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Abstract. Let

A(α)
q (a; z) =

∞∑
k=0

(a; q)kq
αk2zk

(q; q)k
,

where α > 0, 0 < q < 1. In a paper of Ruiming Zhang, he asked under what con-
ditions the zeros of the entire function A

(α)
q (a; z) are all real and established some

results on the zeros of A
(α)
q (a; z) which present a partial answer to that question.

In the present paper, we will set up some results on certain entire functions which
includes that A

(α)
q (ql; z), l ≥ 2 has only infinitely many negative zeros that gives

a partial answer to Zhang’s question. In addition, we establish some results on
zeros of certain entire functions involving the Rogers-Szegő polynomials and the
Stieltjes-Wigert polynomials.
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1 Introduction

Recall that entire functions are functions that are holomorphic in the whole com-
plex plane. Given an entire function f(z) =

∑∞
k=0 akz

k, then the order of f(z)
can be computed by [5, (2.2.3)]

ρ(f) = lim sup
k→∞

k log k

− log ak
. (1.1)

Following [11], we define the entire function A
(α)
q (a; z) by

A(α)
q (a; z) =

∞∑
k=0

(a; q)kq
αk2zk

(q; q)k
,
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where α > 0, 0 < q < 1 and

(a; q)0 = 1, (a; q)k =
k−1∏
j=0

(1− aqj) (k ≥ 1).

It is easily seen that

A
( 1
2
)

q (q−n; z) =
∞∑
k=0

(q−n; q)kq
k2

2 zk

(q; q)k
= (q; q)nSn(zq

1
2
−n; q),

A(1)
q (0; z) =

∞∑
k=0

qk
2
zk

(q; q)k
= Aq(−z),

where Aq(z) and Sn(z; q) are the Ramanujan entire function and the Stieltjes-

Wigert polynomial respectively [10]. So A
(α)
q (a; z) generalizes both Aq(z) and

Sn(z; q). It is well-known that both of them have only real positive zeros. There-
fore, Zhang in [18] asked under what conditions the zeros of the entire function

A
(α)
q (a; z) are all real. In that paper, Zhang proved that A

(α)
q (−a; z) (a ≥ 0, α >

0, 0 < q < 1) has only infinitely many negative zeros and A
(α)
q (q−n; z) (n ∈ N, α ≥

0, 0 < q < 1) has only finitely many positive zeros, which gave a partial answer
to that question. In addition, Zhang obtained a result on the negativity of zeros
of an entire function including many well-known entire functions.

Our motivation for the present work emanates from Zhang’s question. In this
paper, we will establish the following results which present a partial answer to
Zhang’s question.

Theorem 1.1. Let α > 0 and 0 < q < 1. Then
(i)if l ≥ 2 is an integer, then A

(α)
q (ql; z) has only infinitely many real zeros

and all of them are negative;
(ii)if m and n are nonnegative integers such that at least one of them is

positive, {lj}mj=1 are integers not less than 2, 0 < qj < 1 (1 ≤ j ≤ m) and
νr > −1, 0 < qr < 1 (1 ≤ r ≤ n), then the function

∞∑
k=0

m∏
j=1

(q
lj
j ; qj)k

(qj; qj)k

qαk
2∏n

r=1(qr, q
νr+1
r ; qr)k

zk

has only infinitely many real zeros and all of them are negative;
(iii)if m ≥ 0 and n ≥ 1 are integers, {lj}mj=1 are integers not less than 2 and

νr ≥ 0 (1 ≤ r ≤ m), then the function

∞∑
k=0

∏m
j=1(lj)k

(k!)m+n
∏n

r=1(νr + 1)k
zk
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where (a)k is defined by (a)0 = 1, (a)k = a(a+ 1) · · · (a+k− 1) (k ≥ 1), has only
infinitely many real zeros and all of them are negative.

It should be mentioned that in [13, Theorem 4] Katkova et al. proved that

there exists a constant q∞ (≈ 0.556415) such that the function A
(α)
q (q; z) has only

real zeros if and only if q ≤ q∞. So the similar result for A
(α)
q (ql; z) does not hold

for l = 1.
The Gaussian binomial coefficients are q-analogs of the binomial coefficients,

which are given by [
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

We now introduce the definition of the Rogers-Szegő polynomials which were first
investigated by Rogers [15] and then by Szegő [16]. The Rogers-Szegő polynomials
are defined by

hn(x, y|q) =
n∑
k=0

[
n

k

]
q

xkyn−k.

If q is replaced by q−1 in the Rogers-Szegő polynomials, then we obtain the
Stieltjes-Wigert polynomials (see [16]):

gn(x, y|q) =
n∑
k=0

[
n

k

]
q

qk(k−n)xkyn−k.

From [18, Theorem 5], we know that hn(x|q) has only negative zeros for q ≥ 1
and gn(x|, q) has only negative zeros for 0 < q ≤ 1, where hn(x|q) and gn(x|, q)
are defined by

hn(x|q) := hn(x, 1|q) =
n∑
k=0

[
n

k

]
q

xk

and

gn(x|q) := gn(x, 1|q) =
n∑
k=0

[
n

k

]
q

qk(k−n)xk.

Motivated by Zhang’s work, we will establish the following results on zeros of
certain entire functions involving the Rogers-Szegő polynomials and the Stieltjes-
Wigert polynomials.

Theorem 1.2. Let 0 < q < 1. If α is positive number and 0 < x, y < 1, then

∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn
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has infinitely many real zeros and all of them are negative; if −1 < x, y < 0 and
α ≥ 1

2
, then

∞∑
n=0

gn(x, y|q)
(q; q)n

qαn
2

zn

has infinitely many real zeros and all of them are positive.

Remark 1.1. (i) Applying the method which is used in the proof of Theorem 1.2,
we can deduce the following results: let 0 < q < 1; if α is positive number and
0 < x < 1, then

∞∑
n=0

hn(x|q)
(q; q)n

qαn
2

zn

has infinitely many real zeros and all of them are negative; if −1 < x < 0 and
α ≥ 1

2
, then

∞∑
n=0

g−n (x|q)
(q; q)n

qαn
2

zn

has infinitely many real zeros and all of them are positive, where g−n (x|q) =
gn(x,−1|q). But we need the following results:∣∣∣∣hn(x|q)

(q; q)n

∣∣∣∣ ≤ 1

(q, x; q)∞
,

∣∣∣∣g−n (x|q)
(q; q)n

∣∣∣∣ ≤ 1

(q, |x|; q)∞

which can be derived easily.
(ii) We can establish certain results on the Rogers-Szegő polynomials and the

Stieltjes-Wigert polynomials by using similar method. These are analogous to (ii)
and (iii) of Theorem 1.1

We also set up the following result which is analogous to [18, Theorem 7].

Theorem 1.3. Suppose r and s are two positive integers, aj(1 ≤ j ≤ r) and

bk(1 ≤ k ≤ s) are r+s positive numbers and α > 0, 0 < q < 2−
1
α . Then there

exists K0 ∈ Z>0 such that for all integers K ≥ K0, the function

∞∑
k=K

(a1)k(a2)k · · · (ar)k
(b1)k(b2)k · · · (bs)k

qαk
2

zk

has only infinitely many real zeros and all of them are negative.

In the next section, we will provide some lemmas which are crucial in the
proof of Theorems 1.1 and 1.2. Section 3 is devoted to our proof of Theorems
1.1–1.3.
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2 Preliminaries

In order to prove Theorems 1.1 and 1.2, we need some auxiliary results. We first
recall from [7] that a real entire function f(z) is of Laguerre-Pólya class if

f(z) = czme−αz
2+βz

∞∏
k=1

(
1 +

z

zk

)
e−z/zk ,

where c, β, zk ∈ R, α ≥ 0,m ∈ Z≥0 and
∑∞

k=1 z
−2
k < +∞.

Let us recall that a real sequence {an}∞n=0 is called a Pólya frequence (or PF)
sequence if the infinite matrix (aj−i)

∞
i,j=0 is totally positive, i.e. all its minors are

nonnegative, where we use the notation ak = 0 if k < 0. This concept can be
extended to finite sequences in the obvious way by completing the sequence with
zero terms.

Lemma 2.1. (See [2])The sequence {ak}∞k=0 is a PF sequence if and only if the
convergent series

∑∞
k=0 akz

k satisfies

∞∑
k=0

akz
k = czmeγz

∞∏
k=1

1 + αkz

1− βkz
,

where c ≥ 0, γ ≥ 0, αk ≥ 0, βk ≥ 0,m ∈ Z+ and
∑∞

k=1(αk + βk) < +∞.

It was proved in [6] that
∞∑
k=0

qk
2

k!
xk

is a real entire function and in Laguerre-Pólya class for |q| < 1 and x ∈ R. Then

by [7, Theorem C], we obtain that { qk
2

k!
}∞k=0 is a PF sequence for 0 < q < 1.

Lemma 2.2. (See [8, p. 1047] and [14]) Let {ak}mk=0 and {bk}nk=0 be sequences of
nonnegative numbers. Then

(i) the sequence {ak}mk=0 is a a PF sequence if and only if the polynomial∑m
k=0 akz

k has only nonpositive zeros;
(ii) if the sequences {ak}mk=0 and {bk}nk=0 are PF sequences, then so is the

sequence {ak · bk}∞k=0;
(iii) if the sequences {ak}mk=0 and {bk}nk=0 are PF sequences, then so is the

sequence {k! · ak · bk}∞k=0.

We also need the following results, namely, Vitali’s theorem [17] and Hurwitz’s
theorm [1, §5, Theorem 2].
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Lemma 2.3. (Vitali’s theorem) Let {fn(z)} be a sequence of functions analytic in
a domain D and assume that fn(z)→ f(z) point-wise in D. Then fn(z)→ f(z)
uniformly in any subdomain bounded by a contour C, provided that C is contained
in D.

Lemma 2.4. (Hurwitz’s theorm) If the functions {fn(z)} are nonzero and ana-
lytic in a region Ω, and fn(z) → f(z) uniformly on every compact subset of Ω,
then f(z) either identically zero or never equal to zero in Ω.

We conclude this section with following result which is very important in the
proof of Theorem 1.2.

Lemma 2.5. Let x, y be two real numbers and α > 0, 0 < q < 1. Then the
functions

∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn and
∞∑
n=0

gn(x, y|q)
(q; q)n

qαn
2

zn

are all entire functions.

Proof. We first consider the function
∑∞

n=0
hn(x,y|q)
(q;q)n

qαn
2
zn. For |x| ≤ 1, |y| ≤ 1,

by [9, (1.3.15)], we have

|hn(x, y|q)| ≤
n∑
k=0

[
n

k

]
q

|x|k|y|n−k ≤
n∑
k=0

[
n

k

]
q

≤
n∑
k=0

(1− qn)(1− qn−1) · · · (1− qn−k+1)

(q; q)k
qk−n

≤ q−n
n∑
k=0

qk

(q; q)k
≤ q−n

∞∑
k=0

qk

(q; q)k

=
q−n

(q; q)∞
.

By the same arguments, we get for |x| > 1, |y| ≤ 1,

|hn(x, y|q)| ≤
n∑
k=0

[
n

k

]
q

|y|k|x|n−k = |x|n
n∑
k=0

[
n

k

]
q

|y|k|x|−k

≤ |x|n
n∑
k=0

[
n

k

]
q

≤ (|x|/q)n

(q; q)∞
;
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for |x| ≤ 1, |y| > 1,

|hn(x, y|q)| ≤ |y|n
n∑
k=0

[
n

k

]
q

|x|k|y|−k

≤ |y|n
n∑
k=0

[
n

k

]
q

≤ (|y|/q)n

(q; q)∞
;

for |x| > 1, |y| > 1,

|hn(x, y|q)| = |xy|n
n∑
k=0

[
n

k

]
q

|x|k−n|y|−k

≤ |xy|n
n∑
k=0

[
n

k

]
q

≤ (|xy|/q)n

(q; q)∞
.

In any cases we obtain

|hn(x, y|q)| ≤ an

(q; q)∞

where a is positive number which depends on x, y and q. Then∣∣∣∣hn(x, y|q)
(q; q)n

qαn
2

∣∣∣∣ ≤ anqαn
2

(q; q)2∞
.

so that

lim sup
n→∞

∣∣∣∣hn(x, y|q)
(q; q)n

qαn
2

∣∣∣∣ 1n = 0,

which proves that
∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

is an entire function. Similarly, we can deduce that

∞∑
n=0

gn(x, y|q)
(q; q)n

qαn
2

zn

is also an entire function. This ends the proof of Lemma 2.5.
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3 Proof of Theorems 1.1–1.3

Proof of Theorem 1.1. We first prove (i). According to the q-binomial theorem
[3, 9], we obtain that for all complex numbers x and q with |x| < 1 and |q| < 1,
there holds

∞∑
k=0

(a; q)k
(q; q)k

xk =
(ax; q)∞
(x; q)∞

. (3.1)

Setting a = ql, x = zq−l in (3.1) gives

∞∑
k=0

(ql; q)k
(q; q)k

q−lkzk =
(z; q)∞

(zq−l; q)∞
=

1

(zq−l; q)l
.

Using Lemma 2.1, we get the sequence{
(ql; q)k
(q; q)k

q−lk
}n
k=0

is a PF sequence. It follows from (i) of Lemma 2.2 that {ak}nk=0 is a a PF sequence
if and only if {ck · ak}nk=0 is also a PF sequence for any c > 0. Hence,{

(ql; q)k
(q; q)k

}n
k=0

is a PF sequence. So from the fact
{
qαk

2

k!

}n
k=0

is a PF sequence and (iii) of Lemma

2.2, we arrive at the sequence {
(ql; q)kq

αk2

(q; q)k

}n

k=0

is also a PF sequence, which, by (i) of Lemma 2.2, implies that the polynomial

n∑
k=0

(ql; q)kq
αk2

(q; q)k
zk

has only nonpositive zeros. Here and below, set Ω = C−{x+yi|x ∈ (−∞, 0], y =
0}. Then

n∑
k=0

(ql; q)kq
αk2

(q; q)k
zk → Aαq (ql; z)
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point-wise in Ω. It is easily seen that for 0 < q < 1, α ≥ 0 and each n ∈ N, z ∈ C,∣∣∣∣ n∑
k=0

(ql; q)kq
αk2

(q; q)k
zk
∣∣∣∣ ≤ ∞∑

k=0

(ql; q)kq
αk2

(q; q)k
|z|k < +∞.

We apply Lemma 2.3 to know that

n∑
k=0

(ql; q)kq
αk2

(q; q)k
zk → Aαq (ql; z)

uniformly on every compact subset of Ω and then apply Lemma 2.4 to see that
Aαq (ql; z) 6= 0 in Ω which means that Aαq (ql; z) has no zeros outside the set {x +
yi|x ∈ (−∞, 0], y = 0}. According to [10, Lemma 14.1.4], we have Aαq (ql; z) has
infinitely many zeros. Therefore, Aαq (ql; z) has only infinitely many real zeros and
all of them are negative, which proves (i).

We next show (ii). According to [18], we know that the sequence{
1

(q, qν+1; q)k

}N
k=0

is a PF sequence for ν > −1, 0 < q < 1, which means that{
1

(qr, qνr+1
r ; qr)k

}N
k=0

are all PF sequences for 1 ≤ r ≤ n.
Since{

(q
lj
j ; qj)k

(qj; qj)k

}N

k=0

(1 ≤ j ≤ m),

{
1

(qr, qνr+1
r ; qr)k

}N
k=0

(1 ≤ r ≤ n)

and
{
qαk

2

k!

}n
k=0

are all PF sequences, we then apply (ii) and (iii) of Lemma 2.2 to

find that {
m∏
j=1

(q
lj
j ; qj)k

(qj; qj)k

qαk
2∏n

r=1(qr, q
νr+1
r ; qr)k

}N

k=0

is also a PF sequence, which, by (i) of Lemma 2.2, implies that

N∑
k=0

m∏
j=1

(q
lj
j ; qj)k

(qj; qj)k

qαk
2
zk∏n

r=1(qr, q
νr+1
r ; qr)k
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has only negative zeros. For each positive integer N and z ∈ C, we have∣∣∣∣∣
N∑
k=0

m∏
j=1

(q
lj
j ; qj)k

(qj; qj)k

qαk
2
zk∏n

r=1(qr, q
νr+1
r ; qr)k

∣∣∣∣∣
≤

∞∑
k=0

m∏
j=1

(q
lj
j ; qj)k

(qj; qj)k

qαk
2|z|k∏n

r=1(qr, q
νr+1
r ; qr)k

< +∞.

Similarly, we apply Lemmas 2.3 and 2.4 to establish that the function

∞∑
k=0

m∏
j=1

(q
lj
j ; qj)k

(qj; qj)k

qαk
2
zk∏n

r=1(qr, q
νr+1
r ; qr)k

has no zeros outside the set {x + yi|x ∈ (−∞, 0], y = 0}. In view of [10, Lemma
14.1.4], this function has infinitely many zeros. Then (ii) is proved.

Finally, we give a proof of (iii). Let qj = qr = q and α = n+m/2. Using the
Hôpital’s rule, we deduce that

lim
q→1

(qlj ; q)k
(q; q)k

=
(lj)k
k!

, lim
q→1

(1− q)2k

(q, qνr+1; q)k
=

1

k!(νr + 1)k
.

Then

lim
q→1

(1− q)2kn
∏m

j=1(q
lj ; q)kq

(n+m/2)k2 · zk

(q; q)m+n
k

∏n
r=1(q

νr+1; q)k
=

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k
.

It is easy to see from

lql−1 ≤ 1− ql

1− q
= 1 + q + q2 + · · ·+ ql−1 ≤ l

that

l!q(
l
2) ≤ (q; q)l

(1− q)l
≤ l!.

Then
1

l!
≤ (1− q)l

(q; q)l
≤ q−(l2)

l!
≤ q−l

2/2

l!
.

Combining this and the fact that (1−q)l
(qb;q)l

≤ (1−q)l
(q;q)l

for b ≥ 1 gives∣∣∣∣∣(1− q)2kn
∏m

j=1(q
lj ; q)kq

αk2 · zk

(q; q)m+n
k

∏n
r=1(q

νr+1; q)k

∣∣∣∣∣ ≤ |z|k

k!m+2n

10



This, by Lemma 2.3, shows that

lim
q→1

∞∑
k=0

(1− q)2kn
∏m

j=1(q
lj ; q)kq

(n+m/2)k2 · zk

(q; q)m+n
k

∏n
r=1(q

νr+1; q)k
=
∞∑
k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k
.

converges uniformly in in any compact subset of C. It follows from Lemma 2.4
that the function

∞∑
k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k

has no zeros outside the set {x+ yi|x ∈ (−∞, 0], y = 0}.
Set

ak =

∏m
j=1(lj)k

(k!)m+n
∏n

r=1(νr + 1)k
.

It is easily seen from the Stirling’s formula [4] that

lim
k→∞

− log ak
k log k

= 2n

which, by (1.1), means that

ρ

(
∞∑
k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k

)
=

1

2n
≤ 1

2
.

Hence, by [10, Theorem 1.2.5], the function

∞∑
k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k

has infinitely many zeros. Then this function has only infinitely many real zeros
and all of them are negative, which proves (iii). This completes the proof of
Theorem 1.1.
Proof of Theorem 1.2. We first consider the function

∑∞
n=0

hn(x,y|q)
(q;q)n

qαn
2
zn, where

0 < x, y < 1 and α > 0. From [12, Theorem 3.1, (3.1)], we know that

∞∑
n=0

hn(x, y|q)
(q; q)n

tn =
1

(xt, yt; q)∞

for max{|xt|, |yt|} < 1. Then, by Lemma 2.1, we have the sequence{
hn(x, y|q)

(q; q)n

}∞
n=0

11



is a PF sequence. It follows from the fact that { qk
2

k!
}∞k=0 is a PF sequence and

(iii) in Lemma 2.2 that {
hn(x, y|q)

(q; q)n
qαn

2

}N
n=0

is also a PF sequence. So, by (i) of Lemma 2.2, we see that

N∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

has only nonpositive zeros. We know that

N∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn →
∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

point-wise in Ω. It is easy to see that for 0 < q < 1, α > 0 and each N ∈ N, z ∈ C,∣∣∣∣∣
∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

∣∣∣∣∣ ≤
∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2|z|n < +∞.

Applying Lemma 2.3, we find that

N∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn →
∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

uniformly on every compact subset of Ω and then applying Lemma 2.4, we deduce
that the function

∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn 6= 0

in Ω which means that
∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

has no zeros outside the set {x+ yi|x ∈ (−∞, 0], y = 0}.
We use [9, (1.3.15)] to get

0 ≤ hn(x, y|q)
(q; q)n

=
n∑
k=0

xk

(q; q)k

yn−k

(q; q)n−k

≤
∞∑
k=0

xk

(q; q)k

∞∑
k=0

yk

(q; q)k

=
1

(x, y; q)∞
.
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Then, by Lemma 2.5 and [10, Lemma 14.1.4], we attain that the function

∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

has infinitely many zeros. Therefore, the function

∞∑
n=0

hn(x, y|q)
(q; q)n

qαn
2

zn

has infinitely many real zeros and all of them are negative.
We now investigate the function

∑∞
n=0

gn(x,y|q)
(q;q)n

qαn
2
zn, where −1 < x, y < 0

and α ≥ 1
2
. According to [12, Theorem 3.1, (3.2)], we have

∞∑
n=0

(−1)n
gn(x, y|q)q(

n
2)

(q; q)n
tn = (x, y; q)∞,

which, by Lemma 2.1, implies that{
(−1)n

gn(x, y|q)q(
n
2)

(q; q)n

}∞
n=0

is a PF sequence, namely, {
(−1)n

gn(x, y|q)q n
2

2

(q; q)n

}∞
n=0

is a PF sequence. So, by the fact that { qk
2

k!
}∞k=0 is a PF sequence and (iii) in

Lemma 2.2, {
(−1)n

gn(x, y|q)qαn2

(q; q)n

}N

n=0

is a PF sequence, which, by (i) of Lemma 2.2, means that

N∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn

has only nonpositive zeros. It is obvious that

N∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn →

∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn
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point-wise in Ω. For 0 < q < 1, α > 0 and each N ∈ N, z ∈ C,∣∣∣∣∣
∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn

∣∣∣∣∣ ≤
∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
|z|n < +∞.

Then, by Lemma 2.3,

N∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn →

∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn

uniformly on every compact subset of Ω. We apply Lemma 2.4 to derive that the
function

∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn 6= 0

in Ω. This shows that
∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn

has no zeros outside the set {x+ yi|x ∈ (−∞, 0], y = 0}.
It is clear that ∣∣∣∣(−1)n

gn(x, y|q)
(q; q)n

∣∣∣∣ ≤ n∑
k=0

|x|k

(q; q)k

|y|n−k

(q; q)n−k

≤
∞∑
k=0

|x|k

(q; q)k

∞∑
k=0

|y|k

(q; q)k

=
1

(|x|, |y|; q)∞
.

By Lemma 2.5 and [10, Lemma 14.1.4], the function

∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn

has infinitely many zeros. Hence,

∞∑
n=0

(−1)n
gn(x, y|q)qαn2

(q; q)n
zn

has infinitely many real zeros and all of them are negative, namely,

∞∑
n=0

gn(x, y|q)qαn2

(q; q)n
zn

14



has infinitely many real zeros and all of them are positive. This finishes the proof
of Theorem 1.2.
Proof of Theorem 1.3. For 0 < q < 1

2
1
α
. Put

Ak =
(a1)k(a2)k · · · (ar)k
(b1)k(b2)k · · · (bs)k

qαk
2

.

Then
A2
k−1

AkAk−2
=

r∏
i=1

ai + k − 2

ai + k − 1

s∏
j=1

bi + k − 1

bi + k − 2
q−2α

which means that

lim
k→∞

A2
k−1

AkAk−2
= q−2α > 4.

So there exists a positive integer K0 such that

A2
k−1

AkAk−2
> 4

for k ≥ K0. It follows from [7, Theorem B] that

∞∑
k=K

(a1)k(a2)k · · · (ar)k
(b1)k(b2)k · · · (bs)k

qαk
2

zk

has only negative zeros for any K ≥ K0.
On the other hand, by the Stirling’s formula and (1.1), we have

ρ

(
∞∑
k=K

(a1)k(a2)k · · · (ar)k
(b1)k(b2)k · · · (bs)k

qαk
2

zk

)
= 0,

which, by [10, Theorem 1.2.5], implies that the function

∞∑
k=K

(a1)k(a2)k · · · (ar)k
(b1)k(b2)k · · · (bs)k

qαk
2

zk

has infinitely many zeros. Hence, this function has only infinitely many real zeros
and all of them are negative. This concludes the proof of Theorem 1.3.
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