ON SOME SERIES RELATED TO MOBIUS FUNCTION AND
LAMBERT W-FUNCTION

DANIL KROTKOV

ABSTRACT. We derive some new formulas, connecting some series with
Moébius function with Sine Integral and Cosine Integral functions, give the
formal proof for full version of Stirling’s formula with remainder term in
form of definite integral of elementary function; investigate the values of
new Dirichlet series function at natural numbers > 2 and its behavior at the
pole s = 1, connecting it with elementary constants.

1 Introduction

It will be later shown in this article that the following formulas are correct:
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where G is the Barnes G-function which will be given later.
And some formulas of different type:
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Also we are going to introduce an interesting way to derive some well
known expressions for Inz! = InT'(1 4+ z) and Hy = v+ (1 + x):
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2 Formal proof of full Stirling’s formula

Formal proofs of different formulas are not the mathematical proofs in usual
sense. They only could give a clue for the correct formula, which can be
proved later by the strict mathematical reasoning. About the following identities
we could only say that if they work for every polynomial, we could substitute
them by other "natural” functions, to find a rigorous proof for the new
identities later.

Let’s start from simple formulas:
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It is important to represent such function as 7 asan integral of elementary
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function and now we will explain, why.

Let D be the differential operator %. Applying Taylor’s theorem, eP f(x) =
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= f(z + ¢). Let’s replace = in integral formula for ezx_ 1 by

and notice that formally
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And we obtain the full version of trapezoidal rule
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Using this formula one can obtain Abel-Plana summation formula (which
formally works for polynomials too, giving the values of Riemann zeta function
at complex points with negative real part):
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But we are not interested in this formula now. Let’s try to put f(z) =
InT'(x) in the trapezoidal rule, remembering Raabe’s formula:
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holds true. But the complex logarithm could be computed by the formula
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Strict proof of this formula could be derived, using the integral representations:
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all of which can be proved in the same manner as the formula for Py
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replacing Taylor coefficients by the I'-function standart integral representation
or I'C integral representation multiplyed by the appropriate reciprocal factorials.



3 Derivation of stated results with py-function

Differentiating the full Stirling’s formula, we can now obtain integral representation
for generalized Harmonic number H, and Hurwitz function ((k + 1,z + 1):

oo
1 2t dt
HI:ln$+’y+2.’E_/t2—|-l'262ﬂ't—1
0

1 1 1 1 dt
k+lLo+l)=—r — o i -
C( =+ ,I‘+ ) k‘l‘k 2$k+1 +Z/((x+it)k+1 (:L,_Z't)k+1) e27rt_1
0

Let’s change the variable in all integrals ¢ = xny and use the Lambert series

formula of Mobius function

M(]L) —

— Y
oy 1 =€ (y > O)
n=1

with reciprocal zeta function formulas

n=1
yopmin 4 _so1 |
n=1 n ds C(S)(S — 1) 1
and integration by parts technique to derive
N 1 9 2mx
int
Z ng)(lnr‘(l"knx)_(nx) In(nzx)+nx) = _§+COS7T7T5L‘ g _ / %dt N
n=1 J
2mx
09 s
AT 2 — / 1-cost .
T t
0
- 2mx
1—cost
Z H(n)(an -7 — ln(nx)) = 2cos 2T y +1n 27z — fdt B
n=1 J
2mx
int
_9gin2rz [ Z - / Sme g,
2 t

0



And not so pretty formulas for Hurwitz zeta function with even and odd

parametres:
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Setting x = 1 in all of these formulas we obtain the first two stated results

and the following formulas too
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Now the formula with Barnes G-function is left to derive.



The values of Barnes G-function at integer points are given by the equality
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(where empty product is equal to 1) and it can be continued to all complex
plane by the same manner as the definition of I'-function:
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From this definition it could be easily derived the expression
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So integrating the full Stirling’s formula we can derive the identity
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Differentiating I'C integral representation we get the equality
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Setting © = 1 we obtain the desired result. Similarly using Abel-Plana
formula for Hurwitz zeta function at non-integer points we can obtain this
type formulas in terms of incomplete I'-function.

But the Mé&bius p-function is not the only non-trivial arithmetic function
which have the closed form of Lambert series. Another example is the Euler’s
totient function . This function is appropriate to use it in an analogue of
M@dbius inversion formula for I-function, given by the equality
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the validity of which could be seen by expanding both sides into Taylor
series as the functions of x.

So let’s try to use this function in analogue to the sums with full Stirling’s
expansion, but firstly deformating it for convergence:
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we obtain:
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of generalized Harmonic number. That’s why it is not so interesting.

4 Derivation of stated results related to Lambert
W-function

Lambert multivalued W-function is given by the equality W(ze®) = .
Then Lagrange inversion theorem implies the formula for coefficients of its
principal branch Wy(z) Taylor’s expansion, using which it can be derived
that
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Now let’s derive the similar formula
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Changing the variable ¢ = xe® it becomes obvious that
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So the reciprocal of Lambert function’s principal branch has the Taylor’s
series:
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Integrating this formula we obtain the desired result.
But now we will concentrate on other identities. Let’s define
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and find its values at natural points except s = 1.
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So Vk € Niso,Vz € [0; 1]:
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But we can continue this sequence of polynomials at least to all real
variable > 1 (but these functions of course won’t be polynomials anymore).
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But x € [0; 1], so we can change the variable t = xz — z — In z to obtain:
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(at least for all x € [0;1], y € [1;4+00)). But now we are interested only
in case when y € N to derive the closed-form formula for the values of this
Dirichlet series at natural points.
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And so we obtain the formula for values of this function at natural points
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Now let’s investigate the behavior of this Dirichlet series at k = 1. It is well
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so we can try to find the closed-form expression of the sum

By differentiating the definition of Lambert function, one can show that it
satisfies the differential equation
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will obtain the series for z(1 — x)~!, which converges for all z in [0,1). But
to integrate this formula from 0 to 1 we need the uniform convergence on
the whole segment [0, 1]. So let’s use the expansion of the function f(z) =
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There’s no limit for z — 17, but to apply Abel’s theorem we need only the

limit for x — 17, which is — — —. Now we can integrate this formula:
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Now the series have uniform convergence and so we can change the order
of summation and integration to have
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counting the limits of this function for x — 0 and z — 1~ we finally have:
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5 Conclusion

At first, we gave some new infinite series, which have closed-form expressions
in terms of Trigonometric Integral functions, using the formal approach to
the derivation of Stirling’s formula. Then we derived some results for new
Dirichlet series. Defining
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We gave the formulas for M (2), M(3) and general closed-form formula for
M (k) for all natural k except 1 and integral formula for real k£ > 1. We also
derived that
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An interesting problem is to find analytic continuation of M(s) and find its
values at negative points.
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