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ABSTRACT 

The distinction of quantum measurements is one of the fundamentally important problems in 

quantum information science. In this paper we present a novel protocol for distinguishing local 

quantum measurement  (DLQM) with multi-particle entanglement systems. It is shown that, for two 

spacelike separated parties, the local discrimination of two different kinds of measurement can be 

completed via numerous eight-particle GHZ entangled states and selective projective measurements 

without help of classical information. This means that no-signaling constraint can be violated by the 

DLQM.  
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1. Introduction 

 

Quantum entanglement is one of the striking features of quantum mechanics [1]. The nonlocal 

nature of entanglement is the essential resource for many quantum information tasks including 

teleportation [2] and superdense coding [3]. However, although entanglement appears to allow particles 

which are separated in space to influence one another instantaneously [4], it has been pointed that this 

cannot be used to signal without help of classical communication [5-8], i. e. the no-signaling constraint 

[9] holds that one cannot exploit quantum entanglement to transmit classical information across 

spacelike intervals. 

On the other hand, it is well-known that measurement is a central tenet of quantum mechanics. The 

problem of discrimination between quantum measurements has been recently considered in quantum 

information tasks [10-13]. Ji et al. [10] have proposed simple schemes that can perfectly idetify 

projective measurement apparatuses secretly chosen from a finite set. Entanglement is used in this 

schemes both to make possible the perfect identification and to improve the efficiency significantly. 

Fiurasek and Micuda [11] have studied optimal discrimination between two projective quantum 

measurements on a single qubit. Ziman et al . [12] have investigated the unambiguous comparison of 

unknown quantum measurements represented by nondegenerate sharp positive operator valued 

measures (POVM). One can notice that, in above works [10-13] of discriminating quantum 
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measurement, employing classical communication is necessary. 

For two spacelike separated parties, existing researches [5-9] have pointed that since no-signaling 

constraint, the local discrimination of quantum operations cannot be completed. In the last decade, the 

correctness of no-signaling constraint has been frequently discussed and proved (e. g. [14-19]). It is 

easy found that, however, in these discussions  and demonstrations, only a single two- or 

multi-particle entangled state has been employed. By a careful analysis, it may be found that, if 

multiple multi-particle entangled states and a kind of special measurement (called selective projective 

measurement) are employed, the local discrimination of quantum measurements can be realized 

without assistance of classical communication. In this work, we first present a protocol for 

distinguishing local quantum measurement (DLQM) via selective projective measurement with 

numerous eight-particle GHZ entangled states. It is shown that, in this protocol, if both two observers 

(Charlie and Dick) agreed in advance that one of them (e.g. Charlie) should measure her qubits before 

an appointed time (it is equivalent that, after her measurement, Alice only announced publicly that she 

had completed the measurement, and did not declare the result of her measurement), the local 

discrimination of two different kinds of measurement can be realized by using a series of 

single-particle correlative measuring basis without help of classical communication. This means that 

the DLQM protocol may be not restricted by the no-signaling. 

The structure of the paper is the following one: In section 2 we review local quantum measurement 

with a single entangled state. Section 3 describes two different kinds of quantum measurement. In 

section 4, a novel protocol for discrimination of local quantum measurements with numerous 

eight-particle GHZ states is presented. Finally, discussion and conclusion are given in section 5. 

 

2. DLQM with a single entangled state 

 

To present our protocol more clearly, let us first review existing scheme of DLQM (e. g. [19]). 

Assume that Alice and Bob share bipartite quantum system described by a known state  . They can 

make local measurements, with elements  

          
†

i ii
A A I  ,  

†

j jj
B B I                                       (1) 

 on the subsystems A  and B  respectively, where iA  and jB  are the “detector operators” 

associated to the elements of a POVM for the observation of results A  by Alice and B  by Bob. If 

Bob is not informed that Alice got outcome A  , the mean value that he gets any observable B  is 

                  † †

B AB i i B A i i B Bi i
tr A A tr A Atr       

                     B A Btr tr    .                                            (2) 

Since the result of Eq. (2) does not depend on Alice’s operators, Bob cannot decide what measurements 

Alice did without her help. As described above, it is clearly shown that the DLQM with a single 

entangled state must obey the no-signaling constraint. 

 

3. Two different kinds of quantum projective measurement 
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  Suppose that an eight-particle GHZ state is shared by Charlie and Dick,  

                
1 2 3 4 5 6 7

1
00000000 11111111

2 C C C C C C C D
     ,                (3) 

here particles 1C , 2C , …, 7C  are in the possession of Charlie and D  belongs to Dick. Assume that 

Charlie and Dick agreed in advance that Charlie should measure his particles before an appointed time. 

Now, let Charlie measure the state  by using two different kinds of measurement. In the first kind 

of measurement, Charlie makes common projective measurements (CPMs) on his particles 1C , 

2C , …, and 7C  in the measurement basis  ,x x 
, where  

1
0 1

2
x    , 

 
1

0 1
2

x   , successively. One can see that, after measurements of Charlie, 128 possible 

final collapsed states of the qubit D  will always be 
1

8 2 D
x

 or 
1

8 2 D
x

 . Now we turn to 

the second kind of measurement. To realize the DLQM, Charlie will utilize a novel kind of projective 

measurements, which we refer to as selective projective measurements (SPMs), with a series of 

single-particle correlative measuring basis, on his particles . Firstly, Charlie measures his particle 1C  

in the state   in the basis  ,  
, where 0 1    , 0 1      ,   

and   are real, 
2 2 1   , and let 6 / 3  , 3 / 3  . If  measurement outcome of 

Charlie is
1C

 , the state of qubits 2C , 3C , …, 7C  and D  will evolve as 

                  
2 3 4 5 6 7

1

1
0000000 1111111

2 C C C C C C D
    ,                (4) 

he can in turn measure the particles 2C , 3C , …, 7C  in the basis ,x x 
. After that, the 

particle D  will always be in the state 
1

8 D


or 
1

8 D


 , here   
1

0 1
2

      

and  
1

0 1
2

     . If measurement result of Charlie is
1C

 
, the particles 2C , 

3C , …, 7C  and D  will be in the state of 
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2 3 4 5 6 7

1

1
0000000 1111111

2 C C C C C C D
      .              (5) 

Then Charlie measures his particle 2C  in the measurement basis 1 1,  
, which may be 

expressed as 

1 1

1 1

1 1
0 1 , 0 1

T T

   
 

   

   
      

   
,              (6) 

where    
1/2

2 2

1 / /T      
 

. Corresponding to outcome of Charlie’s measurement 
2

1 C
  

or
2

1 C
 

 , the state of particles 3C , 4C , … , 7C  and D  will evolve as 2  or 
2   , 

which can be expressed as 

                   
3 4 5 6 7

2

1

1
000000 111111

2 C C C C C DT
     , 

        

3 4 5 6 7

2 2

2

1

1
000000 111111

2
C C C C C D

T

 


 

 
   

 
.            (7) 

As described above, we can easy find that the goal of the SPMs is as much as possible to make the 

particle D  collapsed into the state 
1

G


 or 
1

G


 after all, where G  is a constant or a 

coefficient related to   and  .  By the formulae deducing, 128 possible final collapsed states of 

the particle D  after Charlie’s measurements are given in Appendix A. The relation of the outcomes of 

Charlie’s measurement and the possible final collapsed states of the particle D  may be written as 

      
1C

    →    
1

1

8D D
                               (64 terms) 

      
2

1 C
   →    2

1

1

4 2D DT
                         (32 terms) 

      
3

2 C
   →    3

2

1

4D DH
                            (16 terms) 

      
4

3 C
   →    4

3

1

2 2D DH
                         (8 terms) 

      
5

4 C
   →    5

4

1

2D DH
                            (4 terms) 

      
6

5 C
   →    6

5

1

2D DH
                           (2 terms) 
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7

6 C
    →   

7

6

1

D DH
                               (1 term)    

       
7

6 C
 

   →   
7 DD

F   ,                            (1 term)  (12) 

where 

254 254

63 63

62
F

H

 

 


 , 

D
  is a normalized state, which is given by 

              127 127

254 254

1
0 1

D D
  

 
 


 .                          (13) 

Thus much Charlie has completed his selective measurements. From Eq. (12), one can note that, after 

Charlie making the SPMs on his all particles, the states 
1

m mq H


 (
 7 /2

2
m

mq


 , 1,2, ,7m  ) 

in all 128 collapsed states of the particle D  accounted for 127, and the state 
7 D

 
 for 1. On the 

other hand, by simple calculation, it is easy found that, after Charlie’s measurements, the probability of 

the particle D  being in the state 
1

m mq H


 (
 7 /2

2
m

mq


 , 1,2, ,7m  ) is 0.75, and in the 

state 
D

  is 0.25. It must be pointed out that it is just these measured results of the SPM that led to 

the realization of the DLQM.  

As mentioned above, after Charlie making the CPMs or SPMs on his particles respectively, the 

final collapsed states of the particle D  are obvious different. It must be emphasized that, whether 

Charlie’s measurements are the CPMs or SPMs, since Charlie and Dick agreed in advance that Charlie 

should measure his particles before an appointed time, Dick can always know that the particle D  

must be collapsed into the state corresponded to one of Charlie’s 128 results of measurement after 

Charlie’s measurements. 

 

4. DLQM with numerous eight-particle GHZ entangled states 

 

The detailed procedure of our DLQM protocol can be described as follows. Assume that two 

spacelike separated observers, Charlie and Dick, share N  eight-particle GHZ states. To ensure the 

following analysis becomes exact, here we take 30N   [20]. Thus, the 30 eight-particle GHZ states 

can be given by 

           
                   

5 71 2 3 4 6

1
00000000 11111111

2
n n n n n n n n

n

C C C C C C C D
   ,           (14) 

where 1,2, ,30n   , and the particles 
 
1

n
C , 

 
2

n
C , …, 

 
7

n
C  are in the possession of Charlie and 

 n
D  belong to Dick. Different from previous quantum operation discrimination schemes, we assume 

that there is no classical channel between Charlie and Dick. In this situation, before the agreed time t , 
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Charlie should randomly make two different kinds of measurement, CPMs or SPMs, on his particles in 

the state
 n

  ( 1,2, ,30n   ) respectively.  

(s1)  If Charlie performs the CPMs on his particles, all particles 
 n

D  will be collapsed into the 

states  

1

8 2
n

D
x

 or  

1

8 2
n

D
x

 . At the appointed time t , Dick measures his particles 

 n
D  all in the computational basis. After that, by statistics theory, the probability of all particles 

 n
D  in the state 0  or 1  will be in the ratio of one to one.  

(s2)  If Charlie employs SPMs to measure his particles, by mentioned above, the probability of all 

qubits 
 n

D  in the states 
1

D
m mq H


 or 

1

D
m mq H


  (

 7 /2
2

m

mq


 , 1,2, ,7m  )  is 

 
30

0.75 0.00018 , i.e., the probability of at least one particle 
 n

D


 in the state 
7 D

 
 is 

 
30

1 0.75 0.99982  . This means that, after Charlie’s SPMs, at least one qubit 
 n

D


 will be 

collapsed into the state 
7 D

 
. Then, at the appointed time t , Dick measures his particles 

 n
D  all 

in the computational basis. It is easy found that, after Dick’s measurements, the probability of the 

particles 
 n

D  in the state 0  or 1  will be different from the situation Charlie made the CPMs. 

In order to explain this clearly, without loss of generality, let us first discuss the situation in which only 

one particle 
 n

D


 in the state 
7 D

 
 after Charlie’s measurements. From the state 

7 D
 

 in Eq. 

(12), one can see that, after measurements of Dick, the probability of the particle 
 n

D


 in the state 

0  or 1  will be in the ratio of one to w  (

2 2
64 64

18

63 63
/ 6.15 10

x y
w

y x

   
     
   

), i.e., the 

particle 
 n

D


 will be always collapsed to the state 1 . As a special situation, we also assume that all 

the other 29 particles 
 n

D  are in the states 
1 D

 
 after Alice’s measurements and then all the 29 

particles are in the state 0  after Dick’s measurements. In this case, it is easy found that the 

probability of the 30 particles 
 n

D  in the state 0  or 1  will be in the ratio of 1 to 1.655 after 

Dick’s measurements. For general situation in which only one particle 
 n

D


 in the state 
7 D

 
 and 
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other 29 particles 
 n

D  collapsed randomly into the states 
1

D
m mq H


 (

 7 /2
2

m

mq


 , 

m  1,2,…,7) after Charlie’s measurements, one can find that the probability of the 30 particles 
 n

D  

in the state 0  or 1  will be in the ratio of one to 
 1

v  (
 1

v  ＞  1.655) after Dick’s 

measurements.  

(s3)  Now let us discuss the situation in which there are two particles 
 n

D


 and 
 n

D


 in the state 

7


 after Charlie’s measurements. Similar to the above mentioned, it is easy found that the 

probability of the 30 particles 
 n

D  in the state 0  or 1  will be in the ratio of one to 
 2

v  

(
 2

v  ≥ 3.43) after Dick’s measurements.  

(s4)  For the situations in which more particles 
 1

D , 
 2

D , …, 
 j

D  ( 3,4, ,30j   ) collapsed 

into the state 
7 D

 
 after Charlie’s measurements, the probability of the 30 particles 

 n
D  in the 

state 0  or 1  will be in the ratio of one to 
 jv  (

 jv  ＞ 
 2

v , 3,4, ,30j   ) after Dick’s 

measurements. As described above, after measurements of Charlie, in the situation in which at least one 

particle 
 n

D


 in the state 
7 D

 
, the probability of the 30 particles 

 n
D  in the state 0  or 1  

will be in the ratio of one to V  ( 1.655V  ) (we call V  the discriminated parameter ) after Dick’s 

measurements, here 
  : i 1,2, ,30
i

V v   . 

As mentioned above, according to these results, Dick can distinguish that the measurements used 

by Charlie are CPMs or SPMs. Thus, the DLQM is realized successfully without help of classical 

information. This means that our DLQM protocol may be not restricted by the no-signaling constraint.  

 

5. Discussion and conclusion 

 

Before conclusion, we make some discussion. (i) It should be noted that, in the present DLQM 

protocol, Dick did not obtain Charlie’s quantum information, i.e., if Charlie’s measurements are SPMs, 

Dick couldn’t have learned the coefficients   and   in the measuring basis performed by Charlie 

since he is not informed that Charlie got result of measurement. In fact, Dick doesn’t need to know 

Charlie’s quantum information (e.g. the coefficients   and  ). As mentioned above, after his 

measurements, Dick can determine that the measurements performed by Charlie are CPMs or SPMs 

only according to the probability of his qubits 
 n

D  in the state 0  or 1 . That is to say, in our 

DLQM protocol, the entanglement can be used for transmission of information (e.g. the classical 
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messages 0 and 1 can be represented by CPMs and SPMs respectively) without assistance of classical 

communication. (ii) It must be pointed that, in our protocol, it is essential that eight-particle GHZ states 

are applied. It is easy found that if l -particle GHZ states ( l < 8 ) are employed, the DLQM will not 

be completed. For example, if 30 seven- or six-particle GHZ states are used, from (s2) in section 4 one 

can see that, the discriminated parameter V  will be 0.83 or 0.41. In this case, the CPMs and SPMs 

cannot be distinguished. On the other hand, to ensure the discriminated parameter 1.655V  , one 

can only use 15 seven-particle or 7 (7.5) six-particle GHZ states. However, in these cases, the exact of 

measurement results will not be guaranteed. (iii) If only a single eight-particlre GHZ state was 

employed in our protocol, the DLQM cannot be realized, as described in section 2. It is just because of 

that numerous eight-particle GHZ states and the SPMs have been used, our DLQM protocol can be 

completed successfully. (iv) We should emphasize that our work has been completed in the framework 

of standard quantum mechanics. 

In conclusion, we have proposed a theoretical protocol for local discrimination of two different 

kinds of measurement by using selective measurement and numerous eight-particle GHZ states. To 

realize the protocol, a series of single-particle correlative measuring basis has been employed. It is 

shown that, in this protocol, if both two observers agreed in advance that one of them (e.g. Charlie) 

should measure his particles before an appointed time, DLQM can be realized successfully without 

assistance of classical information. This means that the no-signaling constraint can be violated by the 

DLQM. Compared with previous DLQM scheme [19], the advantage of the present DLQM protocol is 

that it does not restricted by the no-signaling. So far there has been experiment implementing the 

eight-particle GHZ state [21], hence, we hope our work can be experimentally realized in the near 

future and stimulate further research on quantum communication and quantum information processing. 
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Appendix A 

 

   From Eqs. (6) and (7), Charlie can measure his particles according to the result of his own 

measurement. If result of Charlie’s measurement is 
2

1 C
 in state (6), he should measure his particles 

3,C  …, 7C  in state 
2  under the basis  ,x x 

, successively. After that, the particle D  

will always be in the state  

          2

1

1

4 2 DT
    or  2

1

1

4 2 DT
   .                       (A1) 

If Charlie’s measured outcome is 
2

1 C
 

, he can measure his particle 3C  in state 2   under the 

basis  2 2,  
, which is given by 
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2 2

2 2 2

2

1
0 1

T

 


 

 
  

 
,  

                   

2 2

2 2 2

2

1
0 1

T

 


 

  
  

 
.                                (A2) 

where    
1 2

4 4

2T      
 

. If Charlie’s result of measurement is 
3

2 C
 , the particles 

4,C  …, 7C  and D  will be collapsed into the state 
3 , which is given by 

             
4 5 6 7

3

2

1
00000 11111

2 C C C C DH
     ,                      (A3) 

where 2 1 2H TT . Then Charlie can in turn measure his particles 4C , …, 7C  in the basis  

 ,x x 
, and particle D  will be collapsed into the state 

             
3

2

1

4D DH
    or  

3

2

1

4D DH
    .                      (A4) 

If  Charlie’s outcome of measurement is 
3

2 C
 

, the state of particles 4C , …, 7C  and D  will 

evolve as 

              

4 5 6 7

4 4

3 3 3

2

1
00000 11111

2
C C C C D

H

 


 

 
   

 
 .                 (A5) 

Then Charlie can measure his particle 4C  in the basis 

                

4 4

3 4 4

3

1
0 1

T

 


 

 
  

 
 , 

                 

4 4

3 4 4

3

1
0 1

T

 


 

  
  

 
 ,                                  (A6) 

where 

1 2
8 8

3T
 

 

    
    

    

. If Charlie’s result of measurement is 
4

3 C
 , the particles 5C , 

6C , 7C  and D will be in the state of 

                
5 6 7

4

3

1
0000 1111

2 C C C DH
     ,                       (A7) 

where 3 1 2 3H TT T . Charlie should measure his particles 5C , 6C  and 7C  in the basis 
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 ,x x 
, then particle D  will be in the state 

             4

3

1

2 2D DH
        or    4

3

1

2 2D DH
   .           (A8) 

If Charlie’s outcome of measurement is 
4

3 C
 

, the state of particles 5C , 6C , 7C  and D  will be 

transferred as 

            

5 6 7

8 8

4 7 7

3

1
0000 1111

2
C C C D

H

 


 

 
   

 
 .                      (A9) 

Charlie can measure his particle 5C  under the basis 

              

8 8

4 8 8

4

1
0 1

T

 


 

 
  

 
 , 

              

8 8

4 8 8

4

1
0 1

T

 


 

  
  

 
 ,                                    (A10) 

where 

1 2
16 16

4T
 

 

    
    

    

. If Charlie’s result of measurement is 
5

4 C
  , the state of 

particles 6C , 7C  and D  will evolve as 

                
6 7

5

4

1
000 111

2 C C DH
     ,                          (A11) 

where 4 1 2 3 4H TT T T . Then Charlie measures his particles 6C  and 7C  in the basis  ,x x 
, 

and particle D  will be collapsed into the state 

             
5

4

1

2D DH
      or    

5

4

1

2D DH
    .                 (A12) 

If Charlie’s result of measurement is 
5

4 C
 

, the particles 6C , 7C  and D  will be in the state 

             

6 7

16 16

5 15 15

4

1
000 111

2
C C D

H

 


 

 
   

 
.                        (A13) 

Charlie can measure his particle 6C  under the basis  5 5,  
, which is given by 

              

16 16

5 16 16

5

1
0 1

T

 


 

 
  

 
, 
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16 16

5 16 16

5

1
0 1

T

 


 

  
  

 
,                                   (A14) 

where 

1 2
32 32

5T
 

 

    
    

    

. If Charlie’s outcome of measurement is 
6

5 C
 , the particles 

7C  and D  will be collapsed into the state 

                
7

6

5

1
00 11

2 C DH
     ,                             (A15) 

where 5 1 2 3 4 5H TT T T T  . Then Charlie measures his particle 7C  under the basis  ,x x 
, 

and particle D  will be in the state of  

               6

5

1

2H
      or    6

5

1

2H
    .                (A16) 

If Charlie’s measured result is 
6

5 C
 

, the state of the particles 7C  and D  will evolve as 

               

7

3 2 3 2

6 3 1 3 2

5

1
0 0 1 1

2
C D

H

 


 

 
   

 
,                        (A17) 

then he can measure the particle 7C  in the basis  

                  

32 32

6 32 32

6

1
0 1

T

 


 

 
  

 
, 

                   

32 32

6 32 32

6

1
0 1

T

 


 

  
  

 
,                              (A18) 

where 

1 2
64 64

6T
 

 

    
    

    

. If Charlie’s outcome of measurement is 
7

6 C
 , the particle D  

will be in the state of 

                   7

6

1

D DH
   ,                                         (A19) 

where 6 1 2 3 4 5 6H TT T T T T . If Charlie’s measured result is 
7

6 C
 

, the state of particle D  will 

evolve as 

                 

64 64

7 63 63

6

1
0 1

2D
D

H

 


 

  
  

 
  

                       
D

F    .                                            (A20) 
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where 

254 254

63 63

62
F

H

 

 


 , and 

D
  is a normalized state, which is given by 

                    127 127

254 254

1
0 1

D D
  

 
 


.                    (A21) 

Thus, 128 possible final collapsed states of the particle D  are obtained. 
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