 

line OC through the coordinate origin stands for the output power defined by the right part of Eq. 

(4). The intersection point T of the two lines represents the mathematical solution. To the left of 

point T, the hyperbola HG lies over the straight line OC, so, the heat input exceeds the heat output 

and therefore the temperature of the resistor should increase to the equilibrium point T. To the right 

of point T, the hyperbola HG lies below the straight line OC, so, the heat output prevails upon the 

heat input so that the temperature of the resistor should reduce to the equilibrium point T. Hence, 

this thermal equilibrium is stable unless the temperature T exceeds the melting point of the 

resistance material. 
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FIG. 2. Graphical solution of Eq. (4) in case if the temperature coefficient of resistance is positive. 

 

 

IV. THERMAL EQUILIBRIUM IF 0  α   

 

Here, there are three straight lines OC1, OC2, and OC3, representing respectively high, moderate 

(critical), and low cooling regimes. They illustrate the three important mathematical conditions in 

Eq. (5): 1, D  1, D  and  1 D 
 
(here, the parameter D given by Eq. (6) is negative because it 

is proportional to the temperature coefficient of resistance).  For the low cooling regime, the heat 

input exceeds the heat output at any temperature: the straight line OC3 lies below the hyperbola HG.  

For the moderate (critical) cooling, the hyperbola HG is over the straight line OC2 in the whole 

range, except for point T3. The temperature to the right of point T3 can infinitely increase since the 

heat output prevails upon the heat input. Therefore, the thermal equilibrium at point T3 is unstable.  

In case of the high cooling regime, there are two thermal equilibriums: at the intersection points T1 

and T2 of the straight line OC1 and the hyperbola HG. Between the points T1 and T2, the hyperbola 

HG lies below the straight line OC1; here, the heat output prevails and the temperature should go 
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down. To the left of point T1 and to the right of point T2, the hyperbola HG is over the straight line 

OC1; here, the heat input exceeds the heat output, so, the temperature should go up.  

Hence, the only stable thermal equilibrium is that at point T1.  But a catastrophic thermal failure is 

inevitable to the right of point T2 even if this temperature is below the melting point of the material. 

Such an unfavorable transient process is not described in the monograph [6] but can be considered 

like a thermal catastrophe. 

V. CONCLUSIONS 

In contrast to the electric circuits with a positive temperature coefficient of resistance, the circuits 

with a negative temperature coefficient of resistance (common for electronics) are prone to a higher 

risk of thermal catastrophe. Basing on a simple straightforward model, the following theoretical 

results were obtained:  

(1) If the temperature coefficient of resistance is positive, a stable equilibrium can be achieved 

below the melting temperature. 

 (2) If the temperature coefficient of resistance is negative but the air cooling is high, the thermal 

equilibrium may formally exist at two temperatures, only one of such equilibrium states (at the 

lower temperature) being stable. The equilibrium at the higher temperature is unstable with a 

notable risk of catastrophic thermal failure. 
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FIG. 3. Graphical solution of Eq. (4) in case if the temperature coefficient of resistance is negative. 
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