Four conjectures on the primes p^{2+18m} and q^{2-18n} between the squares p^{2} , q^{2} of a pair of twin primes

Abstract. In this paper I make the following four conjectures: (I) there exist always a prime of the form $p^2 + 18*m$ between the squares p^2 and q^2 of a pair of twin primes [p, q = p + 2], beside the pair [3, 5]; examples: for $[p^2, q^2] = [11^2, 13^2] = [121, 169]$ there exist the primes 139 = 121 + 1*18) and 157 = 121 + 1*182*18; for $[p^2, q^2] = [17^2, 19^2] = [289, 361]$ there exist the prime 307 = 289 + 1*18; (II) there exist always a prime of the form $q^2 - 18*n$ between the squares p^2 and q^2 of a pair of twin primes [p, q = p + 2], beside the pair [3, 5]; examples: for $[p^2, q^2] = [11^2, p^2]$ 13^{2} = [121, 169] there exist the prime 151 = 169 -1*18; for $[p^2, q^2] = [17^2, 19^2] = [289, 361]$ there exist the prime 307 = 361 - 3*18; (III) there exist an infinity of r primes of the form $p^2 + 18*m$ or $q^2 - 18*n$ between the squares p^2 and q^2 of a pair of twin primes [p, = p + 2] such that the number obtained q concatenating p^2 to the right with r is prime; example: 121139 is prime; (IV) there exist an infinity of r primes of the form $p^2 + 18*m$ or $q^2 - 18*n$ between the squares p^2 and q^2 of a pair of twin primes [p, q = p + 2] such that the number obtained concatenating q^2 to the left with r is prime; example: 139169 is prime. Of course, the conjectures (III) and (IV) imply that there exist an infinity of pairs of twin primes.

Conjecture 1:

There exist always a prime of the form $p^2 + 18*m$ between the squares p^2 and q^2 of a pair of twin primes [p, q = p + 2], beside the pair [3, 5].

Verifying the conjecture:

(for the first n pairs of twin primes beside [3, 5])

- : for $[p^2, q^2] = [5^2, 7^2] = [25, 49]$ there exist the prime 43 = 25 + 1*18;
- : for [p^2, q^2] = [11^2, 13^2] = [121, 169] there exist the prime 139 = 121 + 1*18 and 157 = 121 + 2*18;
- : for $[p^2, q^2] = [17^2, 19^2] = [289, 361]$ there exist the prime 307 = 289 + 1*18;
- : for $[p^2, q^2] = [29^2, 31^2] = [841, 961]$ there exist the primes 859 = 841 + 1*18 and 877 = 841 + 2*18;

- : for [p^2, q^2] = [41^2, 43^2] = [1681, 1849] there
 exist the primes 1699 = 1681 + 1*18 and 1753 = 1681
 + 4*18 and 1789 = 1681 + 6*18;
 : for [p^2, q^2] = [59^2, 61^2] = [3481, 3721] there
- exist the primes 3499 = 3481 + 1*18 and 3517 = 3481 + 2*18 and 3571 = 3481 + 5*18 and 3607 = 3481 + 7*18and 3643 = 3481 + 9*18 and 3697 = 3481 + 12*18.

Conjecture 2:

There exist always a prime of the form $q^2 - 18*n$ between the squares p^2 and q^2 of a pair of twin primes [p, q = p + 2], beside the pair [3, 5].

Verifying the conjecture:

(for the first n pairs of twin primes beside [3, 5])

- : for $[p^2, q^2] = [5^2, 7^2] = [25, 49]$ there exist the prime 31 = 49 - 1*18;
- : for $[p^2, q^2] = [11^2, 13^2] = [121, 169]$ there exist the prime 151 = 169 1*18;
- : for $[p^2, q^2] = [17^2, 19^2] = [289, 361]$ there exist the prime 307 = 361 3*18;
- : for [p^2, q^2] = [29^2, 31^2] = [841, 961] there exist the primes 907 = 961 3*18 and 853 = 961 6*18;
- for [p^2, q^2] = [41^2, 43^2] = [1681, 1849] there
 exist the primes 1831 = 1849 1*18 and 1777 = 1849
 4*18 and 1759 = 1849 5*18 and 1741 = 1849 6*18
 and 1723 = 1849 7*18;
- : for [p^2, q^2] = [59^2, 61^2] = [3481, 3721] there
 exist the primes 3631 = 3721 5*18 and 3613 = 3721
 6*18 and 3599 = 3721 9*18 and 3541 = 3721 10*18.

Conjecture 3:

There exist an infinity of r primes of the form $p^2 + 18*m$ or $q^2 - 18*n$ between the squares p^2 and q^2 of a pair of twin primes [p, q = p + 2] such that the number obtained concatenating p^2 to the right with r is prime.

The sequence of such primes:

: 2531, obtained for [p^2, r, q^2] = [25, 43, 49]; : 2543, obtained for [p^2, r, q^2] = [25, 43, 49]; : 121139, obtained for [p^2, r, q^2] = [121, 139, 169]; : 121151, obtained for [p^2, r, q^2] = [121, 151, 169];

:		obtained	for	[p^2,	r,	q^2]	=	[121,	157 ,
:		obtained	for	[p^2,	r,	q^2]	=	[841,	859,
:	961]; 16811741 1849];	, obtained	l for	[p^2,	r,	q^2]	=	[1681,	1741,
:		, obtained	l for	[p^2,	r,	q^2]	=	[1681,	1831,
:		, obtained	l for	[p^2,	r,	q^2]	=	[3481,	3607,
:		, obtained	l for	[p^2,	r,	q^2]	=	[3481,	3613,
:		, obtained	l for	[p^2,	r,	q^2]	=	[3481,	3631,
	()								

Conjecture 4:

There exist an infinity of r primes of the form $p^2 + 18*m$ or $q^2 - 18*n$ between the squares p^2 and q^2 of a pair of twin primes [p, q = p + 2] such that the number obtained concatenating q^2 to the left with r is prime.

The sequence of such primes:

:	4349, ob	tained for	[p^2	, r, q	^2]	= [25]	, 43	3, 49];	;
:	139169, 169];	obtained	for	[p^2,	r,	q^2]	=	[121,	139,
:	151169, 169];	obtained	for	[p^2,	r,	q^2]	=	[121,	151,
:	307361, 361];	obtained	for	[p^2,	r,	q^2]	=	[289,	307,
:	35713721 3721]; ()	, obtained	l for	[p^2,	r,	q^2]	= [3481,	3571 ,