Two unusual defined and possible infinite sequences of primes and two conjectures

Abstract. In this paper I state two conjectures: (I) There exist an infinity of primes p of the form n - 1, where n is the number obtained concatenating the digits of a prime q, each one of them multiplied by 6 (example: for q = 239, n = 121854 and p = n - 1 = 121853, prime); (II) There exist an infinity of primes p of the form n + 1, where n is the number obtained concatenating the digits of a prime q, each one of them multiplied by 6 (example: for q = 283, n = 124818 and p = n + 1 = 124819, prime).

Conjecture 1:

There exist an infinity of primes p of the form n - 1, where n is the number obtained concatenating the digits of a prime q, each one of them multiplied by 6.

Example: for q = 239, n = 121854 and p = 121853, prime.

The sequence of primes p:

for p = 5, n = 30 and p = n - 1 = 29, prime; : for p = 7, n = 42 and p = n - 1 = 41, prime; : for p = 13, n = 618 and p = n - 1 = 617, prime; : for p = 17, n = 642 and p = n - 1 = 641, prime; : for p = 23, n = 1218 and p = n - 1 = 1217, prime; : for p = 43, n = 2418 and p = n - 1 = 2417, prime; : for p = 47, n = 2442 and p = n - 1 = 2441, prime; : for p = 73, n = 4218 and p = n - 1 = 4217, prime; : : for p = 79, n = 4254 and p = n - 1 = 4253, prime; for p = 83, n = 4818 and p = n - 1 = 4817, prime; : for p = 97, n = 5442 and p = n - 1 = 5441, prime; : for p = 109, n = 6054 and p = n - 1 = 6053, prime; : for p = 163, n = 63618 and p = n - 1 = 63617, prime; : for p = 173, n = 64218 and p = n - 1 = 64217, prime; : for p = 239, n = 121854 and p = n - 1 = 121853, : prime; for p = 269, n = 123654 and p = n - 1 = 123653, : prime; for p = 307, n = 18042 and p = n - 1 = 18041, prime; : for p = 313, n = 18618 and p = n - 1 = 18617, prime; : for p = 349, n = 182454 and p = n - 1 = 182453, : prime; for p = 397, n = 185442 and p = n - 1 = 185441, : prime;

```
(...)
for p = 104717, n = 602442642 and p = n - 1 =
602442641, prime;
(...)
```

Conjecture 2:

There exist an infinity of primes p of the form n + 1, where n is the number obtained concatenating the digits of a prime q, each one of them multiplied by 6.

Example: for q = 283, n = 124818 and p = 124819, prime.

The sequence of primes p:

:	for $p = 5$, $n = 30$ and $p = n + 1 = 31$, prime;
:	for $p = 7$, $n = 42$ and $p = n + 1 = 43$, prime;
:	for $p = 11$, $n = 66$ and $p = n + 1 = 67$, prime;
:	for $p = 13$, $n = 618$ and $p = n + 1 = 619$, prime;
:	for $p = 17$, $n = 642$ and $p = n + 1 = 643$, prime;
:	for $p = 53$, $n = 3018$ and $p = n + 1 = 3019$, prime;
:	for $p = 61$, $n = 366$ and $p = n + 1 = 367$, prime;
:	for $p = 67$, $n = 3642$ and $p = n + 1 = 3643$, prime;
:	for $p = 73$, $n = 4218$ and $p = n + 1 = 4219$, prime;
:	for $p = 97$, $n = 5442$ and $p = n + 1 = 5443$, prime;
:	for $p = 101$, $n = 606$ and $p = n + 1 = 607$, prime;
:	for $p = 107$, $n = 6042$ and $p = n + 1 = 6043$, prime;
:	for $p = 113$, $n = 6618$ and $p = n + 1 = 6619$, prime;
:	for $p = 137$, $n = 61842$ and $p = n + 1 = 61843$, prime;
:	for $p = 191$, $n = 6546$ and $p = n + 1 = 6547$, prime;
:	for $p = 193$, $n = 65418$ and $p = n + 1 = 65419$, prime;
:	for $p = 263$, $n = 123618$ and $p = n + 1 = 123619$,
	prime;
:	for $p = 281$, $n = 12486$ and $p = n + 1 = 12487$, prime;
:	for $p = 283$, $n = 124818$ and $p = n + 1 = 124819$,
	prime;
:	for $p = 307$, $n = 18042$ and $p = n + 1 = 18043$, prime;
:	for $p = 311$, $n = 1866$ and $p = n + 1 = 1867$, prime;
:	for $p = 347$, $n = 182442$ and $p = n + 1 = 182443$,
	prime;
	()
:	for $p = 104677$, $n = 6024364242$ and $p = n + 1 =$
	6024364243, prime;
	()