A NEW DYNAMICS IN SPECIAL RELATIVITY

A. Blato

Creative Commons Attribution 3.0 License (2016) Buenos Aires Argentina

In special relativity, this article presents a new dynamics which can be applied in any inertial reference frame.

Introduction

In special relativity, the relativistic position (φ), the relativistic velocity ($\dot{\varphi}$) and the relativistic acceleration ($\ddot{\varphi}$) of a particle are given by:

 $\varphi \doteq \mathbf{r}$

$$
\dot{\varphi} \doteq \frac{d\varphi}{d\tau} = \frac{\mathbf{v}}{\sqrt{1 - \frac{v^2}{c^2}}}
$$
\n
$$
\ddot{\varphi} \doteq \frac{d\dot{\varphi}}{d\tau} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \left[\frac{\mathbf{a}}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{(\mathbf{a} \cdot \mathbf{v}) \mathbf{v}}{c^2 (1 - \frac{v^2}{c^2})^{3/2}} \right]
$$

where (r, v, a) are the position, the velocity and the acceleration of the particle. (τ) is the proper time of the particle. $d\tau = \sqrt{1 - v^2/c^2} dt$

The Poincarian Dynamics

In special relativity, if we consider a particle with rest mass m_o then the linear momentum **P** of the particle, the net Poincarian force \hat{F} acting on the particle, the work W done by the net Poincarian force acting on the particle, and the kinetic energy K of the particle, for an inertial reference frame, are given by:

$$
\mathbf{P} \doteq m_o \dot{\boldsymbol{\varphi}}
$$
\n
$$
\hat{\mathbf{F}} = \frac{d\mathbf{P}}{d\tau} = m_o \ddot{\boldsymbol{\varphi}}
$$
\n
$$
\mathbf{W} \doteq \int_1^2 \hat{\mathbf{F}} \cdot d\boldsymbol{\varphi} = \Delta \mathbf{K}
$$

$$
K \doteq \frac{1}{2} m_o (\dot{\boldsymbol{\varphi}} \cdot \dot{\boldsymbol{\varphi}})
$$

where $(\varphi, \dot{\varphi}, \ddot{\varphi})$ are the relativistic position, the relativistic velocity and the relativistic acceleration of the particle relative to the inertial reference frame.

 $\hat{\mathbf{F}} = \gamma \mathbf{F}$ (where γ is the Lorentz factor and F is the net Einsteinian force acting on the particle)

The relativistic acceleration $\ddot{\varphi}$ of a particle is always in the direction of the net Poincarian force \hat{F} acting on the particle.