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Abstract

In a recent paper [1] of this author, we generalized quantum field theory
to any curved spacetime. The key idea of the construction was to define
a “universal” Fourier transform; we expand more on this theory here and
use it to give an intrinsic definition of gravitational waves.

1 Introduction.

When being an undergraduate student in quantum mechanics, I learned about
the Heisenberg commutation relations by means of the Fourier transform: that
is, a multiplication operator in momentum space coincides with a derivative
operator in position space and hence the famous commutation relations were
born. Therefore, it seemed only natural that if you are asking what the cor-
rect generalization of the Heisenberg commutation relations on a general curved
spacetime are that one should lift the Fourier theory to general manifolds. His-
tory has not chosen such a path however and has turned its head towards Dirac
quantization based upon the Poisson Bracket. As explained in [2], this view-
point may not be without difficulties when it comes down to the covariance of
the theory; the latter being the main achievement of the novel construction in
[1]. We will start here by treating those issues on a more detailed level than was
the case in that paper which was somehow logical given that Fourier theory only
constituted a small part of the new ideas to be imported; this will further elu-
cidate in what sense our construction departs from standard thoughts. We are
briefly interested in a first application of our Fourier theory in general relativity
and proceed to setup an intrinsic definition of a gravitational wave - this is an
unaccomplished feature indeed so far as the standard attempts to define such
notion are all background dependent and hence in violation of the equivalence
principle.

The key idea is to use physical coordinate systems relative to a point in defin-
ing the Fourier transform, such entities are given by the geodesic coordinates.
Once it is clear that one has to think in a relational way and abondon the ab-
solute point of view of Minkowski spacetime, which one recovers by means of
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translational invariance, the construction is almost obvious. To understand the
ideas on that level is the purpose of section two where an interesting example
is presented showing that our momenta do automatically discretize when one
takes into account the geodesics wrapping around the circle with arbitrary pe-
riodicity. Section three extends the Fourier tranform to arbitrary tensors and
in particular the metric tensor; we introduce some novel terminology reflecting
deep physical ideas regarding the Fourier decomposition at a point and finish
the discussion.

2 The Fourier waves.

Consider a spacetime (M, g) and start by defining the relative Fourier waves as
it was done in [1]; for this, let x denote a base point, ka a Lorentz vector at x
defined with respect to ea(x) and y any point in M. Let γ(t) be a curve from
x to y and denote by kµ(t) the parallel transport of kµ(x) = kaeµa(x) along γ,
then we can define a potential φγ(x, ka, y) where

φγ : T ?M×M→ U(1)

by means of the differential equation

d

dt
φγ(x, ka, γ(t)) = −iγ̇µ(t)kµ(t)φγ(x, ka, γ(t))

and φγ(x, ka, x) = 1. Then, one can show that in Minkowski spacetime, the
potential is independent from the choice of γ and is given by the following
group representation

φ(x, ka, y) = eik.(x−y)

where the formula is respect to global inertial coordinates defined by the vierbein
ea(x). Minkowski is special in many ways: (a) every two events are connected
by a unique geodesic (b) the φ are path independent and define a group rep-
resentation. Motivated by some physical principle, we decided in [1] that (a)
the paths γ had to be geodesics and (b) that we should sum over all distinct
geodesics between x and y. This inspires one to consider the following mapping

φ̃ : T ?M× T ?M→ U(t) : (x, ka, wa)→ φ̃(x, ka, wa)

where φ̃(x, ka, wa) is defined as before by means of integrating the potential over
the unique geodesic emanating from x with tangent vector wa and parameter
length one. One has that that

φ(x, ka, y) =
∑

w:expx(w)=y

φ̃(x, ka, wa)

and although φ̃ is more fundamental, we will sometimes swith between φ̃ and φ
by assuming that they are the same meaning that every two points in spacetime
can be connected by a unique geodesic (this last assumption will be abbreviated
to GS standing for “geodesic simplicity”). In a general spacetime,

φ̃(x, ka, wb) = e−ik
awa = eik

aeµa(x)σ,µ(x,expx(w))
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where we assume in the last equality GS to hold and

σ(x, y) =
1

2
εL2

is Synge’s function where ε = 1 if x and y are connected by a spacelike geodesic
and −1 if they are connected by a timelike geodesic and L denotes the geodesic
length. Covariant derivatives of σ(x, y) with respect to x will be denoted by
unprimed indices µ, ν whereas their counterparts with respect to y are denoted
with primed indices. It is clear that as usual the standard Fourier identities
hold between the two tangent spaces at x, that is∫

T?Mx

dka

(2π)4
e−ikawae−ik

ava = δ4(wa − va)

and ∫
T?Mx

dwa

(2π)4
e−ikawae−ilaw

a

= δ4(ka − la)

being the inverse Fourier transform. Under the hypothesis of GS, the first
integral reduces to∫

T?Mx

dka

(2π)4
eik

aeµa(x)σ,µ(x,y)eik
aeµa(x)σ,µ(x,z) =

δ4(y, z)√
−g(y)∆(x, y)

and the second one under the additional assumption of geodesic completeness
(GC) becomes∫

M

d4y

(2π)4

√
−g(y)∆(x, y)eik

aeµa(x)σ,µ(x,y)eil
aeµa(x)σ,µ(x,y) = δ4(ka − la).

Here,

∆(x, y) =
|det(σ,µν′(x, y))|√
−g(x)

√
−g(y)

is the absolute value of the Van Vleck-Morette determinant. Still working under
the GS assumption, one recognizes the presence of a global coordinate system
given by σ,µ(x, y) which transforms as a covector under coordinate transforma-
tions at x; contracting with eaµ(x), one obtains local Lorenz coordinates σa(x, y)
and momentum operators−i ∂

∂σb(x,y)
which transform as a local Lorentz covector

such that

−i ∂

∂σb(x, y)
φ(x, ka, y) = kbφ(x, ka, y)

meaning our generalized exponentials are eigenfunctions of the relative momen-
tum operators. Also,

−ηab ∂

∂σa(x, y)

∂

∂σb(x, y)
φ(x, ka, y) = k2φ(x, ka, y)

meaning that the above operator is to be preferred over the generalized d’Alembertian.
In Minkowski spacetime, something special happens as σb(x, y) = xb − yb and
one can substitute −i ∂

∂σb(x,y)
by −i ∂

∂xb
or i ∂

∂yb
. In other words, the x, y coor-

dinates factorize and one can identify all pictures in this way and obtain one
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Heisenberg pair only. As was explained in [3], this point of view is only mean-
ingful for the free theory and in the interacting case some genuinely novel ideas
are required which are explained in that paper. We also made it clear in [1]
that the first order equation defined by deriving along the geodesic is the best
point of view on φ(x, ka, y) in comparison to the eigenvalue formulations of the
Heisenberg operators constructed above. The former point of view reveals an
objective process of what is going on while the latter does not and it is precisely
this process line of thought we want to generalize further [2].

2.1 Some interesting example.

Let us study the example of the timelike cylinder R×S1 with coordinates (t, θ)
where θ has to be taken modulo L > 0 and see if only the discretized modes
k1 = 2πn

L for some n ∈ Z play a part in the propagator

W ((0, 0), (t, θ)) =

∫
dk1

4π
√

(k1)2 +m2
ei(
√

(k1)2+m2t−k1θ)

[∑
n∈Z

eik
1Ln

]

where we have chosen, without limitiation of generality, x to have coordinates
(0, 0). The factor between square brackets comes from the winding of geodesics
around the circle and we will show now that it effectively agrees with

2π

L

∑
n∈Z

δ

(
k1 − 2πn

L

)
.

To prove this, note that the Wightman function is periodic in L and therefore
Fourier decomposable by means of 1√

L
ei

2πm
L θ. Now, we will compute

∑
p∈Z

e−i
2πp
L θ 1

L

∫ L

0

ei
2πp
L xW ((0, 0), (t, x))dx

and the reader sees that

1

L

∫ L

0

ei
2πp
L xW ((0, 0), (t, x))dx =

1

L

∫
dk1

2
√

(k1)2 +m2
ei
√

(k1)2+m2tδ

(
k1 − 2πp

L

)

=
1

2L

√(
2πp
L

)2
+m2

ei
√

( 2πp
L )

2
+m2t

which is what we needed to prove. The reader notices that the periodic character
of space settles itself in our definition by taking all possible geodesic paths into
account which is a very reassuring feature indeed. This example obviously
generalizes to higher dimensional cylinders over the spatial d-dimensional torus
Td.

3 An intrinsic definition of gravitational waves.

What we are going to do here is to write out the relative Fourier decomposition
at x of the spacetime metric at y with regard to derivatives with respect to y
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of our basic function σµ(x, y). In what follows, we assume spacetime to be GS

and the Van Vleck-Morette determinant to be nonzero meaning that σν
′

,µ can be
seen as a nonsingular mapping from T ?Mx to T ?My. Hence,

gα′β′(y) = hµν(x; y)σ,µα′(x, y)σ,νβ′(x, y)

and we shall Fourier decompose hab(x; y) = eaµ(x)ebν(x)hµν(x; y) which is a
symmetric tensor of the same signature. For general tensors, this is easy to
define

V a1...arb1...bs
(x; y) =

∫
T?Mx

d4k

(2π)4
V a1...arb1...bs

(x; k)eik
bσb(x,y)

and V a1...arb1...bs
(x; k) behaves as a local Lorentz tensor at x meaning that

V ′a1...arb1...bs
(x; k′) =

∏
i,j

Λaici (Λ
−1)

dj
bj
V c1...crd1...ds

(x; k).

For flat Minkowski in global inertial coordinates, we have that σµα′ = −ηµα′

and therefore hµν = ηµν meaning that the Fourier transform hab(x; k) is given
by (2π)4ηabδ

4(k) which means there are no propagating waves. Before we come
to a further discussion, let us remark one can develop the following terminology;
spacetime is future propagating from x if and only if the support of hab(x; k) is
within the future lightcone at x. Spacetime is past propagating from x if and
only if the support of hab(x; k) is within the past lightcone at x; we say that it
is causally propagating at x if and only if the support of hab(x; k) is within the
lightcone at x. If any spacetime would exist such that at some x, the support
intersects the spacelike vectors, then we would call such spacetime acausal at x.
One would suspect (a refinement of) such classification to play the equivalent
role of various positive energy conditions in general relativity.

Coming back to our gravitational waves, we would somehow want to further
specialize them to (future oriented) null vectors k2 = 0; however, I am not
sure at all if this is desirable. Also, one might want to add some Lorentz
covariant conditions upon the polarization tensors hab(x; k) as this is done in
flat spacetime in some covariant gauge. It must be clear that one will have
to go a long way before properly understanding the definitions and concepts
elaborated upon in this paper. Albeit all definitions are clean and simple, the
explicit calculation of Synge’s function is a notoriously difficult task as geodesics
can only be calculated numerically in general. However, there is good hope that
strong and deep analytic results may be possible in this framework as it is very
natural and gives rise to novel insights. As the principal aim of this paper was to
widen the scope of our novel inventions beyond quantum field theory and not to
investigate in depth the new concepts it gives rise too, we finish our preliminary
discussion here.
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