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Abstract

In this paper we use the general steerable one-sided Clifford Fourier transform
(CFT), and relate the classical convolution of Clifford algebra-valued signals over
Rp,q with the (equally steerable) Mustard convolution. A Mustard convolution
can be expressed in the spectral domain as the point wise product of the CFTs of
the factor functions. In full generality do we express the classical convolution of
Clifford algebra signals in terms of a linear combination of Mustard convolutions,
and vice versa the Mustard convolution of Clifford algebra signals in terms of a
linear combination of classical convolutions.

Keywords: Convolution, Mustard convolution, Clifford Fourier transform,
Clifford algebra signals, spatial domain, frequency domain

1. Introduction

The steerable one-sided Clifford Fourier transformation (CFT) was intro-
duced in [20]. It generalizes related transforms, like the classical complex Fou-
rier transform, the one-sided single kernel quaternion Fourier transform [10],
and the Clifford Fourier transforms with pseudoscalar kernels [9, 14] to higher
dimensions. These CFTs essentially replace the imaginary unit i ∈ C by a
general multivector square root of −1, which usually populate continuous Clif-
ford algebra submanifolds [17, 21]. The classical complex Fourier transform
needs only one fully commuting kernel factor, due to the commutativity of com-
plex numbers. To have a non-commutative kernel factor under the transform
integral on one side of the signal function is meaningful due to the inherent
non-commutativity in Clifford algebras. An extensive discussion of the histori-
cal development and the application relevance of the CFTs can be found in [5]
and [26].
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A key strength of the classical complex Fourier transform is its easy and
fast application to filtering problems. The convolution of a signal with its filter
function becomes in the spectral domain a point wise product of the respective
Fourier transformations. This is generally not the case for the convolution of
two Clifford algebra-valued signals (Clifford signals) over Rp,q, due to Clifford
algebra non-commutativity. Yet it is possible to define from the point wise
product of the CFTs of two Clifford signals a new type of steerable convolution,
called Mustard convolution [30, 7]. This Mustard convolution can be expressed
in terms of sums of classical convolutions and vice versa. For the left-sided QFT
this has recently been carried out in [8], for the two-sided QFT in [23], for the
space-time Fourier transform in [24] and for the two-sided CFT in [25]. Here we
extend this approach in full generality to the steerable one-sided CFT for signal
functions which map non-degenerate quadratic form vector spaces to Clifford
algebras in all dimensions.

This paper is organized as follows. Section 2 introduces Clifford algebra,
multivector signal functions, and the continuous manifolds of multivector square
roots of −1. Then, Section 3 gives some background on the steerable one-sided
CFT. Finally, Section 4 defines the classical convolution of two Clifford signal
functions, as well as the steerable Mustard convolution. The rest of the section
is devoted to representing the classical convolution in terms of a sum of Mustard
convolutions (Theorem 4.3) and dually to expressing the Mustard convolution
in terms of a sum of classical convolutions (Theorem 4.4). Furthermore direct
single convolution product identities between classical and Mustard convolu-
tions are established (Theorem 4.6), together with the theoretical equivalence
(for general Clifford signal convolution product factor functions) of expressing
the classical convolution in terms of the Mustard convolution and the reverse
(Equation (4.14)).

2. Clifford’s geometric algebra

2.1. Multivector algebra

Definition 2.1 (Clifford’s geometric algebra [11, 28, 13, 18]). Let {e1, e2, . . .,
ep, ep+1, . . ., en}, with n = p + q, e2k = Q(ek)1 = εk, εk = +1 for k = 1, . . . , p,
εk = −1 for k = p + 1, . . . , n, be an orthonormal base of the non-degenerate
inner product vector space (Rp,q, Q), Q the non-degenerate quadratic form, with
a geometric product according to the multiplication rules

ekel + elek = 2εkδk,l, k, l = 1, . . . n, (2.1)

where δk,l is the Kronecker symbol with δk,l = 1 for k = l, and δk,l = 0 for
k 6= l. This non-commutative product and the additional axiom of associativity
generate the 2n-dimensional Clifford geometric algebra Cl(p, q) = Cl(Rp,q) =
Clp,q = Gp,q = Rp,q over R. For Euclidean vector spaces (n = p) we use
Rn = Rn,0 and Cl(n) = Cl(n, 0). The set {eA : A ⊆ {1, . . . , n}} with eA =
eh1

eh2
. . . ehk

, 1 ≤ h1 < . . . < hk ≤ n, e∅ = 1, the unity in the Clifford
algebra, forms a graded (blade) basis of Cl(p, q). The grades k range from 0 for
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scalars, 1 for vectors, 2 for bivectors, s for s-vectors, up to n for pseudoscalars.
The quadratic space (Rp,q, Q) is embedded into C`p,q as a subspace, which
is identified with the subspace of 1-vectors. All linear combinations of basis
elements of grade k, 0 ≤ k ≤ n, form the subspace C`kp,q ⊂ C`p,q of k-vectors.
The general elements of Cl(p, q) are real linear combinations of basis blades eA,
called Clifford numbers, multivectors or hypercomplex numbers.

In general 〈A〉k denotes the grade k part of A ∈ Cl(p, q). Following [13], the
parts of grade 0 and k + s, respectively, of the geometric product of a k-vector
Ak ∈ Cl(p, q) with an s-vector Bs ∈ Cl(p, q)

Ak ∗Bs := 〈AkBs〉0, Ak ∧Bs := 〈AkBs〉k+s, (2.2)

are called scalar product and outer product, respectively. They are bilinear
products mapping a pair of multivectors to a resulting product multivector in
the same algebra. The outer product is also associative, the scalar product not.

Every k-vector B that can be written as the outer product B = b1 ∧ b2 ∧
. . . ∧ bk of k vectors b1, b2, . . . , bk ∈ Rp,q is called a simple k-vector or blade.

Multivectors M ∈ Cl(p, q) have k-vector parts (0 ≤ k ≤ n): scalar part
Sc(M) = 〈M〉 = 〈M〉0 = M0 ∈ R, vector part 〈M〉1 ∈ Rp,q, bi-vector part

〈M〉2 ∈
∧2 Rp,q, . . . , and pseudoscalar part 〈M〉n ∈

∧nRp,q

M =
∑
A

MAeA = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n . (2.3)

The principal reverse of M ∈ Cl(p, q) defined as

M̃ =

n∑
k=0

(−1)
k(k−1)

2 〈M〉k, (2.4)

often replaces complex conjugation and quaternion conjugation. Taking the
reverse is equivalent to reversing the order of products of basis vectors in the
basis blades eA. The operation M means to change in the basis decomposition of
M the sign of every vector of negative square eA = εh1

eh1
εh2

eh2
. . . εhk

ehk
, 1 ≤

h1 < . . . < hk ≤ n. Reversion, M , and principal reversion are all involutions.
In Cl(n) the principal reverse and the reverse are identical.

For M,N ∈ Cl(p, q) we get M ∗ Ñ =
∑
AMANA. Two multivectors M,N ∈

Cl(p, q) are orthogonal if and only if M ∗ Ñ = 0. The modulus |M | of a
multivector M ∈ Cl(p, q) is defined as

|M |2 = M ∗ M̃ =
∑
A

M2
A. (2.5)

2.2. Multivector signal functions

A multivector valued function h : Rp,q → Cl(p′, q′), has 2n
′

blade compo-
nents, n′ = p′ + q′ (hA : Rp,q → R)

h(x) =
∑
A

hA(x)eA. (2.6)
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We define the inner product of two functions h,m : Rp,q → Cl(p′, q′) by

(h,m) =

∫
Rp,q

h(x)m̃(x) dnx =
∑
A,B

eAẽB

∫
Rp,q

hA(x)mB(x) dnx, (2.7)

with the symmetric scalar part

〈h,m〉 =

∫
Rp,q

h(x) ∗ m̃(x) dnx =
∑
A

∫
Rp,q

hA(x)mA(x) dnx, (2.8)

and the L2(Rp,q;Cl(p′, q′))-norm

‖h‖2 = 〈(h, h)〉 =

∫
Rp,q

|h(x)|2dnx =
∑
A

∫
Rp,q

h2A(x) dnx, (2.9)

L2(Rp,q;Cl(p′, q′)) = {h : Rp,q → Cl(p′, q′) | ‖h‖ <∞}. (2.10)

Notation 2.2 (Argument reflection). For a function h : Rp,q → Cl(p′, q′) we
set1

h1(x) := h(−x). (2.11)

Note that we obviously have

(h1)1(x) = h1(−x) = h(x). (2.12)

2.3. Square roots of −1 in Clifford algebras

Every Clifford algebra Cl(p, q), s8 = (p− q) mod 8, is isomorphic to one of
the following (square) matrix algebras2M(2d,R),M(d,H),M(2d,R2),M(d,H2)
or M(2d,C). The first argument of M is the dimension, the second the associ-
ated ring3 R for s8 = 0, 2, R2 for s8 = 1, C for s8 = 3, 7, H for s8 = 4, 6, and
H2 for s8 = 5. For even n: d = 2(n−2)/2, for odd n: d = 2(n−3)/2.

It has been shown [17, 21] that Sc(f) = 0 for every square root of −1 in
every matrix algebra A isomorphic to Cl(p, q). One can distinguish ordinary
square roots of −1, and exceptional ones. All square roots of −1 in Cl(p, q) can
be computed using the package CLIFFORD for Maple [3, 4, 19, 29].

In all cases the ordinary square roots f of −1 constitute a unique conjugacy
class of dimension dim(A)/2, which has as many connected components as the
group G(A) of invertible elements in A. Furthermore, for ordinary square roots
of −1 we always have Spec(f) = 0 (zero pseudoscalar part) if the associated ring
is R2, H2, or C. The exceptional square roots of −1 only exist if A ∼=M(2d,C).

1We are aware that this notation could be confused with an ordinary taking to the power
of 1, but as will be seen in the current context no danger of confusion is likely to arise.

2Compare chapter 16 on matrix representations and periodicity of 8, as well as Table 1 on
p. 217 of [28].

3Associated ring means, that the matrix elements are from the respective ring R, R2, C, H
or H2.

4



Figure 1: Manifolds of square roots f of−1 in Cl(2, 0) (left), Cl(1, 1) (center), and Cl(0, 2) ∼= H
(right). The square roots are f = α + b1e1 + b2e2 + βe12, with α, b1, b2, β ∈ R, α = 0, and
β2 = b21e

2
2 + b22e

2
1 + e21e

2
2.

For A =M(2d,R), the centralizer (set of all elements in Cl(p, q) commuting
with f) and the conjugacy class of a square root f of −1 both have R-dimension
2d2 with two connected components. For the simplest case d = 1 we have the
algebra Cl(2, 0) isomorphic to M(2,R), see the left side of Fig. 1.

ForA =M(2d,R2) =M(2d,R)×M(2d,R), the square roots of (−1,−1) are
pairs of two square roots of −1 inM(2d,R). They constitute a unique conjugacy
class with four connected components, each of dimension 4d2. Regarding the four
connected components, the group of inner automorphisms Inn(A) induces the
permutations of the Klein group, whereas the quotient group Aut(A)/Inn(A) is
isomorphic to the group of isometries of a Euclidean square in 2D. The simplest
example with d = 1 is Cl(2, 1) isomorphic to M(2,R2) =M(2,R)×M(2,R).

For A = M(d,H), the submanifold of the square roots f of −1 is a single
connected conjugacy class of R-dimension 2d2 equal to the R-dimension of the
centralizer of every f . The easiest example for d = 1 is H, isomorphic to Cl(0, 2),
see the right side of Fig. 1.

For A = M(d,H2) = M(d,H) × M(d,H), the square roots of (−1,−1)
are pairs of two square roots (f, f ′) of −1 in M(d,H) and constitute a unique
connected conjugacy class of R-dimension 4d2. The group Aut(A) has two
connected components: the neutral component Inn(A) connected to the identity
and the second component containing the swap automorphism (f, f ′) 7→ (f ′, f).
The simplest case for d = 1 is H2 isomorphic to Cl(0, 3).

For A =M(2d,C), the square roots of −1 are in bijection to the idempotents
[2]. First, the ordinary square roots of −1 (with k = 0) constitute a conjugacy
class of R-dimension 4d2 of a single connected component which is invariant un-
der Aut(A). Second, there are 2d conjugacy classes of exceptional square roots
of −1, each composed of a single connected component, characterized by the
equality Spec(f) = k/d (the pseudoscalar coefficient) with ±k ∈ {1, 2, . . . , d},
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and their R-dimensions are 4(d2− k2). The group Aut(A) includes conjugation
of the pseudoscalar ω 7→ −ω which maps the conjugacy class associated with k
to the class associated with −k. The simplest case for d = 1 is the Pauli matrix
algebra isomorphic to the geometric algebra Cl(3, 0) of 3D Euclidean space R3,
and to complex biquaternions [31].

2.4. The multivector split with respect to a square root of −1

With respect to any square root f ∈ Cl(p, q) of −1, f2 = −1, every multi-
vector A ∈ Cl(p, q) can be split into commuting and anticommuting parts [21].

Lemma 2.3. Every multivector A ∈ Cl(p, q) has, with respect to a square root
f ∈ Cl(p, q) of −1, i.e., f−1 = −f, the unique decomposition

A+f =
1

2
(A+ f−1Af), A−f =

1

2
(A− f−1Af)

A = A+f +A−f , A+f f = fA+f , A−f f = −fA−f , (2.13)

A+f ∈ centralizer(f, Clp,q).

3. General steerable one-sided Clifford Fourier transforms

The general steerable one-sided Clifford Fourier transform (CFT) [20], can
be understood as a generalization of previously known one-sided CFTs [14],
to a general Clifford algebra setting. Most known CFTs (prior to [20]) used
in their kernels specific square roots of −1, like bivectors, pseudoscalars, unit
pure quaternions, or sets of coorthogonal blades (commuting or anticommuting
blades) [6]. All those restrictions on the square roots of −1 used in a CFT do
not apply in our definition below. Note further, that the definition we are about
to introduce is even more general than Definition 3.1 given in [20], because we
generalize to multivector signal functions in L1(Rp,q;Cl(p′, q′)) and not only in
L1(Rp,q;Cl(p, q)).

Definition 3.1 (Steerable CFT with respect to one square root of −1). Let i
∈ Cl(p′, q′), i2 = −1, be any square root of −1. The general Clifford Fourier
transform (CFT) of f ∈ L1(Rp,q;Cl(p′, q′)), with respect to i is

F i{f}(ω) =

∫
Rp,q

f(x) e−iu(x,ω)dnx, (3.1)

where dnx = dx1 . . . dxn, x,ω ∈ Rp,q, and u : Rp,q × Rp,q → R.

Since square roots of −1 in Cl(p′, q′) populate continuous submanifolds in
Cl(p′, q′), the CFT of Definition 3.1 is generically steerable within these man-
ifolds, see (3.3). In Definition 3.1, the square roots i ∈ Cl(p′, q′) of −1 may
be from any component of any conjugacy class. The choice of the Clifford’s
geometric product between multivector signal function f and the multivector
kernel e−iu(x,ω), in the integrand of (3.1) is very important. Because only this
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choice allowed, e.g. in [9], to define and apply a holistic vector field convolution,
without loss of information.

Note that two-sided CFTs can be decomposed to pairs of one-sided CFTs
[22].

Remark 3.2. In order to avoid clutter we often drop the upper index i as
in F{h} = F i{h}, but in principle the one-sided CFT always depends on the
particular choice i of the multivector square root of −1. Since square roots
of −1 in Cl(p′, q′) populate continuous submanifolds in Cl(p′, q′), the CFT of
Definition 3.1 is generically steerable within these submanifolds. In Definition
3.1, the square root i ∈ Cl(p′, q′) of −1, may be from any conjugacy class and
component, respectively.

Within the same conjugacy class of square roots of −1 the CFTs of Definition
3.1 are related by the following equation, and therefore steerable. Let i, i′ ∈
Cl(p′, q′) be any two square roots of −1 in the same conjugacy class, i.e. i′ =
a−1ia, a ∈ Cl(p′, q′), a being invertible. As a consequence of this relationship
we also have

e−i
′u = a−1e−iua, ∀u ∈ R. (3.2)

This in turn leads to the following steerability relationship of all CFTs with
square roots of −1 from the same conjugacy class:

F i
′
{h}(ω) = F i{ha−1}(ω)a, (3.3)

where ha−1 means to multiply the signal function h by the constant multivector
a−1 ∈ Cl(p′, q′).

For establishing an inversion formula and other properties of the CFT in
Definition 3.1, certain assumptions about the phase function u(x,ω) need to
be made. In principle these assumptions could be made based on the desired
properties of the resulting CFT. One possibility is, e.g., to assume

u(x,ω) = x ∗ ω̃ =

n∑
l=1

xlωl =

n∑
l=1

xlωl, (3.4)

which will be assumed in the rest of this paper.
We then get the following inversion theorem4.

Theorem 3.3 (Inversion of one-sided CFT). For F i{h} ∈ L1 (Rp,q;Cl(p′, q′))
we have

h(x) = F i−1{F i{h}}(x) =
1

(2π)n

∫
Rp,q

F i{h}(ω) eiu(x,ω)dnω, (3.5)

where dnω = dω1 . . . dωn, x,ω ∈ Rp,q.

4Note, that we show the inversion symbol −1 as lower index in Fi−1, in order to avoid a
possible confusion by using two upper indice. The inversion could also be written with the
help of the CFT itself as Fi−1 = 1

(2π)n
F−i.
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The proof of theorem 3.3 is strictly analogous to the proof of equation (4.8)
on page 231 of [20], and therefore left as an exercise to the reader.

We further note the following useful relationship using the argument reflec-
tion of Notation 2.2

F−i{h} = F i{h1} = F{h1}. (3.6)

The main properties of the CFT of Definition 3.1 have been studied for the
special case of multivector signal functions f ∈ L1(Rp,q;Cl(p, q)) in detail in [20],
and can easily be generalized to the more general case of f ∈ L1(Rp,q;Cl(p′, q′)).

4. Convolution and steerable Mustard convolution

We define the convolution of two Clifford (algebra) signals a, b ∈ L1(Rp,q;
Cl(p′, q′)) as

(a ? b)(x) =

∫
R2

a(y)b(x− y)d2y, (4.1)

provided that the integral exists.
Note that the real continuous Clifford geometric algebra wavelet transform

can be written as a convolution of the multivector signal function with the
daughter wavelet (a rotated, dilated and translated mother wavelet), essentially
evaluated at the center of the daughter wavelet, see [15].

The Mustard convolution [30, 7] of two Clifford signals a, b ∈ L1(Rp,q;
Cl(p′, q′)) is defined as

(a ?M b)(x) = (F i)−1(F i{a}F i{b})(x), (4.2)

provided that the integral exists.

Remark 4.1. The Mustard convolution has the conceptual and computational
advantage to simply yield, independent of the particular Clifford algebra Cl(p′, q′)
involved and of the particular multivector square root of −1 in the CFT kernel,
as spectrum in the CFT Fourier domain the point wise product of the CFTs
of the two signals, just as for the classical complex Fourier transform. On the
other hand, by its very definition, the Mustard convolution itself depends on the
choice of i, i.e. of the multivector square root of −1, used in the Definition 3.1
of the CFT. The Mustard convolution (4.2) is therefore a steerable operator,
dependent on the choice of i.

In the following two Subsections we will express the convolution (4.1) in
terms of the Mustard convolution (4.2), and vice versa, and study the mutual
relations of these expressions.

4.1. Expressing the convolution in terms of the Mustard convolution

In this Subsection we assume the use of the one-sided CFT with a general
multivector square roots of −1, i ∈ Cl(p′, q′). The definition of the classical
convolution (4.1) is independent of the application of a CFT. The Mustard
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convolution of (4.2) depends on the definition of the CFT and in particular on
the choice of the multivector square root i of −1.

In our approach we generalize equation (4.17) on page 233 of [20], which
expresses the convolution of two Clifford signal functions in the Clifford Fourier
domain with the help of the CFT of Definition 3.1. We generalize this equation
to the case of multivector signal functions a, b ∈ L1(Rp,q;Cl(p′, q′), and to the
CFT of Definition 3.1. Nevertheless the proof works perfectly analogous to the
one given in [20], we therefore leave this as an exercise to the reader.

Theorem 4.2 (CFT of convolution). We assume that the function u is linear
with respect to its first argument. The CFT of the convolution (4.1) of two
multivector signals a, b ∈ L1(Rp,q;Cl(p′, q′) can then be expressed as

F i{a ? b} = F−i{a}F i{b−i}+ F i{a}F i{b+i}
= F i{a1}F i{b−i}+ F i{a}F i{b+i}. (4.3)

We can now easily express the convolution of two multivector signals F i{a ?
b}(ω) in terms of only two Mustard convolutions (4.2), by applying the inverse
CFT.

Theorem 4.3 (Convolution in terms of Mustard convolution). Assuming a
general multivector square root i of −1, the convolution (4.1) of two Clifford
functions a, b ∈ L1(Rp,q;Cl(p′, q′)) can be expressed in terms of two Mustard
convolutions (4.2) as

a ? b = a1 ?M b−i + a ?M b+i. (4.4)

4.2. Expressing the Mustard convolution in terms of the convolution

Now we will first simply write out the Mustard convolution (4.2) and simplify
it until only standard convolutions (4.1) remain.

We begin by writing the Mustard convolution (4.2) of two multivector func-
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tions a, b ∈ L2(Rp,q;Cl(p′, q′))

a ?M b(x)

= 1
(2π)n

∫
Rp,q

F{a}(ω)F{b}(ω)eiu(x,ω)dnω

= 1
(2π)n

∫
Rp,q

∫
Rp,q

a(y)e−iu(y,ω)dny

∫
Rp,q

b(z)e−iu(z,ω)dnzeiu(x,ω)dnω

= 1
(2π)n

∫∫∫
a(y)e−iu(y,ω)[b+i(z) + b−i(z)]eiu(x−z,ω)dnydnzdnω

= 1
(2π)n

∫∫∫
a(y)b+i(z)e−iu(y,ω)eiu(x−z,ω)dnydnzdnω

+ 1
(2π)n

∫∫∫
a(y)b−i(z)eiu(y,ω)eiu(x−z,ω)dnydnzdnω

= 1
(2π)n

∫∫∫
a(y)b+i(z)eiu(x−y−z,ω)dnydnzdnω

+ 1
(2π)n

∫∫∫
a(y)b−i(z)eiu(x+y−z,ω)dnydnzdnω

=

∫∫
a(y)b+i(z)δ(x− y − z)dnydnz

+

∫∫
a(y)b−i(z)δ(x + y − z)dnydnz

=

∫
Rp,q

a(y)b+i(x− y)dny +

∫
Rp,q

a(y)b−i(x + y)dny

=

∫
Rp,q

a(y)b+i(x− y)dny +

∫
Rp,q

a(y)b−i(−(−x− y))dny

= a ? b+i(x) + a ? b1−i(−x)

= a ? b+i(x) + a1 ? b−i(x). (4.5)

We have abbreviated
∫
Rp,q

∫
Rp,q to

∫∫
, and

∫
Rp,q

∫
Rp,q

∫
Rp,q to

∫∫∫
. For the

third equality we applied the split of Lemma 2.3 to b(x) and used the linear-
ity of u with respect to its first argument. For the fourth equality we used
the linearity of Clifford’s geometric product, the linearity of the triple inte-
gral, and we used the commutation and anti-commutation properties of b±i(x)
with the multivector square root i ∈ Cl(p′, q′), which produces the sign change
e−iu(y,ω) → e+iu(y,ω) in the case of anti-commutation. For the fifth equality we
again applied the linearity of u with respect to its first argument. The integra-
tions 1

(2π)n

∫
eiu(x±y−z,ω)dnω produce the n-dimensional Dirac delta functions

δ(x± y − z), giving the sixth equality.
We illustrate the last identity of (4.5), a ? b1−i(−x) = a1 ? b−i(x), in the one-
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dimensional case Rp,q = R, the generalization to Rp,q is then straightforward

a ? b1(−x) =

∫
R
a(y)b(−(−x− y))dy =

∫ +∞

−∞
a(y)b(x+ y)dy

=

∫ −∞
+∞

a(−g)b(x− g)(−1)dg =

∫ +∞

−∞
a(−g)b(x− g)dg

=

∫
R
a1(g)b(x− g)dg = a1 ? b(x). (4.6)

where we have substituted g = −y, dg = −dy, including substitution of the
integration boundaries for the third equality. The interchange of the integration
boundaries eliminates the overall minus sign in the fourth equality of (4.6).

Note that in (4.5), a ? b1−i(−x), means to first apply the convolution to
the pair of functions a and b1−i, and only then to evaluate the result of the
convolution integral with the argument (−x). So in general a ? b1−i(−x) 6=
a ? b−i(+x).

We finally obtain the desired decomposition of the Mustard convolution (4.2)
in terms of the classical convolution.

Theorem 4.4 (Mustard convolution in terms of standard convolution).
The Mustard convolution (4.2) of two multivector signal functions a, b ∈ L1(Rp,q;
Cl(p′, q′)) can be expressed in terms of two standard convolutions (4.1) as

a ?M b(x) = a1 ? b−i(x) + a ? b+i(x). (4.7)

Remark 4.5 (Theorem duality). Comparing Theorems 4.3 and 4.4 we notice
an interesting duality: interchanging convolution and Mustard convolution in
either theorem yields the other, independent over which vector space Rp,q the
multivector signals are defined, independent from the signal value Clifford alge-
bra Cl(p′, q′), and independent from the particular choice of multivector square
root of −1, i ∈ Cl(p′, q′). The last form of independence also means, that the
observed duality is stable with respect to steering the CFT and the Mustard con-
volution by changing i ∈ Cl(p′, q′). Note further, that a corresponding duality
will be valid for the left-sided version of the CFT in Definition 3.1, by placing
the kernel factor on the left side and going analogously through all arguments
up to Theorem 4.4.

Yet, it is an interesting non-trivial question, whether a similar duality may
hold for other forms of the CFT, e.g. with more than one kernel factor, see e.g.
[22, 25].

4.3. Single convolution product identities for classical and Mustard convolutions

Let us now apply Theorem 4.3 to the three functions a, b±i, observing that

(b+i)−i = (b−i)+i = 0, (b+i)+i = b+i, (b−i)−i = b−i. (4.8)

Then we obtain

a ? b+i = a1 ?M (b+i)−i + a ?M (b+i)+i = 0 + a ?M b+i = a ?M b+i, (4.9)
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and similarly,

a ? b−i = a1 ?M b−i ⇐⇒ a1 ? b−i = a ?M b−i, (4.10)

since double reflection of the argument returns the function itself (2.12). Note,
that the very same identities are easily obtained by analogously applying The-
orem 4.4 to a, b±i. We therefore summarize them in the following theorem.

Theorem 4.6 (Partial identities between convolutions and Mustard convolu-
tions). For pairs of functions (a, b−i) and (a, b+i) with a, b±i ∈ L1(Rp,q;Cl(p′, q′)),
where the second factor either commutes or anti-commutes with the multivector
square root of −1, i ∈ Cl(p′, q′) of the Definition 3.1, the following convolution
product identites between convolution (4.1) and Mustard convolution (4.2) hold

a1 ? b−i = a ?M b−i ⇐⇒ a ? b−i = a1 ?M b−i,

a ? b+i = a ?M b+i. (4.11)

Theorem 4.6 can therefore either be derived from Theorem 4.3 or from Theo-
rem 4.4. Moreover, Theorem 4.6 can also be established independently by direct
computation. Then adding two convolution terms would give the Mustard con-
volution

a1 ? b−i + a ? b+i
Th. 4.6

= a ?M b−i + a ?M b+i = a ?M b. (4.12)

And conversely adding two Mustard convolution terms would give the convolu-
tion

a1 ?M b−i + a ?M b+i
Th. 4.6

= a ? b−i + a ? b+i = a ? b. (4.13)

This establishes the following important threefold theorem equivalence

Theorem 4.3 ⇐⇒ Theorem 4.6 ⇐⇒ Theorem 4.4. (4.14)

Remark 4.7. Note that the need to always decompose the right convolution
product factor function b = b−i+b+i is manifestly due to the kernel in Definition
3.1 being placed on the right side. Using a corresponding left side kernel CFT,
would lead to analogous results with decomposing the left convolution product
factor a = a−i + a+i.

Furthermore, we can ask under what conditions we get a full direct single
convolution product identity of the two convolution products a ? b = a ?M b?
This identity holds under any of the following conditions:

1. For all functions a, b ∈ L1(Rp,q;Cl(p′, q′)), with b−i ≡ 0. This condition
depends on the choice of i.

2. For central multivector square roots i ∈ Cl(p′, q′) of −1 and all functions
a, b ∈ L1(Rp,q;Cl(p′, q′)). An important practical example is i = e1e2e3 ∈
Cl(3, 0) [9].

3. For all functions a, b ∈ L1(Rp,q;Cl(p′, q′)), with reflection symmetry a1 =
a. This condition does not depend on the choice of i, and poses no restric-
tion on b.
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5. Conclusion

In this paper we have briefly reviewed non-degenerate Clifford algebras, their
continuous manifolds of multivector square roots of −1, Clifford algebra decom-
position with respect to a pair of square roots of −1, and the general steerable
one-sided Clifford Fourier transform. We defined the notions of (classical non-
steerable) convolution of two Clifford algebra valued functions over Rp,q, and
the steerable Mustard convolution (with its CFT as the point wise product of
the CFTs of the factor functions).

The main results are: A decomposition of the classical convolution of Clif-
ford algebra signals in terms of two Mustard convolutions. Next, we showed
how in a dual way to fully generally express the Mustard convolution of two
Clifford algebra signals in terms of two classical convolutions. Finally, we stud-
ied direct single convolution product identities between classical and Mustard
convolutions, and showed how even for general Clifford signal factor functions
the dual convolution product decompositions are theoretically fully equivalent,
including equivalence to pairs of single convolution product identities.

In view of the many potential applications of the CFT [5], including already
its lower-dimensional realizations as QFT [23, introduction], and space-time FT
[24, introduction], we expect our new results to be of great interest in physics,
pure and applied mathematics, and engineering, e.g., for filter design and feature
extraction in multi-dimensional signal and (color) image processing. Finally, the
CFT and all convolutions described above can be implemented for simulations
and real data applications in the recently released Clifford Multivector Toolbox
(for MATLAB) [32, 33].
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