Two conjectures on the numbers created concatenating an odd n with 3n-4 and then with 1 or 11

Abstract. In this paper I make two conjectures on the numbers m created concatenating to the right an odd number n, not divisible by 3, with 3*n - 4 and then, if n is of the form 6*k + 1, with 11, respectively, if n is of the form 6*k - 1, with 1: (I) there exist an infinity of m primes; (II) there exist an infinity of m = p*q composites such that p + q - 1 is prime (where p and q may be, or may be not, primes). Note that for 25 from the first 30 odd numbers n not divisible by 3 the number m obtained belongs to one of the two sequences considered by the conjectures above.

Conjecture I:

There exist an infinity of primes m created concatenating to the right an odd number n, not divisible by 3, with 3*n - 4 and then, if n is of the form 6*k + 1, with 11, respectively, if n is of the form 6*k - 1, with 1.

Examples:

- : for n = 7 (of the form 6*k + 1), we have 3*n 4 = 17 and m = 71711, prime; : for n = 17 (of the form 6*k - 1), we have 3*n - 4 = 17
 - 47 an m = 17471, prime.

The sequence of the primes m:

: 71711, 17471, 318911, 351011, 531551, 832451, 952811 (...) obtained for n = 7, 17, 31, 35, 53, 83, 95.

Conjecture II:

There exist an infinity of composites $m = p^*q$, with the property that p + q - 1 is prime (where p and q may be, or may be not, primes), created concatenating to the right an odd number n, not divisible by 3, with $3^*n - 4$ and then, if n is of the form $6^*k + 1$, with 11, respectively, if n is of the form $6^*k - 1$, with 1.

The sequence of the composites m:

- : m = 11291 (for n = 11) = 7*1613 and 7 + 1613 1 = 1619, prime;
- : m = 133511 (for n = 13) = 7*19073 and 7 + 19073 1 = 19079, prime;

:	m = 23651 (for $n = 23$) = 67*353 and 67 + 353 - 1 = 419, prime;
:	m = 257111 (for $n = 25$) = 41*6271 and 41 + 6271 - 1
:	m = 29831 (for $n = 29$) = 23*1297 and 23 + 1297 - 1 =
	1319, prime;
:	m = 411191 (for $n = 41$) = 29*14179 and 29 + 14179 - 1 = 14207, prime; also 411191 = 319*1289 and 319 +
	1289 - 1 = 1607, prime;
:	m = 4312511 (for $n = 43$) = 7*616073 and 7 + 616073 -
	1 = 616079, prime;
:	$m = 5516111$ (for $n = 55$) = 1231×4481 and $1231 + 4481$
	-1 = 5711, prime;
:	$m = 6117911$ (for $n = 61$) = 43×142277 and $43 + 142277$
	- 1 = 142319, prime; also 6117911 = 1949*3139 and
	1949 + 3139 - 1 = 5087, prime;
:	m = 65191 (for $n = 65$) = 7*9313 and 7 + 9313 - 1 =
	9319, prime; also 6117911 = 67*973 and 67 + 973 - 1
	= 1039, prime; also 6117911 = 139*469and 139 + 469 -
	1 = 607, prime;
:	m = 6719711 (for $n = 67$) = 19*353687 and 19 + 353687
	-1 = 353687, prime; also $6719711 = 53*126787$ and 53
	+ 126787 - 1 = 126839, prime;
:	m = 712091 (for $n = 71$) = 509*1399 and 509 + 1399 -
	1 = 1907, prime;
:	m = 772271 (for $n = 77$) = 23*33577 and 23 + 33577 -
	1 = 33599, prime;
:	m = 7923311 (for $n = 79$) = 11*720301 and 11 + 720301
	-1 = 720311, prime;
:	m = 8525111 (for $n = 85$) = 23*370657 and 23 + 370657
	-1 = 370679, prime;
:	m = 9728711 (for $n = 97$) = 2749*3539 and 2749 + 3539
	-1 = 6287, prime;
:	m = 1012991 (for $n = 101$) = 7*144713 and 7 + 144713
	-1 = 144719, prime; also $1012991 = 47*21553$ and 47
	+ 21553 - 1 = 21599, prime; also 1012991 = 329*3079
	and $329 + 3079 - 1 = 21599$, prime.

Note:

For 25 from the first 30 odd numbers n not divisible by 3 the number m obtained belongs to one of the two sequences considered by the conjectures above.